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Abstract 

Non-reciprocal devices such as isolators and circulators, based mainly on ferromagnetic materials, 

require extremely low dielectric loss in order for strict power-link budgets to be met for 

millimetre (mm)-wave and terahertz (THz) systems. The dielectric loss of commercial SrFe12O19 

hexaferrite was significantly reduced to below 0.002 in the 75 - 170 GHz band by thermal 

annealing. While the overall concentration of Fe2+ and oxygen vacancy defects is relatively low in 
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the solid, their concentration at the surface is significantly higher, allowing for a surface sensitive 

technique such as XPS to monitor the Fe3+/Fe2+ redox reaction. Oxidation of Fe2+ and a decrease 

in oxygen vacancies is found at the surface on annealing, which is reflected in the bulk sample by 

a small change in unit cell volume. The significant decrease in dielectric loss property can be 

attributed to the decreased concentration of charged defects such as Fe2+ and oxygen vacancies 

through annealing process, which demonstrated that thermal annealing could be effective in 

improving the dielectric performance of ferromagnetic materials for various applications.  

 

 Introduction 

High performance Faraday devices (i.e. those having low insertion loss and strong gyrotropic 

action), are in high demand for future mm and sub-mm wave radiometers to be deployed for 

astronomy and cosmology. 1-3 Commercial M-type hexaferrite SrFe12O19-based ceramics are the 

preferred choice in electromagnetic mm-wave non-reciprocal devices, such as isolators and 

circulators, and for other types of derivative components such as filters and resonators. 4-7 

However, the limited availability of ultra-low dielectric loss hexaferrites is inhibiting the 

development of mm-wave and THz technologies. This is due to the fact that the Fe3+ ions are 

easily reduced to Fe2+ during sintering. The consequence is a dramatic deterioration in the 

requisite dielectric properties via an electron-hopping mechanism between Fe3+ and Fe2+ ions in 

octahedral sites. 8,9  

The desired mm-wave dielectric properties of ferrites can be engineered by cation-

substitution. Partial substitution of Sr2+ with trivalent ions such as Al3+, Cr3+ and La3+ has been 
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reported to be associated with a valence change of Fe3+ to Fe2+ at 2a- or 4f2- sites, which increases 

the dielectric permittivity, but simultaneously increases the dielectric loss. 10-12  Various synthesis 

routes and processing conditions have been investigated in order to control the microstructure 

and ultimately to modify magnetic and dielectric properties. 13,14 Chief among them, thermal 

annealing is highlighted here as being instrumental in manipulating microstructure and chemical 

composition. However, it has been rarely used to study the relationship between dielectric 

properties and point defects in strontium ferrite. 15  

In this letter, the effect of thermal annealing on the dielectric properties of commercial 

SrFe12O19-based ceramics is presented. A significant 66% decrease in dielectric loss was achieved 

by thermal annealing, which is attributed to the oxidation of Fe2+ and decrease in oxygen vacancy 

concentration. 

    

Experimental 

Commercial strontium hexaferrite (SrFe12O19)-based samples were obtained from the TDK 

Corporation, Japan. There were two groups of samples: as-received samples from TDK Ltd. and 

those annealed by Thomas Keating Ltd. The sample is 10 cm×10 cm square size and the thickness 

is 2.018(±0.002) mm. The structures of the as-received and annealed samples were analysed by 

X-ray powder diffraction (XRD, X’pert Pro, PANalytical, Almelo, Netherlands) using Ni filtered Cu-

K (1.5418 Å) radiation, over the 2 range 5° to 120°, in steps of 0.0167°, with an effective scan-

time of 200 s per step for the X’Celerator detector. Data analysis was carried out using the 

Rietveld method with the General Structure Analysis System (GSAS) software. 16 The initial 
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structural model was based on that of Zi et al. in space group P63/mmc. 17 The microstructure of 

the specimens was examined using a scanning electron microscope (SEM, FEI, Inspect F, Hillsboro, 

OR). Elemental analysis was carried out by Energy-Dispersive X-ray spectroscopy (EDX, Oxford 

instruments). The electron energy states of elements in the samples were determined using X-

ray photoelectron spectroscopy (XPS, ESCALAB MK II, VG Scientific). XPS peak-fitting was 

processed using Origin 9.0 software, with all peaks being fitted based on the Lorentzian-Gaussian 

model. 18 The complex dielectric response of the samples was measured using a vector network 

analyser (VNA)-driven quasi-optical transmissometer operating over contiguous waveguide 

bands covering 75 to 170 GHz. 19 

Results and discussion 

Fig. 1 shows XRD patterns of the studied samples, with the fitted diffraction profiles given 

in the supporting information as Fig. S1 and the corresponding crystal and refinement 

parameters presented in Table S1. The results confirmed that the samples were both hexagonal-

structured strontium ferrite with (00l) preferred orientation. The patterns agree well with the 

standard pattern (PDF No. 33-1340), although it is noted that the unit cell volume is smaller than 

that of the standard pattern (691.38 Å3). Indeed, the unit cell volume varies significantly between 

reports in the literature with Muller and Collomb 20, reporting a value of 689.85 Å3, Zi et al. 17 a 

value of 688.71 Å3 and Luo et al. 21 a value of 690.68 Å. The difference in these values reflects 

differing degrees of Fe3+ reduction, with a significant difference in ionic radius between Fe3+ and 

Fe2+ (r = 0.645 Å and 0.780 Å, respectively, for the ions in high-spin octahedral geometries 22). In 

the present case, the lower unit cell volume might suggest a higher degree of oxidation than seen 

in the previous reports. There is a very small reduction in unit volume on annealing, consistent 
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with a degree of oxidation, but no other significant structural changes were observed between 

the as-received and the annealed samples. The reduction of Fe3+ to Fe2+ leads to formation of 

oxygen vacancies (eq. 1)23. 
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Fig. 1. XRD patterns of as-received and annealed samples of SrFe12O19.  

 

SEM micrographs of the as-received and annealed samples with the corresponding EDX 

spectra are shown in Fig. 2. Uniformly aligned columnar-shaped grains of homogenous size were 

observed for both the as-received (Fig. 2a) and annealed (Fig. 2b) samples, consistent with the 

preferred orientation observed in the XRD profiles. The EDX analysis of as-received (Fig. 2c) and 

annealed (Fig. 2d) samples identified minor amounts of Al and Ca, as well as the expected Sr and 
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Fe. Low levels of Al2O3 and CaCO3 are typically added in production to limit grain growth and 

improve the magnetic and dielectric properties of strontium hexaferrite. 11,13  

 

Fig. 2. SEM micrographs of (a) as-received and (b) annealed samples of SrFe12O19; EDX spectra of 

(c) as-received and (d) annealed samples of SrFe12O19. 

 

XPS spectra covering the Fe 2p peaks for the as-received and annealed samples are 

presented in Figs. 3a and 3b, respectively. Spin-orbit coupling splits the Fe 2p peak into a doublet, 
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corresponding to Fe 2p3/2 and Fe 2p1/2 24. The obtained binding energies are summarised in Table 

1. Interestingly, curve fitting confirmed that both samples contained iron in the 0, 2+ and 3+ 

oxidation states. Integration of the Fe 2p3/2 peaks reveals the percentage distribution of these 

oxidation states as 9% Fe0, 59% Fe2+ and 38% Fe3+ in the as-received sample, which changes to 

6% Fe0, 46% Fe2+ and 48% Fe3+ for the annealed sample. The presence of Fe0 and Fe2+ in the XPS 

spectra indicates significant reduction of Fe3+. XPS is a particularly surface sensitive technique. 

The present results show much higher concentrations of reduced iron species than are expected 

in the bulk. Indeed, the X-ray powder diffraction data, which are more representative of the bulk 

ceramic, confirm a relatively low level of reduction in these samples. The advantage of using XPS, 

in this instance, is that the levels of reduced species are greatly enhanced at the ceramic surface, 

allowing for the effects of annealing to be more readily visualized. On annealing, there is an 

obvious decrease in intensity of the lower oxidation states and increase in that of Fe3+, confirming 

a degree of oxidation. This is consistent with the small decrease in unit cell volume seen in the 

XRD analysis.   
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Fig. 3. XPS spectra showing Fe 2p peaks for (a) as-received and (b) annealed samples of SrFe12O19 

(sat denotes for satellite). 

XPS spectra for the O 1s peaks for both the as-received and annealed samples are 

presented in Fig. 4. The O 1s spectra were modelled using a convolution of three peaks. For the 

as-received sample (Fig. 4a), the peak at 530.1 eV represents oxygen on its intrinsic site; the peak 

at 531.2 eV is related to the oxygen in the reduced region; and the peak at 533.0 eV is 

chemisorbed oxygen on the surface of the sample. 25 For the annealed samples (Fig. 4b), these 

peak position shift slightly to 530.2 eV, 531.5 eV and 533.2 eV, respectively. Integration of the 
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intrinsic and reduced region peaks reveals a ratio of 62% to 38%, respectively, for the as-received 

sample. This ratio increases to 67:33, post-annealing, consistent with a decrease in the number 

of oxide ion vacancies on annealing.  

 

Fig. 4 XPS spectra showing O 1s peaks for (a) as-received and (b) annealed samples of SrFe12O19.  
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Table 1 Fe 2p binding energies obtained from XPS spectra for as-received and annealed samples 

of SrFe12O19. 

sample Fe 2+ peak positions (eV) Fe 3+ peak positions (eV) 

 satellite Fe 2p1/2 Satellite Fe 2p3/2 satellite Fe 2p1/2 satellite Fe 2p3/2 

As-

received  

728.7 722.6 714.2 708.8 732 724.2 719.7 711.0 

Annealed  729.8 722.7 715.5 709.0 732.8 724.7 719.7 711.1 

 

The mm-wave transmission response of the sample was measured using a quasi-optical 

transmission system driven by a VNA. The detailed experimental and theoretical analyses are 

explained in the supporting information. The annealing treatment has no significant effect upon 

magnetic resonance and strength, as discussed in the supporting information. Thus, the 

nonlinear-curve fitting of the measured data against the theoretical model focusses on the 

effects of annealing on the dielectric properties. The calculated co-polar (∥) and cross-polar (⊥) 

S21 scattering parameters based on the model and the experimental results are presented in Fig. 

5 for both as-received and annealed samples. The frequency bands of analysis span 75 to 170 

GHz, significantly away from the known magnetic resonance near 40 GHz. Dielectric loss is seen 

to be significantly reduced on annealing. 
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Fig. 5. Co- and cross-polar transmission data of as-received (red curves) and annealed (blue 

curves) samples of SrFe12O19. Solid lines denote theoretical calculations with respect to a physical 

model and discrete points are measured data.  

Fig. 6 shows the frequency-dependent dielectric response of samples in the mm-wave 

band. Permittivity values of ca. 20.09 and 20.21 were obtained for the as-received and annealed 

samples, respectively. The dielectric loss of the annealed samples (below 0.002) is reduced by 

two thirds with respect to that of the as-received samples (which are above 0.006). The 

improvement in dielectric loss as a function of frequency is dispersive but slightly better 

improvement can be observed at higher frequency. The major contributor to dielectric loss in 

SrFe12O19–based ceramics is charged defects (Fe2+ and oxygen vacancies, eq. 1).  11,12,26 Electron 

hopping can occur between Fe3+ and Fe2+ cations. 26 Our results show that the number of charged 

defects is dramatically decreased by annealing (Fig. 3 and 4), which results in a significant 
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decrease in dielectric loss. Thus, the annealing process is clearly important in obtaining improved 

dielectric properties. 

 

Fig. 6. Dispersive permittivity and dielectric loss performance of as-received and annealed 

samples of SrFe12O19, over the spectral domain spanning 75 – 110 GHz. 

 

Conclusions 

Annealing commercial hexaferrite SrFe12O19-based ceramics significantly reduces their dielectric 

loss in the mm-wave band. Annealing allows for the oxidation of Fe2+, with an associated 

reduction in oxygen vacancies. While the concentration of these defects is relatively low in the 

main bulk of the solid, they can have a significant influence on the dielectric performance. There 
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is a much higher concentration of these defects at the ceramic surface, allowing for the redox 

reaction to be probed using a surface sensitive technique, such as XPS. There is a clear decrease 

in the vacancy concentration in these surface areas on annealing, which is reflected in a small 

change in the unit cell volume, confirming that the oxidation occurs throughout the sample.  The 

improvement of dielectric loss performance of ceramic hexaferrites on annealing, will help 

inform the manufacture of high-performance, mm and sub-mm wave non-reciprocal 

components, such as non-reciprocal isolators and circulators. These are integral to radiometers 

for planed Earth-observation and cosmological missions by the major national space agencies.  

Supplementary Material 

        See supplementary material for the fitted XRD diffraction profiles, crystals and refinement 

parameters, and also the method of mm-wave spectroscopy measurement. 
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