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Abstract We propose an approach to estimate the power consumption of algorithms,
as a function of the frequency and number of cores, using only a very reduced set of real
power measures. In addition, we also provide the formulation of a method to select
the voltage–frequency scaling–concurrency throttling configurations that should be
tested in order to obtain accurate estimations of the power dissipation. The power
models and selection methodology are verified using two real scientific application:
the stencil-based 3DMPDATA algorithm and the conjugate gradient (CG) method for
sparse linear systems. MPDATA is a crucial component of the EULAG model, which
is widely used in weather forecast simulations. The CG algorithm is the keystone
for iterative solution of sparse symmetric positive definite linear systems via Krylov
subspace methods. The reliability of the method is confirmed for a variety of ARM

The researchers from Czestochowa University of Technology were supported by the National Science
Centre, Poland, under Grant No. UMO-2015/17/D/ST6/04059. The researcher from Universidad Jaime I
(UJI) was supported by the CICYT Project TIN2014-53495-R of MINECO and FEDER. This work was
partially performed during a short-term scientific mission (STSM) of Krzysztof Rojek at UJI supported by
EU under the COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS).

B Krzysztof Rojek
krojek@icis.pcz.pl

Enrique S. Quintana-Ortí
quintana@uji.es

Roman Wyrzykowski
roman@icis.pcz.pl

1 Institute of Computer and Information Sciences, Czestochowa University of Technology,
Czestochowa, Poland

2 Depto. de Ingeniería y Ciencia de Computadores, Univ. Jaume I, Castellón, Spain

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/153569686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2020-z&domain=pdf
http://orcid.org/0000-0002-2635-7345


4374 K. Rojek et al.

and Intel architectures, where the estimated results correspond to the real measured
values with the average error being slightly below 5% in all cases.

Keywords Power model · Voltage–frequency scaling (VFS) · Concurrency throttling
(CT) · MPDATA · Conjugate gradient · Multicore processors

1 Introduction

Performance analysis has traditionally focused on optimizing the computational
throughput of applications (from the perspective of a system’s administrator) and/or
reducing their execution time (from the point of view of the user). However, the end
of Dennard scaling (i.e., the ability to shrink the feature size of integrated circuits
while maintaining a constant power density) [8] has promoted energy into a holistic
design principle on par with performance [9,18]. As a result, during the past few years
we have been witnesses to a considerable amount of works that aimed to analyze the
interaction among temperature–power–time–energy for a variety of applications and
simple algorithms. In addition, these studies have targeted all sorts of current archi-
tectures, including multicore processors, graphics accelerators, many-core processors
such as the Intel Xeon Phi or NVIDIA’s GPUs, and clusters assembled using these
technologies.

One particular aspect that many of these past works address is the use of (dynamic)
voltage–frequency scaling (VFS) [10], sometimes combined with (dynamic) con-
currency throttling (CT) [7], as a means to reduce power dissipation and/or energy
consumption.

In this paper,we contribute toward raising the energy awareness among the scientific
community by modeling the impact of VFS and CT on the power dissipation of the
multidimensional positive definite advection transport algorithm (MPDATA), a key
component that strongly dictates the computational performance as well as the energy
consumption of the multiscale fluid model EULAG [24,31]. In addition, we also
include the conjugate gradient (CG) algorithm for the iterative solution of sparse
linear systems via Krylov subspaces methods [30].

In more detail, our paper makes the following contributions:

– We formulate power models that estimate the power consumption as a polynomial
function of the frequency or the number of cores. Using these models, we then
introduce a methodology for power approximation based on a very reduced set of
real power measures.

– In addition, we propose a systematic procedure to select the VFS–CT configura-
tions that should be tested to improve the precision of the power models. Here, we
emphasize that both the methodology for power approximation and the procedure
to select the samples in principle carry over to any other application characterized
by:

– fair workload balance across all the cores (this model is not designed for
algorithms with limited parallelism or dependencies that lead to idle cores);
and
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– iterative nature, where all iterations consume similar amounts of time and
energy. This makes it easy to predict the power dissipation for the entire sim-
ulation based on a few iterations only.

– We perform a detailed power evaluation of MPDATA on a variety of ARM and
Intel architectures, representative of both the low-power and high-performance
extremes of the spectrum of current multicore processors.

– Finally, we validate the precision of our power models using the same collection
of multicore CPUs, for both the MPDATA and the CG algorithms.

At this point, we note that, given the iterative process underlying the simulation
performed by MPDATA as well as the algorithm for CG, we can adapt our power
estimation approach to adjust the model during a few initial iterations. Furthermore,
we recognize that, in most scenarios, energy (which equals the integral of power over
a period of time) is the figure of merit, while power only plays a role for embed-
ded systems due to system constraints. However, again due to the iterative nature of
MPDATA and CG, it is possible to measure the execution time of the first iterations
and combine this information with the power models to obtain accurate predictions
for the energy consumption.

The rest of the paper is structured as follows. In Sect. 2, we offer a short review of
a number of related works. In Sect. 3, we briefly introduce (the OpenMP version of)
MPDATA, emphasizing its role in the framework of EULAG. (For a description of
the CG algorithm, we simply refer the reader to [30] or any other basic linear algebra
text.) Sections 4 and 5 contain the main contribution of our paper, namely the model to
predict the power behavior of MPDATA under different VFS–CT configurations, the
procedure for its calibration, and an experimental evaluation that validates the accuracy
of the approach. We close the paper with a few concluding remarks in Sect. 6.

2 Related work

An increasing list of recent works have addressed distinct aspects related to energy
consumption of scientific applications. Among these, PowerPack [11] and pmlib [2]
are two frameworks to profile power and track energy consumption of serial and
concurrent applications, using wattmeters combined with software microbenchmarks
and utilities.

A more reduced number of works are focused on per-component power usage.
In [4], the authors present a methodology to produce power models for multicore
processors based on performance hardware counters. In [22], a methodology and a
collection of microbenchmarks are proposed to analyze the energy efficiency via sev-
eral operations that feature different access patterns and computation–memory ratios.
In [23], the energy performance of both arithmetic operations and memory accesses
is characterized, paying special attention to the different levels of the memory subsys-
tem. In [16], the authors evaluate the power usage of arithmetic vs. memory operations
and present two analytical models that can be applied to estimate the throughput and
power usage of superscalar processors. In [17], the impact of data movement on the
total energy consumption is characterized for theNASparallel benchmarks and several
scientific applications. In [6], the authors extend their energy roofline model to cap-
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ture arithmetic and basic cache memory energy access costs as well as more elaborate
random access patterns.

Some efforts are especially centered in power/energy consumption for sparse linear
algebra and stencil computations. In particular, a systematic methodology to derive
reliable time and power models for algebraic kernels is introduced in [21], employ-
ing a bottom-up approach. In [20], the authors devise a systematic machine learning
algorithm to classify andpredict the performance and energy costs of the sparsematrix–
vector product, and in [5] this work is extended to consider the effect of VFS. Other
works related to modeling sparse linear algebra operations can be found in [12,15,19].

Our paper relies on two simple power models and an associated calibrationmethod-
ology that are easy to adapt, producing accurate estimates for any number of cores and
voltage–frequency configuration from a reduced number of samples. Compared with
many of the previous approaches, we do not rely on hardware counters or fine-grain
measurements, only on the practical execution of a few steps of the target iterative
application and the reads fromcoarse-grainwattmeters. In contrast to other approaches,
we do not require samples for the full range of frequency configurations and/or num-
ber of threads. Instead, we only count on measurements for a few selected cases to
derive the behavior of the application’s power consumption. Our methodology for this
purpose is formulated in the form of a simple iterative algorithm that, starting from
the simple power models, converges rapidly to a stable solution, in the form of a table
containing the sought-after estimations.

3 MPDATA overview and parallelization

3.1 Overview

MPDATA is the main module of the multiscale fluid model EULAG [24,31], an inno-
vative solver in the field of numerical modeling of multiscale atmospheric flows.
Concretely, MPDATA tackles the continuity equation describing the advection of a
non-diffusive quantity Ψ in a flow field, namely:

∂Ψ

∂t
+ div(VΨ ) = 0, (1)

where V is the velocity vector. The algorithm is positive defined, and by appropriate
flux correction [31], it can also be monotonic. This is a desirable feature for advection
of positive definite variables such as specific humidity, cloud water, cloud ice, rain,
snow, aerosol particles, and gaseous substances.

MPDATA belongs to the group of forward-in-time algorithms [32,33], and the
underlying simulation performs a sequence of time steps that call a particular algo-
rithmic template each. The number of time steps depends on the type of simulated
physical phenomenon, and it can exceed even a few millions, especially when consid-
ering MPDATA as a part of the EULAG model.

Each MPDATA time step consists of 19 parts, including 17 stencils and 2 data
copies. A single MPDATA step requires 5 input matrices and returns a single output
matrix that is necessary for the next time step.
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The technical details of the MPDATA algorithm are widely described in litera-
ture. Those readers that are more interested in the specification of MPDATA and its
implementation can refer to [29,34,36].

In previous works [26,35], we proved that MPDATA belongs to the group of
memory-bound algorithms [13,36]. This makes MPDATA a challenging candidate
for a technology such as dynamic VFS [16], which can reduce CPU energy consump-
tion without a significant loss of performance.

3.2 Parallelization of MPDATA

The parallelization of the MPDATA code is designed for a single node containing
multicore processors [27,28], employing OpenMP [14] within them [25]. Therefore,
in this paper, we focus on investigating the power evaluation on a single node.

Listing 1 Stencil parallelization using OpenMP with thread affinity.

1 #pragma omp p a r a l l e l
2 {
3 / / Thread a f f i n i t y
4 cpu_set_ t s e t ;
5 CPUZERO(&se t ) ;
6 CPU_SET( omp_get_thread_num ( ) , &se t ) ;
7 p id_ t t i d = ( p id_t ) s y s c a l l ( SYS_gettid ) ;
8 s c h ed_ s e t a f f i n i t y ( t id , s i z e o f ( s e t ) , &se t ) ;
9

10 / / S t e n c i l p a r a l l e l i z a t i o n
11 #pragma omp for schedule ( dynamic ,16) co l l apse (2 )
12 for ( in t i =1; i <n−1; ++ i )
13 for ( in t j =1; j <m−1; ++ j )
14 for ( in t k=1; k<l−1; ++k ) {
15 . . .
16 }
17 ( . . . )
18 }

For the single-node case, OpenMP directives are applied to parallelize each stencil
following the data-parallel programming model, as illustrated for one of the sten-
cils in Listing 1. In that particular case, a dynamic schedule is applied with a grain
size of 16, which yields higher performance than its static counterpart. Concretely,
for this application, dynamic scheduling ensures a balanced distribution of the work
load balance among the threads/cores. With this type of scheduling strategy, the
first thread that completes its job takes the next 16 (in this case) chunks to execute.
The grain size is selected empirically. An additional important technique consists in
enforcing thread affinity, which prevents ineffective thread migrations between cores
by the operating system. This can be applied by setting the environment variable
GOMP_CPU_AFFINITY=0-5 for the gcc compiler, or OMP_PROC_BIND=true
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for OpemMP v.3.1. We can also set the thread affinity directly from the application
code (see Listing 1). In our approach, we use the third method as it does not require
to set any environment variables outside of the code. In this method, the CPU_ZERO
macro clears the set variable, the CPU_SET macro adds the CPU to the set, the
syscall(SYS_gettid) routine returns the thread id for the current thread, and
finally the sched_setaffinity routine sets/migrates the thread tid to a core
specified in the set.

To avoid potential overheads due to the re-allocation of threads, the directive
#pragma omp parallel is used only once, at the beginning of the program,
while the directive #pragma omp for is applied multiple times, once for each
stencil.

4 Formulation of the power models

In this section, we introduce our methodology to estimate the power dissipation of
MPDATA. For this purpose, we first describe our models that formulate power dissi-
pation as a function of either the number of threads/cores or the VFS configuration.
Next, we propose an iterative procedure to calibrate the proposedmodels. Ourmethod-
ology is general and we expect it to carry over to other iterative HPC algorithms such
as Jacobi and Krylov subspace solvers for sparse linear systems.

4.1 Power models

Our models estimate the power dissipation P of MPDATA as a function of the number
of active cores (c) or the processor frequency ( f ), see [1,12]. To this end, we will,
respectively, start from the following two equations:

P(c) = PY + PU + PC (c) ≈ PY + PU + PC c, (2)

and
P( f ) = CV 2 f + PS . (3)

Here PY is the power dissipated by the system components except the CPU (e.g., DDR
RAM chips, and motherboard), PU is the power corresponding to the uncore elements
of the processor (e.g., last-level cache, memory controllers, and core interconnect),
PC is the power consumed by the cores (including in-core cache levels, floating-point
units, and branch logic), C is the capacitance, PS is the static power, and V is the
voltage.

Considering P as a function of c, we transform Eqn. (2) into

P(c) = α1 c + α2, (4)

where we still assume that the power dissipation depends linearly on the number of
active cores.
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An additional assumption for Eq. (3) is the relation between the static power and
the square of the voltage: PS ∝ V 2 [1] and the possibility of accurately modeling
power consumption as a (cubic) function of f on recent multicore architectures [3].
Taking these two considerations into account, we evolve Eq. (3) into:

P( f ) = β1 f 3 + β2 f 2 + β3. (5)

In summary, the proposed power models consider a linear function for P(c) and a
polynomial function for P( f ). Since linear functions are special cases of polynomial
functions, the conclusion is that the proposed power model is valid when considering
P(c) and P( f ) as polynomials.

4.2 Calibration of the power models

The input data for the power dissipation model are a reduced set of actual power
data measures collected during the execution of the MPDATA algorithm in the target
architecture. The execution configuration includes the number of cores c and the CPU
frequency f for those particular executions. The output of the model is the set of
power values for MPDATA for any combination of number of cores and frequency
level supported by the CPU.

Before we introduce the technical details of the proposed algorithm for power
derivation, we outline our approach with a simple example. Let us consider a table
pval of size S f × Sc (7 × 6 in our example, which means that we have S f = 7
supported CPU frequencies and Sc = 6 CPU cores). Each cell (i, j) represents the
power dissipation rate observed when using the i th frequency and j th cores for the
execution, with i ∈ [1, 7] and j ∈ [1, 6]. Consider that initially this table contains
6 measured power dissipation values only. This means that we need to estimate the
7 · 6 − 6 = 36 remaining values to complete the table. This case is shown in Fig. 1a.

In order to fill the table for pval, we interpolate the coefficients for a polynomial
based on the real measured values. For this purpose, we first determine the columns
or rows of the table that contain the largest number of filled cells (excluding those
columns and rows that are already complete, as we do not need to estimate any value
for them). In our example, columns j = 2 and 5 contain the largest number of already
filled cells. Based on the values in these columns, we then derive the polynomials
P2( f ), P5( f ) (via interpolation) and, using these polynomials, we estimate the values
for the entire cells of these two columns, see Fig. 1b. We next repeat this step, but
this time we select all the rows (as all of them contain two filled cells). We create
the polynomials for each row based on the available values and evaluate the power
dissipation for the remaining empty cells, see Fig. 1c. Note that, because of the regular
distribution of the real measurements, this case converges to the solution in only two
steps. Other patterns may require a larger number of steps.

The calibration procedure that computes the power estimates can be formally
defined following the steps exposed in Algorithm 1. The procedure operates on the
S f ×Sc pval array. The first step of Algorithm 1 initializes array pvalwhich, initially,
only contains real measured values of P; during the algorithm’s execution, this table is
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(a)

(b)

(c)

Fig. 1 Power estimation for each configuration of frequency and number of cores

completed with the estimated values for P . Arrays Pcol
j and Prow

i contain the number
of already filled values in every column and row of the pval array. The columns/rows
containing the largest number of filled cells are used to approximate the remaining
values.

Steps 3–6 count the elements within each column of pval different to −1 (i.e.,
already initialized). The result of this process determines the global column priority,
which is selected to formulate a polynomial to estimate the values of P . Step 5 detects
whether all the elements in a column are already filled. This means that the power
prediction for this column is completed, and there is no need to approximate any
elements within it. Steps 7–10 perform the row-wise process analogous to Steps 3–6.

Step 11 is responsible for selecting the row(s) or column(s) with the highest priority.
When only one column/row has the highest priority, that column/row is the only one
that is selected. If there is more than one column or row with the same priority, then all
these columns or rows are selected. In Step 12, the algorithm leverages the information
in the selected columns and rows in order to approximate the power dissipation rates;
and in Step 13, it places this result into pval (the approximation is described later in
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(a)

(b)

(c)

Fig. 2 Power approximation based on the proposed power algorithm

this section). The procedure in Steps 2–14 is repeated until all the elements of pval
have different values to −1.

In order to gain a better understanding of the algorithm, Fig. 2 presents an example of
the process that is carried out to approximate the power values, illustrating the evolution
of the pval array and the polynomial approximations of P . For this example, we again
consider a CPU with Sc = 6 cores that supports S f = 7 CPU frequencies. The gray
cells in array pval denote those valueswhich aremeasured or already estimated. In this

Algorithm 1 Methodology for power approximation based on the set of measures.
1: Fill array pval with the available (real) values of P , the remaining cells set to −1
2: repeat
3: for j ∈ [1..Sc] do
4: Set Pcol

j to the number of cells, where pval(i, j) �= −1

5: If Pcol
j = S f , then set P

col
j = −1

6: end for
7: for i ∈ [1..S f ] do
8: Set Prow

i to the number of cells, where pval(i, j) �= −1
9: If Prow

i = Sc , then set Prow
i = −1

10: end for
11: Find the column(s) from Pcol

j or row(s) from Prow
i with the highest value, and store the number of

these column(s)/row(s) in Mc and Mr , respectively
12: Use the values in column(s) Mc or row(s) Mr of pval to formulate polynomials of degree equal to

Pcol
Mc

− 1 and Prow
Mr

− 1

13: Set column(s) Mc or row(s) Mr of pval with the estimated values obtained via the formulated
polynomials

14: until All the cells of pval have different values to −1
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particular scenario, at the beginning, we start with 6 regularly distributed realmeasures
of P (gray cells). Figure 2a shows that there are 2 columns with 3 (real) measures,
and thus the priority of these columns is 3. This is the result of the first execution
of Steps 3–6. Step 11 then selects columns 2 and 5 (but no rows) and employs the
corresponding values from pval to derive polynomials of degree 2 that will be used
to approximate the power for the two selected columns.

In the second iteration of Algorithm 1, corresponding to Fig. 2b, all the rows are
selected as they have the highest priority (2). Then, the two elements per row that are
already filled are employed to derive linear models (polynomials of degree 1) for that
row. The completed approximation is shown in Fig. 2c, where all the elements are
filled.

The real values of P (which are necessary to derive the estimates) are collected
with a fixed pattern following a regular distribution across columns and rows. Let
Sm f be the maximum number of the real measured values across a single column and
Smc be the maximum number of the real measured values across a single row. Taking
into account the degree 2 for the polynomial P( f ) and the linear (polynomial) model
for P(c), we can expect reasonable results with Sm f = 3 measures across columns
and Smc = 2 across rows. This requires a total number Sm of real measures equal to
Sm = Sm f · Smc = 6 for P . In order to select the indices I, J of the configurations for
which the real power measures are collected, we employ the following equations:

I = �S f /Sm f � · i + �S f /Sm f /2�, i ∈ 0, . . . , Sm f − 1, (6)

J = �Sc/Smc� · j + �Sc/Smc/2�, j ∈ 0, . . . , Smc − 1. (7)

In the example employed in Fig. 2, the row indices I are thus given by �7/3� · 0 +
�7/3/2� = 0+ 1 = 1, �7/3� · 1+ �7/3/2� = 2+ 1 = 3, and �7/3� · 2+ �7/3/2� =
4 + 1 = 5, while the column indices J are �6/2� · 0 + �6/2/2� = 0 + 1 = 1 and
�6/2� · 1 + �6/2/2� = 3 + 1 = 4.

The procedure to define the function that approximates the power dissipation is
shown in Fig. 3, where the polynomial for P( f ) is presented. The construction of
the polynomial for P(c) is straightforward. The approximation is always performed
using the filled elements and the number of such elements determines the degree of the
polynomial that is generated. When there is only one filled element, the polynomial is
of degree 0, and the value is copied across the entire column or row in the pval array,
see Fig. 3a.

5 Verification of the power estimation methodology

In this section, we validate the proposed power estimates. All testswithMPDATAwere
executedwith double-precision arithmetic, a grid of size 160×160×160, and 100 time
steps. We provide additional evidence of the reliability of our approach using the CG
algorithm for sparse linear systems. The loop body of this iterative solver is composed
of a few calls to selected kernels for basic linear algebra operations, such as the sparse
matrix-vector product, the dot (or inner) product of two vectors, and the “axpy”-vector
update [30]. Our OpenMP-based parallel version of this algorithm stores the sparse
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Fig. 3 Definition of the function
type depending on the number of
already filled elements across a
single column of array pval

(a) (b)

(c) (d)

matrix in CSR format [30], employing a simple row-wise parallelization of the sparse
matrix-vector product with a static schedule, and sequential versions of the vector
kernels.

5.1 Experimental setup

Our goal is to approximate the power dissipation and validate the results of MPDATA
(and the CG algorithm) on ARM- and Intel-based multicore architectures. Concretely,
our models are calibrated and validated for the following systems:

– ARM.little: ARMv7 cluster with 4 low-power ARMCortex-A7 cores (packaged
in the Exynos E5422 system-on-chip);

– ARM.big: ARMv7 cluster with 4 ARM Cortex-A15 cores (also packaged in the
Exynos E5422 system-on-chip);

– Intel.Sandy1: Intel Xeon E5-2620 (SandyBridge) with 6 cores;
– Intel.Sandy2: Two Intel Xeon E5-2620 CPUs (SandyBridge) with 6 cores each;
– Intel.Ivy: Intel Core i7-3930K CPU with 6 cores.

For the validation, we employ a representative subset of the frequencies sup-
ported by each architecture and any number of cores present in it. The ARMv7 CPUs
can operate with a varied range of frequencies. For example, ARM.little supports
S f = 8 frequencies, corresponding to the values {0.25, 0.3, 0.35, . . . , 0.6}GHz;while
ARM.big supports S f = 9, defined as {0.8, 0.9, . . . , 1.6}GHz. The number of cores in
bothARMCPUs is Sc = 4. The Intel CPUs support evenwider sets of frequencies. For
both Intel.Sandy1 and Intel.Sandy2, S f = 9, corresponding to {1.2, 1.3, . . . , 2.0}
GHz; but Sc = 6 for the former while Sc = 12 for the latter. Finally, for Intel.Ivy,
S f = 15, which include {1.2, 1.3, . . . , 3.0, 3.2} GHz, and Sc = 6. The properties of
the target platforms are summarized in Table 1.

The power measurements are collected using the pmlib library [2]. For the
ARM architectures, this tool obtains power data from internal power sensors in the
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Table 1 Properties of the target platforms (min. and max. freq. are expressed in [GHz])

Prop. ARM.little ARM.big Intel.Sandy1 Intel.Sandy2 Intel.Ivy

Sc 4 4 6 12 6

S f 8 9 9 9 15

Min. freq. 0.25 0.8 1.2 1.2 1.2

Max. freq. 0.6 1.6 2.0 2.0 3.2

S f × Sc 32 36 54 108 90

big.LITTLE CPU clusters, Mali GPU, and memory DIMMs. For the Intel servers,
pmlib collects power samples from a PDU, providing real power measures for the
full server.

5.2 Testing the power modeling approach

The measured (real) values of power dissipated by Intel.Sandy2 are presented in the
top half of Table 2. We can observe there that the power dissipation rate increases with
the CPU frequency and the number of cores. At this point, we remind that, according
to our models, the power dissipation grows linearly with the number of cores and
polynomially across the CPU frequency.

A comparison between these real measures and the estimates in the bottom half
of the same table, obtained from the power modeling approach using only 6 real
measures, shows a fair match between these values. This can be confirmed in the top
plot of Fig. 4, which shows the measured values (left-hand side plot) and the relative
errors corresponding to the individual estimates (right-hand side plot). Overall, the
highest relative error encountered for this platform is around 5.0%, with this metric
being much below 2% in many cases.

The remaining two rows of plots in Fig. 4 and the analogous ones in Fig. 5 display
the same type of graphical analysis for the remaining architectures targeted in this
study. This collection of figures shows a similar behavior for the real power consump-
tion and validates the reliability of the modeling approach. Only for a few frequency
configurations using 1 and 2 cores on ARM.big, we observe superior relative errors,
in the range 6–9% in six of cases. For the rest of configurations of this particular plat-
form, and for all of them in all 5 benchmarking systems, we relative error is bounded
above by 5%, being much lower in most cases.

In order to quantify the differences using a single figure (metric), Tables 3 and 4
report the average error EAVG of the estimated values of P for MPDATA, for each
computing platform, computed as follows:

EAVG = 1

S f · Sc
S f∑

i=1

Sc∑

j=1

∣∣∣∣∣1 − P p
i, j

Pr
i, j

∣∣∣∣∣ · 100 [%]. (8)

Here P p
i, j is the predicted value of P power using j cores and the i th CPU frequency,

while Pr
i, j is the real power measure.
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Table 2 Power dissipation (top) and estimates (bottom) [both in W] of MPDATA for a grid of size 160 ×
160 × 160, and 100 time steps on Intel.Sandy2

#Cores CPU frequency (GHz)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1 122.0 123.0 125.0 126.4 128.1 129.7 131.8 133.6 135.1

2 125.7 127.7 130.1 131.4 133.4 137.9 140.8 142.2 144.1

3 129.8 131.8 136.9 138.5 140.7 143.0 145.2 148.7 150.2

4 136.4 138.5 140.0 142.9 145.4 148.6 151.3 154.1 155.9

5 138.8 141.5 144.0 146.4 148.9 152.5 155.4 159.4 162.8

6 141.1 144.5 146.8 149.4 153.4 157.4 160.2 165.2 169.4

7 144.3 146.0 149.3 152.9 155.7 160.1 163.9 167.0 171.4

8 146.3 151.4 153.2 164.7 160.0 166.9 172.3 175.8 180.0

9 148.5 152.7 160.7 162.8 165.2 170.0 175.7 179.9 186.0

10 155.6 158.8 163.2 166.3 171.7 173.7 180.5 184.2 188.4

11 157.1 161.1 164.6 168.3 173.3 177.6 180.6 185.6 190.6

12 158.9 163.6 167.0 170.9 173.9 179.2 184.9 190.3 195.1

1 127.7 128.3 129.3 130.6 132.3 134.2 136.4 139.0 141.9

2 130.6 131.7 133.1 134.7 136.6 138.8 141.3 144.0 147.1

3 133.6 135.1 136.8 138.8 141.0 143.5 146.1 149.1 152.2

4 136.6 138.5 140.6 142.9 145.4 148.1 151.0 154.1 157.4

5 139.5 141.9 144.4 147.0 149.8 152.7 155.8 159.1 162.5

6 142.5 145.2 148.1 151.1 154.2 157.4 160.7 164.1 167.7

7 145.5 148.6 151.9 155.2 158.6 162.0 165.5 169.2 172.8

8 148.4 152.0 155.6 159.3 162.9 166.7 170.4 174.2 178.0

9 151.4 155.4 159.4 163.3 167.3 171.3 175.3 179.2 183.2

10 154.4 158.8 163.1 167.4 171.7 175.9 180.1 184.2 188.3

11 157.3 162.1 166.9 171.5 176.1 180.6 185.0 189.3 193.5

12 160.3 165.5 170.6 175.6 180.5 185.2 189.8 194.3 198.6

The values in the bold are those that were selected as the input for the power estimation algorithm. The
value in the italic identifies the configuration with the largest relative error in the estimate

Let us focus on the results for MPDATA. Table 3 shows that the highest accuracy is
achieved for Intel.Ivy, which attains an average error EAVG = 0.36%when employ-
ing only 6 measures to calibrate the models. As could be expected, a more reduced
number ofmeasures yield less accurate estimates for all platforms. However, the errors
are still reasonable for the Intel-based platforms even when only 4 real measures are
employed. The lowest accuracy is achieved for the ARM systems as, in these systems-
on-chip, the relation between the CPU frequency and voltage is not linear for the lower
extreme values of the frequency.

A similar behavior is detected for the CG algorithm, see Table 4. For this particular
case, though, the application interleaves sequential and parallel phases, which explains
the higher average error rates. However, these errors are still quite satisfactory when
six real samples are employed, being below 2% in all cases except Intel.Ivy.
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Fig. 4 Real power dissipation (left) and relative error for the power estimates (right) for Intel.Sandy2
(top), Intel.Sandy1 (middle) and Intel.Ivy (bottom)

Fig. 5 Real power dissipation (left) and relative error for the power estimates (right) for ARM.little and
ARM.big (top, and bottom, respectively)
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Table 3 Average error [%] for MPDATA as a function of the number Sm of real measures

Sm ARM.little ARM.big Intel.Sandy1 Intel.Sandy2 Intel.Ivy

3 29.83 34.74 5.95 8.43 8.68

4 6.43 4.24 0.71 1.42 1.13

5 3.95 3.45 0.70 1.42 0.97

6 1.11 2.84 0.66 1.32 0.36

Table 4 Average error (%) for the CG algorithm as a function of the number Sm of real measures

Sm ARM.little ARM.big Intel.Sandy1 Intel.Sandy2 Intel.Ivy

3 29.24 37.73 6.18 9.30 22.88

4 6.59 4.29 1.51 2.12 9.89

5 2.79 3.63 1.30 2.04 9.59

6 1.54 2.17 1.24 1.35 4.90

6 Conclusions and future work

In this paper, we have proposed and validated a power consumption model for the
MPDATA simulation and CG algorithm on a variety of ARM and Intel CPUs. We
expect the model to carry over to other iterative algorithms where the execution time
can be linearly approximated based on a few initial steps of the process. By combining
the estimated power values with approximations of the execution time, we can also
provide accurate prediction of the energy consumption of the algorithm.

Considering VFS and CT, our results confirm the model hypothesis: for all the
target platforms, power dissipation increases linearly with the number of cores and as
a polynomial of the CPU frequency.

The power estimates for MPDATA on Intel.Ivy report the average error of just
0.36% when employing only 6 measures to derive 84 values of power. The most
challenging CPU is Intel.Sandy2, which requires power estimations for more than
100 different configurations. Nevertheless, in this case we also obtained accurate
estimates, with an average error for MPDATA of 1.32% only. The lowest accuracy
for MPDATA is achieved for the ARM CPUs, where the relation between the CPU
frequency and voltage is not linear for the lower extreme values of frequency.

All the assumptions and methodology used to develop the proposed model are con-
sidered independently on theMPDATAalgorithm. Furthermore, they are also validated
using anOpenMP version of the CG algorithm for the iterative solution of sparse linear
systems. This supports the applicability the power model to any other application that
features a good workload balance across the processing cores. Our future work will
focus on extending the proposed approach to other architectures, including clusters
of nodes. An important direction of future work will also to take into account energy
modeling for non-iterative algorithms.
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