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Abstract

In this paper we introduce the mathematical analysis needed to explain the convergence of a
Progressive Variational Vademecum based in the Proper Generalized Decomposition (PGD). The
PGD is a novel technique appeared in the lately years for solving problems with high dimensions
and also provides new tactics for obtaining the solution of elliptic and parabolic problems by
means an abstract separation of variables method. In consequence this new scenario requires a
mathematical framework in order to justify his usability to solve numerical problems. The PGD
will help us in the change of paradigm.

The main goal of this paper is to give a mathematical environment to define the notion of Pro-
gressive Variational Vademecum. We will prove the convergence of this iterative procedure and
we also provide the first order optimality conditions in order to construct the numerical approx-
imations of the parametrised solutions. In particular, we illustrate this methodology by means a
robot path planning problem. This is one of the common task for designing the trajectory or path
of a mobile robot. The construction of a Progressive Variational Vademecum gives us a novel
methodology for computing all the possible paths from any start and goal positions derived from a
harmonic potential field in a predefined map.
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1. Introduction

The human being throughout the history developed several facilities for giving fast responses
to a variety of questions. Thus, abaci were used 2700 years B.C. in Mesopotamia. This abacus
was a sort of counting frame primarily used for performing arithmetic calculations. We associate
this abacus to a bamboo frame with beads sliding on wires, however, originally they were beans
or stones moved in grooves in sand or on tablets of wood, stone, or metal. The abacus was in
use centuries before the adoption of the written modern numeral system and is still widely used
by readers. There are many variants, the Mesopotamian abacus, the Egyptian, Persian, Greek,
Roman, Chinese, Indian, Japanese, Korean, native American, Russian, etc.

However, the initial arithmetic needs were rapidly complemented with more complex represen-
tations. Like for instance nomography. It is the graphical representation of mathematical relation-
ships or laws. It is an area of practical and theoretical mathematics invented in 1880 by Philbert
Maurice d’Ocagne and used extensively for many years to provide engineers with fast graphical
calculations of complicated formulas to a practical precision.

Thus, a nomogram can be considered as a graphical calculating device. There are thousands of
examples on the use of nomograms in all the fields of sciences and engineering. The former facil-
ities allowed for fast calculations and data manipulations. Nomograms can be easily constructed
when the mathematical relationships that they express are purely algebraic, eventually non-linear.
In those cases it was easy to represent some outputs as a function of some inputs. The calcula-
tion of these data representations was performed off-line and then used on-line in many branches
of engineering sciences for design and optimization. However, the former procedures fail when
addressing more complex scenarios. Thus, sometimes engineers manipulate not properly under-
stood physics and in that case the construction of nomograms based on a too coarse modelling
could be dangerous. In that cases one could proceed by making several experiments from which
defining a sort of experiment-based nomogram. In other cases the mathematical object to be ma-
nipulated consists of a system of complex coupled non-linear partial differential equations, whose
solution for each possible combination of the values of the parameters that it involves is simply
unimaginable for the nowadays computational availabilities. In these cases experiments or expen-
sive computational solutions are performed for some possible states of the system, from which
a simplified model linking the inputs to the outputs of interest is elaborated. These simplified
models have different names: surrogate models, meta-models, response surface methodologies,
. . . Other associated tricky questions are the one that concerns the best sampling strategy (Latin
hypercube,. . .) and also the one concerning the appropriate interpolation techniques for estimating
the response at an unmeasured position from observed values at surrounding locations. However,
we must accept a certain inevitable inaccuracy when estimating solutions from the available data.
It is the price to pay if neither experimental measurements nor numerical solutions of the fine but
expensive model are achievable for each possible scenario. Today many problems in science and
engineering remain intractable, in spite of the impressive progresses attained in modelling, numer-
ical analysis, discretization techniques and computer science during the last decade, because their
numerical complexity, or the restrictions imposed by different requirements (real-time on deployed
platforms, for instance) make them unaffordable for today’s technologies.

Real time analysis of complex systems is suitable for speeding up engineering design, and
compulsory for making possible a real time decision-making that needs the evaluation of many
possible scenarios under the real time constraint. Decision-making is at the heart of material,
processes and structural optimization and also of the incipient simulation-based control. Moreover,
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for democratizing the accessibility to efficient design technologies decision-making tools should
require slight computing platforms. These apparently contradictory requirement: the real time
evaluation of system responses involved in decision-making tools and the suitability of running
these applications and tools in light computational devices, could be possible if we generate off-
line a sort of computational vademecum containing the solution of the model under consideration
for all the possible design scenarios and then we use it on-line for decision- making purposes. As
this last step only involves post-processing of compressed data it could run in real time and even
in very light computational devices, contributing as previously argued, to the democratization of
these advanced decision-making tools.

Despite the improvement techniques in numerical problems, some challenging problems re-
main today intractable. Our computers and algorithms for addressing the models encountered in
science and engineering are definitely suboptimal. It is faced that important limitations of today’s
computer capabilities. Nowadays the society needs fast and accurate solutions. For that reason
there is a need for a new generation simulation techniques, beyond high-performance computing
or nowadays approaches (proposed 40 years ago), to simply improve efficiency or to allow getting
results when other alternatives fail in the above challenging scenarios, [7, 5].

Recently model order reduction opened new possibilities in order to construct a modern version
of the ancient abacus and following [7] we will call it computational vademecum. It is due to
a wide variety of applications lead to problems where the data or the desired solution can be
represented by elements that we can choose from a dictionary of functions. In this context, tensor-
based methods are receiving a growing interest in scientific computing for the numerical solution of
problems defined in high dimensional tensor product spaces, such as partial differential equations,
[11]. The last recently years a novel technique has been developed, called the Proper Generalized
Decomposition (PGD), [7, 5]. The PGD is a methodology initially proposed for compute the
variational solution of partial differential equations (PDE) defined in tensor product spaces. It
consists in constructing a separated representation of the variational solution of a given PDE, [10].

The advantages of PGD can be divided in two: how to deal with high dimensional problems
and new strategies for solving classical problems. For instance, parameters can be set as additional
extra-coordinates of the model, [7, 5].

When we use the PGD, the resulting model is solved once for life, in order to obtain a general
solution that includes all the solutions for every possible value of the parameters, that is, a sort of
computational vademecum. The general PGD solution (the vademecum) is computed only once
and off-line. The resulting multidimensional model we have access to the parametric solution that
can be viewed as a sort of vademecum that can be then used on-line, [7, 5].

A real life problem, where is possible to apply the above strategy, is to compute the trajectory
of a mobile robot free of collisions. It is a fundamental robotic task for guiding a robot from a star
position to a goal position using a safe path. This task is called path planning. In many real-time
situations path planning is hard and infeasible [14]. The complexity of the problem has motivated
different publications in the field of robot path planning, for example: [14, 3, 17]

Even a lot of papers are devoted to present applications of the construction of a computational
vademencum based in the PDG (or PGD-vademecum, in short) [6, 7, 5], under the authors knowl-
edge, there are no papers than explain the mathematical analysis of this very promising engineering
framework. The main goal of this paper is to give a mathematical environment to define the no-
tion of Progressive Variational Vademecum. The numerical implementation of the Progressive
Variational Vademecum gives us the computational vademecum introduced in [6]. It is based in
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the definition of Progressive PGD [11] previously introduced for some of the authors of the pa-
per. This is our first contribution. Next, we will choose a convenient tensor Hilbert space that
allows to prove the convergence to the Vademecum, that is, a solution that contains the whole set
of parametrised solutions of the PDE under consideration. Our last contribution is to give a set of
first order optimality conditions in order to perform a numerical approach to the construction of
the Vademecum.

This paper is organized as follows. Section 2 introduces the notion of variational vademecum
by using the potential flow theory to obtain a parametrized Laplace equation. In Section 3 is
detailed some properties of Tensor Hilbert spaces that we will use to prove the results given in the
paper. In Section 4 is shown a progressive construction of a variational vademecum based in the
Proper Generalized Decomposition. The first order optimality conditions related with the above
construction are explained in Section 5. In Section 6, some simulation examples are provided.
Finally, Section 7 draws conclusions.

2. Motivation

In this section we introduce the notion of variational vademecum. To this end we will use the
potential flow theory in robotics to illustrate the definition together a real life application.

2.1. Potential flow theory
Path planning based on the potential flow theory has been used in the literature during the last

years, see [8]-[13], focused mainly in the resolution of the Laplace equation. First of all, let us
outline the mathematical model describing the flow of an inviscid incompressible fluid. Assuming
a steady state irrotational flow in the Eulerian framework, the velocity υ obeys the relation

5×υ = 0, (2.1)

and hence the velocity is the gradient of a scalar potential function, i.e. υ = ∇u. Then the potential
u appears as a solution of the Laplace equation:

∆u = 0. (2.2)

By using a 2.5D mould filling model similar to [9] it is possible to introduce a localized fluid
source (respectively, sink) modelled by a Dirac term δS (respectively,−δT ) added to the right hand
side of (2.2). To this end we assume a unit amount of fluid injected at point S during a unit of time
and the same unit withdrawn at point T, the velocity of the fluid is now the solution of the Poisson
equation, that includes the source term f = δS−δT as:

−∆u = δS−δT . (2.3)

Equation (2.3) must be complemented by appropriate boundary conditions. In these sense, the fluid
cannot flow through the boundaries, a condition expressed by υ ·n (n being a vector normal to the
boundary Γ). The resolution of the Poisson equation under these conditions produces a potential
field from the Starting point S (source) to the Target point T (sink), without deadlocks [13].
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2.2. Source term definition and classical variational formulation
First, let’s assume that the source term f is non-uniform, that is, f = gS1ΩX − gT 1ΩX

where the function 1ΩX (x,y) = 1 when (x,y) ∈ ΩX and zero otherwise. The functions
gS : ΩX ×ΩS → R and gT : ΩX ×ΩT → R are two-dimensional Gaussian density distribu-
tions centered in S = (s1,s2) ∈ ΩX and T = (t1, t2) ∈ ΩX , respectively and both have equal
variance given by a diagonal matrix Σ = diag(r,r) for some r > 0. More precisely, we can
write gS = gS((x,y);(s1,s2),r) = (2πr)−1e−

1
2r ((x−s1)

2+(y−s2)
2), gT = gT ((x,y);(t1, t2),r) =

(2πr)−1e−
1
2r ((x−t1)2+(y−t2)2) and hence ΩX = Ωx×Ωy, ΩS = Ωs×Ωr and ΩT = Ωt ×Ωr. Here

ΩX = Ωs = Ωt ⊂ R2 and Ωr ⊂ (0,∞). Then, the Poisson equation is now

−∆u(x,y) = f ((x,y);(s1,s2),(t1, t2),r) (2.4)

where f := gS−gT , and the solution is in the form

u = u((x,y);(s1,s2),(t1, t2),r).

We recall that the Hilbert space H1
0 (ΩX) is the closure of C∞

c (ΩX) (functions in C∞(ΩX) with
compact support in Ω) in H1(ΩX) with respect to the norm in H1(ΩX). We equip H1

0 (ΩX) with
the norm

‖u‖H1(ΩX )
:=
(
‖∂xu‖2

L2(ΩX )
+‖∂yu‖2

L2(ΩX )

)1/2

which is equivalent to the classical norm on H1(ΩX).

The classical variational formulation for (2.4) together u|∂ΩX = 0 is: For each fixed
(s1,s2),(t1, t2) and r find u ∈ H1

0 (ΩX) such that∫
ΩX

∇X u ·∇X v =
∫

ΩX

f v (2.5)

holds for all v ∈ H1
0 (ΩX). Here ∇X denotes the gradient in the coordinates X = (x,y).

2.3. A variational vademecum
From now one, we will assume that the common variance r take a fixed value and we will

construct a cademecum by consider the solution of (2.4) for a fixed r and all values of

(X = (x,y);S = (s1,s2),T = (t1, t2)) ∈ΩX ×ΩS×ΩT .

To this end we will consider in the next section a closed subspace, namely H0, of the tensor Hilbert
space L2(ΩX ×ΩS×ΩT ), and then a variational vademecum u ∈H0 can be introduced as follows.
Find u ∈H0 such that ∫

ΩX×ΩS×ΩT

∇X u ·∇X v =
∫

ΩX×ΩS×ΩT

f v (2.6)

holds for all v ∈ H0. In this case, u gives us the set of variational solutions of (2.4) for all possi-
ble parameter values (s1,s2) ∈ ΩS and (t1, t2) ∈ ΩT . We remark that solving once (2.6) we solve
variationally (2.4) for all possible parameter values (s1,s2) ∈ΩS and (t1, t2) ∈ΩT .

5



2.4. A progresive variational vademecum
The mathematical analysis of a progressive PGD to solve (2.5) in the tensor Hilbert space

H1
0 (ΩX) for a fixed (s1,s2) ∈ΩS and (t1, t2) ∈ΩT has been introduced in [2] (see also [9, 11]). In

the next sections we develop the mathematical analysis needed to justify the use of a progressive
PGD to solve (2.6) and hence we give a constructive approach to obtain progresive variational
vademecum.

3. Tensor Hilbert spaces

We first consider the definition of the algebraic tensor space a
⊗d

j=1Vj generated from Hilbert
spaces Vj (1≤ j ≤ d) equipped with norms ‖ ·‖ j. As underlying field we choose R, but the results
hold also for C. The suffix ‘a’ in a

⊗d
j=1Vj refers to the ‘algebraic’ nature. By definition, all

elements of

V := a

d⊗
j=1

Vj

are finite linear combinations of elementary tensors v =
⊗d

j=1 v( j)
(

v( j) ∈Vj

)
.

A typical representation format is the Tucker or tensor subspace format

u = ∑
i∈I

ai

d⊗
j=1

b( j)
i j
, (3.1)

where I = I1× . . .× Id is a multi-index set with I j = {1, . . . ,r j}, r j ≤ dim(Vj), b( j)
i j
∈ Vj

(
i j ∈ I j

)
are linearly independent (usually orthonormal) vectors, and ai ∈R. Here, i j are the components of
i=(i1, . . . , id). The data size is determined by the numbers r j collected in the tuple r :=(r1, . . . ,rd).
The set of all tensors representable by (3.1) with fixed r is

M≤r(V) :=
{

v ∈ V :
there are subspaces U j ⊂Vj such that
dim(U j) = r j and v ∈ U := a

⊗d
j=1U j .

}
(3.2)

To simplify the notations, the set of rank-one tensors (elementary tensors) will be denoted by

M≤1(V) := M≤(1,...,1)(V) =
{
⊗d

k=1w(k) : w(k) ∈Vk

}
.

By definition, we then have V= spanM≤1(V). We also introduce the set of rank-m (m> 1) tensors
defined by

Rm(V) :=

{
m

∑
i=1

zi : zi ∈M≤1(V)\{0}

}
.

We say that V‖·‖ is a Hilbert tensor space if there exists an algebraic tensor space V and a norm
‖·‖ on V such that V‖·‖ is the completion of V with respect to the norm ‖·‖, i.e.

V‖·‖ := ‖·‖

d⊗
j=1

Vj = a
⊗d

j=1
Vj

‖·‖
.

Observe that spanM≤1(V) is dense in V‖·‖. Since M≤1(V)⊂M≤r(V) for all r≥ (1,1, . . . ,1),
then spanM≤r(V) is also dense in V‖·‖.
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3.1. Topological properties of Tensor Hilbert spaces
Any norm ‖·‖ on a

⊗d
j=1Vj satisfying∥∥∥⊗d

j=1
v( j)
∥∥∥= ∏

d
j=1 ‖v

( j)‖ j for all v( j) ∈Vj (1≤ j ≤ d) (3.3)

is called a crossnorm.

Remark 3.1. Eq. (3.3) implies the inequality ‖
⊗d

j=1 v( j)‖ . ∏
d
j=1 ‖v( j)‖ j which is equivalent to

the continuity of the tensor product mapping

⊗
:

d×
j=1

(
Vj,‖·‖ j

)
−→

(
a

d⊗
j=1

Vj ,‖·‖
)
, (3.4)

given by ⊗
(
(v(1), . . . ,v(d))

)
=⊗d

j=1v( j), where (X ,‖ · ‖) denotes a vector space X equipped with
norm ‖ · ‖.

As usual, the dual norm to ‖·‖ is denoted by ‖·‖∗. If ‖·‖ is a crossnorm and also ‖·‖∗ is a
crossnorm on a

⊗d
j=1V ∗j , i.e.∥∥∥⊗d

j=1
ϕ
( j)
∥∥∥∗ = ∏

d
j=1 ‖ϕ

( j)‖∗j for all ϕ
( j) ∈V ∗j (1≤ j ≤ d) , (3.5)

‖·‖ is called a reasonable crossnorm.

We recall that a sequence vm ∈V is weakly convergent if limm→∞〈ϕ,vm〉 exists for all ϕ ∈V ∗.
We say that (vm)m∈N converges weakly to v ∈ V if limm→∞〈ϕ,vm〉 = 〈ϕ,v〉 for all ϕ ∈ V ∗. In this
case, we write vm ⇀ v.

Definition 3.2. A subset M ⊂V is called weakly closed if vm ∈M and vm ⇀ v implies v ∈M.

Note that ‘weakly closed’ is stronger than ‘closed’, i.e., M weakly closed ⇒ M closed. The
following proposition has been proved in [11].

Proposition 3.3. Let V‖·‖ be a Hilbert tensor space with a cross norm Then the set M≤r(V) is
weakly closed.

4. A progressive construction of a variational vademecum

Let us consider ΩX ,ΩS,ΩT ⊂R2 open and bounded domains and let us introduce the variables
X = (x,y), S = (s1,s2) and T = (t1, t2). The aim of the paper is given f (X ;S) ∈ L2(ΩX ×ΩS)
and g(X ;T ) ∈ L2(ΩX ×ΩT ) construct iteratively, by means a Greedy Rank-One Algorithm, a
variational solution of the parametrised problem

−(∂ 2
x +∂

2
y )u(X ;S,T ) = f (X ;S)−g(X ;T ), (4.1)

for (X ;S,T ) ∈ΩX ×ΩS×ΩT together the homogeneous boundary condition

u(X ;S,T ) = 0 for all (X ;S,T ) ∈ ∂ΩX ×ΩS×ΩT . (4.2)
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Since f (X ;S(0)) ∈ L2(ΩX) for each fixed S(0) ∈ΩS and g(X ;T (0)) ∈ L2(ΩX) for each fixed T (0) ∈
ΩT , classical results give us, for each fixed (S(0),T (0)) ∈ ΩS×ΩT , the existence and unicity of a
weak solution for the PDE:

−(∂ 2
x +∂

2
y )u(X ;S(0),T (0)) = f (X ;S(0))−g(X ;T (0)), (4.3)

for X ∈ΩX together the homogeneous boundary condition

u(X ;S(0),T (0)) = 0 for all X ∈ ∂ΩX . (4.4)

Thus, we have a map u(X ;S,T ) ∈ L2(ΩX) that solves (4.1)-(4.2) for all (S,T ) ∈ ΩS×ΩT . The
idea of the Abacus introduced in [7] is to construct iteratively a global solution of the parametrised
PDE (4.1)-(4.2) following the ideas that we will explain below.

Now, our main goal is construct iteratively the weak solution of (4.1)-(4.2) denoted by
u(X ;S,T ). To this end we introduce the following algebraic tensor product space

H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ) =

span{u1(X)u2(S)u3(T ) : u1(X) ∈ H1
0 (ΩX),u2(S) ∈ L2(ΩS) and u3(T ) ∈ L2(ΩT )}

endowed with the norm

‖u(X ;S,T )‖2
(1,0,0) :=

∫
ΩX×ΩS×ΩT

((∂xu(X ;S,T ))2 +(∂yu(X ;S,T ))2)dΩX dΩS dΩT

= ‖∂xu(X ;S,T )‖2
L2(ΩX×ΩS×ΩT )

+‖∂yu(X ;S,T )‖2
L2(ΩX×ΩS×ΩT )

.

The norm ‖ · ‖(1,0,0) is indeed a cross-norm because

‖u1(X)u2(S)u3(T )‖(1,0,0) = ‖u1(X)‖H1
0 (ΩX )

‖u2(S)‖L2(ΩS)
‖u3(T )‖L2(ΩT )

holds for all u1 ∈H1
0 (ΩX), u2 ∈ L2(ΩS) and u3 ∈ L2(ΩT ). By taking its completion over this norm

we have the following Hilbert tensor space

H0 := H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )

‖·‖(1,0,0) ⊂ L2(ΩX ×ΩS×ΩT ).

The inner product 〈·, ·〉(1,0,0) is given by

〈u,v〉(1,0,0) =
∫

ΩX×ΩS×ΩT

(∂xu∂xv)+∂yu∂yv)dΩX dΩS dΩT .

In particular, we obtain for the rank-one tensors

〈u1(X)u2(S)u3(T ),v1(X)v2(S)v3(T )〉(1,0,0)
= 〈u1(X),v1(X)〉H1(ΩX )

〈u2(S),v2(S)〉L2(ΩS)
〈u3(T ),v3(T )〉L2(ΩT )

.

where ∇X denotes the gradient in the coordinates X = (x,y). Observe that u(X ;S,T ) = 0 for X ∈
∂ΩX holds for all u ∈H0 and that for each fixed (S(0),T (0)) ∈ΩS×ΩT , the set

F(S(0),T (0)) := {u ∈H0 : u = u(X ;S(0),T (0))}
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is a closed subspace of H0 linearly isomorphic to H1
0 (ΩX). Next we introduce the set of tensors of

bounded rank one:

M≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) :=

{u1(X)u2(S)u3(T ) : u1(X) ∈ H1
0 (ΩX),u2(S) ∈ L2(ΩS) and u3(T ) ∈ L2(ΩT )}

The next lemma gives the main properties of M≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )).

Lemma 4.1. The set M≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ))⊂H0 satisfy the following properties

(a) spanM≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) is dense in H0.

(b) It is a cone, that is, if u ∈M≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) then λu ∈M≤1(H1

0 (ΩX)⊗a
L2(ΩS)⊗a L2(ΩT )) for all λ ∈ R.

(c) It is a weakly closed set in H0.

Proof. The proofs of (a) and (b) are straightforward. (c) follows from Proposition 3.3 because the
norm ‖ · ‖(1,0,0) is a cross-norm.

Now, we consider the functional
J : H0 −→ R

given by

J(u) =
1
2
‖u‖2

(1,0,0)−〈( f −g),u〉L2(ΩX×ΩS×ΩT )

=
1
2
(‖∂xu‖2

L2(ΩX×ΩS×ΩT )
+‖∂yu‖2

L2(ΩX×ΩS×ΩT )
)−〈( f −g),u〉L2(ΩX×ΩS×ΩT )

.

Then we can identify J′(u) ∈ H∗0 with an element in H0 denoted by −∆X(u)− ( f − g), here
−∆X(u) =−(∂ 2

x +∂ 2
y )(u) denotes the Laplacian operator in coordinates X = (x,y). The following

assumptions (A1)-(A3) on the functional are satisfied (see [4]).

(A1) J is Fréchet differentiable, with Fréchet differential J′ : H0→H∗0.

(A2) J is elliptic and

(A3) J′ : H0 −→H∗0 is Lipschitz continuous on bounded sets.

Thanks to the Lemma 4.1 and that the functional J satisfies (A1)-(A2) we can introduce the
following definition.

Definition 4.2 (Progressive Variational Vademecum). Since J : H0 −→ R satisfies (A1)-(A2) let
u ∈H0 be such that

J(u) = min
υ∈H0

J(υ). (4.5)

We define a Progressive Variational Vademecum {um}m≥1 over the set of tensors of bounded rank-
one M≤1(H1

0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) of u, as follows. We let u0 = 0 and for m ≥ 1, we

9



construct um ∈H0 from um−1 ∈H0 as we show below. Since J satisfies (A3) and from Lemma 4.1
we can find an element

ẑm ∈M≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ))⊂H0

such that
J(um−1 + ẑm) = min

z∈M≤1(H1
0 (ΩX )⊗aL2(ΩS)⊗aL2(ΩT ))

J(um−1 + z) (∗).

Next before to update m to m+1, define um = um−1 + ẑm, update m to m+1 and goto (∗).

The key point in the above procedure is the minimization problem (∗) because for each m we
can consider that J(um−1 + ·) is a map

J(um−1 + ·) : M≤1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) −→ R,

z 7→ J(um−1 + ·)(z) := J(um−1 + z),

where

J(um−1 + z) =
1
2
‖um−1 + z‖2

(1,0,0)−〈( f −g),z〉L2(ΩX×ΩS×ΩT )
−〈( f −g),um−1〉L2(ΩX×ΩS×ΩT )

.

Then
J′(um−1 + z) =−∆X(um−1 + z)− ( f −g) =−∆X(z)− (∆X(um−1)+( f −g)),

where ∆X(um−1) + ( f − g) is the residual obtained in the previous step. Observe that at each
update in the construction of a Progressive Variational Vademecum {um}m≥1 over the set of tensors
of bounded rank-one M≤1(H1

0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) of u, we obtain a rank-one function,
namely

zm(X ;S,T ) = u(m)
1 (X)u(m)

2 (S)u(m)
3 (T ).

If ẑm = 0 then from Lemma 5 in [11] it follows that um = um−1 = u satisfy (4.5). In consequence,

u(X ;S,T ) =
m−1

∑
n=1

u(n)1 (X)u(n)2 (S)u(n)3 (T ).

Otherwise, if ẑm 6= 0 we write

um(X ;S,T ) =
m

∑
n=1

u(n)1 (X)u(n)2 (S)u(n)3 (T ) ∈H0,

and continue. From Theorem 5 in [11] it follows the next result.

Theorem 4.3. Let u ∈ H0 satisfy (4.5) and consider a Progressive Variational Vademecum
{um}m≥1 over M≤1(H1

0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) of u. Then {um}m≥1, converges in H0 to u,
that is,

lim
m→∞
‖u−um‖(1,0,0) = 0.

10



5. About the first order optimality conditions

In order to give the first order optimality condition for the minimization problem (∗), we will
consider the set of tensors of fixed rank one:

M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) := M≤1(H1

0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ))\{0}

and the restricted map

J : M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ))⊂ L2(ΩX ×ΩS×ΩT )−→ R,

given by

J(u1u2u2) =
1
2

(
‖∂xu1(X)u2(S)u3(T )‖2

L2(ΩX×ΩS×ΩT )
+‖∂yu1(X)u2(S)u3(T )‖2

L2(ΩX×ΩS×ΩT )

)
−〈( f −g),u1(X)u2(S)u3(T )〉L2(ΩX×ΩS×ΩT )

.

It can be show that the set M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) is a Hilbert manifold modelled

in a particular Hilbert space. In this paper we try to avoid the use of the differential geometry in
infinite dimensions framework by means the use of an adequate parametrisation the set

M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )),

considered as a sub-manifold of the Hilbert space L2(ΩX ×ΩS×ΩT ), in a local neighbourhood of
the optimal point ẑ.

To this end we assume that ẑ := λu1u2u3 ∈M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )), where λ ∈

R\{0}, u1 ∈ H1
0 (ΩX)\{0}, u2 ∈ L2(ΩS)\{0} and u3 ∈ L2(ΩT )\{0} is the solution of (∗) when

um−1 = 0. Next, we will introduce a set, denoted by

U (λu1u2u3)⊂M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ))⊂H0

containing λu1u2u3 and such that there exists an open set U in a Hilbert space H and a bijection

ϕ
λu1u2u3

: U ⊂H −→U (λu1u2u3).

In a second step we will prove that ϕ
λu1u2u3

considered as a map

ϕ
λu1u2u3

: U ⊂H −→ L2(ΩX ×ΩS×ΩT )

is Fréchet differentiable and its derivative

ϕ
′
λu1u2u3

(ϕ−1
λu1u2u3

(λu1u2u3)) ∈L (H ,L2(ΩX ×ΩS×ΩT ))

is injective. In consequence, the map

ϕ
′
λu1u2u3

(ϕ−1
λu1u2u3

(λu1u2u3)) : H −→ ϕ
′
λu1u2u3

(ϕ−1
λu1u2u3

(λu1u2u3))(H )⊂ L2(ΩX ×ΩS×ΩT )

is a linear isomorphism between vector spaces. If ϕ ′
λu1u2u3

(ϕ−1
λu1u2u3

(λu1u2u3))(H ) is a closed

subspace of L2(ΩX×ΩS×ΩT ) then we can identify this space with the Hilbert space H , which is

11



the tangent space of the open set U (that we can identify with U (λu1u2u3)) at ϕ−1
λu1u2u3

(λu1u2u3).

In consequence, the closed space

TU (λu1u2u3) := ϕ
′
λu1u2u3

(ϕ−1
λu1u2u3

(λu1u2u3))(H )⊂H0

is the tangent space of U (λu1u2u3) at λu1u2u3. Finally, we will consider the map

J ◦ϕ
λu1u2u3

: U ⊂H −→ R.

Since
(J ◦ϕ

λu1u2u3
)′(ϕ−1

λu1u2u3
(λu1u2u3)) ∈L (H ,R).

and by the chain rule

(J ◦ϕ
λu1u2u3

)′(ϕ−1
λu1u2u3

(λu1u2u3)) = J′(λu1u2u3)
(
[ϕ ′

λu1u2u3
(ϕ−1

λu1u2u3
(λu1u2u3))]

)
.

Thus, if λu1u2u3 is a minimum of J in U (λu1u2u3) then it holds that

J′(λu1u2u3)
(

ϕ
′
λu1u2u3

(ϕ−1
λu1u2u3

(λu1u2u3)
)
(h) = 0 for all h ∈H .

Now, J′(λu1u2u3) ∈ H∗0, that we can identify with a vector in H0 also denoted by J′(λu1u2u3),

and
(
(ϕ−1

λu1u2u3
(λu1u2u3)

)
(h) ∈ TU (λu1u2u3) for all h ∈H . Thus, we obtain that the first order

optimality condition means:

J′(λu1u2u3)⊥TU (λu1u2u3). (5.1)

5.0.1. A parametrisation of M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT ))

Take λu1u2u3 ∈M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) where u1 ∈H1

0 (ΩX),u2 ∈ L2(ΩS), u3 ∈
L2(ΩT ) and λ ∈ R∗ := R\{0}. Then let

Uui := span{ui}⊥,

be the orthogonal complement of the linear subspace span{ui} for 1 ≤ i ≤ 3 in L2(ΩX), L2(ΩS)
and L2(ΩT ), respectively. Observe that we take for the one-dimensional subspace span{u1} its
orthogonal complement in L2(ΩX) not in H1

0 (ΩX) and hence

L2(ΩX) = span{ui}⊕Uu1.

Clearly,
H1

0 (ΩX) = span{ui}⊕ (Uu1 ∩H1
0 (ΩX))

holds. Now, we define an open neighbourhood of λu1u2u3 in the set M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a

L2(ΩT )) as follows. Let be introduce an open neighbourhood of λu1u2u3 in the set of tensor of
fixed rank-one as follows:

U (λu1u2u3) := {β (u1 +u⊥1 )(u1 +u⊥2 )(u1 +u⊥2 ) : (u⊥1 ,u
⊥
2 ,u

⊥
3 ,β ) ∈Uu1×Uu2×Uu3×R∗}
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and then we introduce the map

ϕλu1u2u3 : Uu1×Uu2×Uu3×R∗ −→U (λu1u2u3),

defined by
ϕ

λu1u2u3
(u⊥1 ,u

⊥
2 ,u

⊥
3 ,β ) := β (u1 +u⊥1 )(u1 +u⊥2 )(u1 +u⊥2 ).

Clearly ϕ
λu1u2u3

(0,0,0,λ ) = λu1u2u3, and U :=Uu1×Uu2×Uu3×R∗ is an open set of the product
Hilbert space H :=Uu1×Uu2×Uu3×R. Moreover, ϕ

λu1u2u3
considered as a map between U and

H0 is Fréchet differentiable and its derivative at (0,0,0,λ ) is a linear map

ϕ
′
λu1u2u3

(0,0,0,λ ) : H →H0

given by(
ϕ
′
λu1u2u3

(0,0,0,λ )
)
(δu1,δu2,δu3,δλ ) = (δλ )u1u2u3 +λ ((δu1)u2u3 +u1(δu2)u3 +u1u2(δu3)) .

The next proposition give us the main properties of the map ϕ
λu1u2u3

and its derivative.

Proposition 5.1. The map ϕ
λu1u2u3

: U →U (λu1u2u3) is bijective and(
ϕ
′
λu1u2u3

(0,0,0,λ )
)

: H →H0

is a linear injective map and
(

ϕ ′
λu1u2u3

(0,0,0,λ )
)
(H ) is a closed subspace of H0.

Proof. By definition ϕ
λu1u2u3

(U ) = U (λu1u2u3) and hence the map ϕ
λu1u2u3

is sobrejective. Now,
assume that ϕ

λu1u2u3
(β ,u⊥1 ,u

⊥
2 ,u

⊥
3 ) = ϕ

λu1u2u3
(γ,v⊥1 ,v

⊥
2 ,v
⊥
3 ), thatis,

β (u1 +u⊥1 )(u2 +u⊥2 )(u3 +u⊥3 ) = γ(u1 + v⊥1 )(u2 + v⊥2 )(u3 + v⊥3 ). (5.2)

Since 〈·, ·〉(1,0,0) = 〈·, ·〉H1
0 (ΩX )

〈·, ·〉L2(ΩS)
〈·, ·〉L2(ΩT )

holds, we use first in both sides of (5.2) the
linear map 〈

·, u1

‖u1‖H1
0 (ΩX )

u2

‖u2‖L2(ΩS)

u3

‖u3‖L2(ΩT )

〉
(1,0,0)

obtaining that β = γ. Let Pui the orthogonal projection onto the linear space span{ui} for 1≤ i≤ 3.
Then by using consecutively in (5.2) the linear maps idH1

0 (ΩX )
⊗Pu2⊗Pu3, Pu1⊗ idL2(ΩS)

⊗Pu3 and
Pu1⊗Pu2⊗ idL2(ΩT )

we obtain

(u1 +u⊥1 )u2u3 = (u1 + v⊥1 )u2u3 (5.3)

u1(u2 +u⊥2 )u3 = u1(u2 + v⊥2 )u3 (5.4)

u1u2(u3 +u⊥3 ) = u1u2(u3 + v⊥3 ) (5.5)
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Next we use the linear maps

idH1
0 (ΩX )

⊗〈·, u2

‖u2‖L2(ΩS)

〉L2(ΩS)
⊗〈·, u3

‖u3‖L2(ΩT )

〉L2(ΩS)

〈·, u1

‖u1‖H1
0 (ΩX )

〉H1
0 (ΩS)

⊗ idL2(ΩS)
⊗〈·, u3

‖u3‖L2(ΩT )

〉L2(ΩT )

〈·, u1

‖u1‖H1
0 (ΩX )

〉H1
0 (ΩS)

⊗〈·, u2

‖u2‖L2(ΩS)

〉L2(ΩS)
⊗ idL2(ΩT )

,

(5.3),(5.4) and (5.5) respectively, obtaining

(u1 +u⊥1 ) = (u1 + v⊥1 )

(u2 +u⊥2 ) = (u2 + v⊥2 )

(u3 +u⊥3 ) = (u3 + v⊥3 ).

Thus, u⊥i = v⊥i for 1 ≤ i ≤ 3 and hence the map ϕ
λu1u2u3

is bijective. To end the proof of the

proposition we show first that
(

ϕ ′
λu1u2u3

(0,0,0,λ )
)

is injective. To this end consider that

(δλ )u1u2u3 +λ ((δu1)u2u3 +u1(δu2)u3 +u1u2(δu3)) = 0. (5.6)

Now, we take into account the following continuous linear maps

Pu1⊗Pu2⊗Pu2 the orthogonal projection onto span{u1}⊗a span{u2}⊗a span{u3}
PUu1
⊗Pu2⊗Pu2 the orthogonal projection onto Uu1⊗a span{u2}⊗a span{u3}

Pu1⊗PUu2
⊗Pu2 the orthogonal projection onto span{u1}⊗a Uu2⊗a span{u1}

Pu1⊗Pu2⊗PUu3
the orthogonal projection onto span{u1}⊗a span{u2}⊗a Uu3.

By using consecutively the above four linear projections in (5.6) we obtain that δλ = 0
δu1 = 0, δu2 = 0 and δu3 = 0, respectively. Thus

(
ϕ ′

λu1u2u3
(0,0,0,λ )

)
is injective and(

ϕ ′
λu1u2u3

(0,0,0,λ )
)
(H ) is the closed subspace

(span{u1}⊗a span{u2}⊗a span{u3})⊕ (Uu1⊗a span{u2}⊗a span{u3})⊕
(span{u1}⊗a Uu2⊗a span{u3})⊕ (span{u1}⊗a span{u2}⊗a Uu3)

in L2(ΩX ×ΩS×ΩT ). This concludes the proof.

Remark 5.2. From the proof of the above proposition we can identify the tangent space of
U (λu1u2u3) at λu1u2u3 with the closed subspace

TU (λu1u2u3) :=(span{u1}⊗a span{u2}⊗a span{u3})⊕ (Uu1⊗a span{u2}⊗a span{u3})⊕
(span{u1}⊗a Uu2⊗a span{u3})⊕ (span{u1}⊗a span{u2}⊗a Uu3)

in L2(ΩX ×ΩS×ΩT ).
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Thus the first order optimality condition (5.1) says us that if λu1u2u3 is a minimum in
U (λu1u2u3) then〈

J′(λu1u2u3),(δλ )u1u2u3 +λ ((δu1)u2u3 +u1(δu2)u3 +u1u2(δu3))
〉

L2(ΩX×ΩS×ΩT )
= 0 (5.7)

holds for all (δu1,δu2,δu3,δλ ) ∈Uu1×Uu2×Uu3×R. We recall that in our case

J′(λu1u2u3) = λ (−∆X(u1))u2u3− ( f −g)⊥TU (λu1u2u3)

holds if λu1u2u3 is an stationary point of J at U (λu1u2u3). In order to construct an strategy to
approximate an stationary point for the derivative J′ we study the following four cases:

1. Take δu1 = δu2 = δu3 = 0 then from (5.7) we obtain that

〈λ (−∆X(u1))u2u3− ( f −g),(δλ )u1u2u3〉L2(ΩX×ΩS×ΩT )
= 0 (5.8)

holds for all δλ ∈ R.

2. Take δλ = 0, δu2 = δu3 = 0 then from (5.7) we obtain that

〈(−∆X(u1))u2u3− ( f −g),λ (δu1)u2u3〉L2(ΩX×ΩS×ΩT )
= 0 (5.9)

holds for all δu1 ∈Uu1.

3. Take δλ = 0, δu1 = δu3 = 0 then from (5.7) we obtain that

〈λ (−∆X(u1))u2u3− ( f −g),λu1(δu2)u3〉L2(ΩX×ΩS×ΩT )
= 0 (5.10)

holds for all δu2 ∈Uu2.

4. Take δλ = 0, δu1 = δu2 = 0 then from (5.7) we obtain that

〈λ (−∆X(u1))u2u3− ( f −g),λu1u2(δu3)〉L2(ΩX×ΩS×ΩT )
= 0 (5.11)

holds for all δu3 ∈Uu3.

From (5.8) we obtain that

〈λ (−∆X(u1))u2u3− ( f −g),u1u2u3〉L2(ΩX×ΩS×ΩT )
= 0

and hence

λ :=
〈( f −g),u1u2u3〉L2(ΩX×ΩS×ΩT )

〈(−∆X(u1))u2u3,u1u2u3〉L2(ΩX×ΩS×ΩT )

=
〈( f −g),u1u2u3〉L2(ΩX×ΩS×ΩT )

‖u1‖2
H1

0 (ΩX )
‖u2‖2

L2(ΩS)
‖u3‖2

L2(ΩT )

(5.12)

The equation (5.9) implies that

〈−∆X(u1)u2u3,(δu1)u2u3〉L2(ΩX×ΩS×ΩT )
= 〈 f −g,(δu1)u2u3〉L2(ΩX×ΩS×ΩT )

, (5.13)
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holds for all δu1 ∈Uu1. From (5.3) we can write

〈(−∆X(u1))u2u3,u1u2u3〉L2(ΩX×ΩS×ΩT )
= 〈( f −g,u1u2u3〉L2(ΩX×ΩS×ΩT )

(5.14)

Since H1
0 (Ω) = span{u1}⊕ (Uu1 ∩H1

0 (Ω)) combining (5.13) and (5.14) we obtain that

〈−∆X(u1)u2u3,(δu1)u2u3〉L2(ΩX×ΩS×ΩT )
= 〈 f −g,(δu1)u2u3〉L2(ΩX×ΩS×ΩT )

, (5.15)

holds for all δu1 ∈ H1
0 (ΩX). Finally, (5.10) and (5.11) give us the conditions

〈( f −g),u1(δu2)u3〉L2(ΩX×ΩS×ΩT )
= 0 for all δu2 ∈Uu2, (5.16)

〈( f −g),u1u2(δu3)〉L2(ΩX×ΩS×ΩT )
= 0 for all δu3 ∈Uu3. (5.17)

In consequence, we need to find u1u2u3 ∈M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) be such that

(5.15)-(5.17) holds and then we take λ as in (5.12). From all said above we can state the fol-
lowing result.

Proposition 5.3. Assume that λu1u2u3 ∈M=1(H1
0 (ΩX)⊗a L2(ΩS)⊗a L2(ΩT )) is a minimum of

(∗) with um−1 = 0. Then it holds

〈−∆X(u1)u2u3,(δu1)u2u3〉L2(ΩX×ΩS×ΩT )
= 〈 f −g,(δu1)u2u3〉L2(ΩX×ΩS×ΩT )

for all δu1 ∈ H1
0 (ΩX)

〈( f −g),u1(δu2)u3〉L2(ΩX×ΩS×ΩT )
= 0 for all δu2 ∈ span{u2}⊥,

〈( f −g),u1u2(δu3)〉L2(ΩX×ΩS×ΩT )
= 0 for all δu3 ∈ span{u3}⊥ and

λ =
〈( f −g),u1u2u3〉L2(ΩX×ΩS×ΩT )

‖u1‖2
H1

0 (ΩX )
‖u2‖2

L2(ΩS)
‖u3‖2

L2(ΩT )

.

Proposition 5.3 allows us to use the following strategy in order implemented a Progressive
Variational Vademecum.

1. Let be u = 0 and r = f −g.

2. Consider three finite dimensional subspaces V1 ⊂ H1
0 (ΩX), V2 ⊂ L2(ΩS) and V3 ⊂ L2(ΩT ).

3. Take λ0 = 1 and choose the functions u(0)1 ∈V1, u(0)2 ∈V2 and u(0)3 ∈V3, randomly.

4. Let U (0)
2 ⊂V2 be a linear subspace such that V2 = span{u(0)2 }⊕U (0)

2 .

5. Find u1 ∈V1 be such such that〈
−∆X(u1)u

(0)
2 u(0)3 ,(δu1)u

(0)
2 u(0)3

〉
L2(ΩX×ΩS×ΩT )

=
〈

r,(δu1)u
(0)
2 u(0)3

〉
L2(ΩX×ΩS×ΩT )

holds for all δu1 ∈V1.

6. Find u3 ∈V3 be such that

〈r,u1(δu2)u3〉L2(ΩX×ΩS×ΩT )
= 0

for all δu2 ∈U (0)
2 . Let U3 ⊂V3 be a linear subspace such that V3 = span{u3}⊕U3.
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7. Find u2 ∈V2 be such that

〈r,u1u2(δu3)〉L2(ΩX×ΩS×ΩT )
= 0

for all δu3 ∈U3.

8. Compute λ from (5.12).

9. If J(λu1u2u3)< J(λ0u(0)1 u(0)2 u(0)2 ) we put λ0 = λ and u(0)i = ui for 1≤ i≤ 3 and goto 5, else
put r = r+∆X(λ0u(0)1 u(0)2 u(0)2 ) and u = u+λ0u(0)1 u(0)2 u(0)3 .

10. If ‖r‖< tol return u and STOP else goto 3.

6. An illustrative example

In order to illustrate the benefits of the PGD framework, we use the following example. Let
us consider as domain ΩX a 5m × 5m square. We take a discretization of the domain by means
Nx = Ny = 50 nodes on each side, that is, 2500 degrees of freedom and the variance r is set to 1.2.
Figure 6.1 shows an example for S = (1,4),T = (4,1). Left column shows the source term and the
right column shows the resulting PGD reconstruction for n = 200 terms.

Figure 6.1: PGD reconstruction VS source term for S = (1,4),T = (4,1)
.

The computational cost of the reconstruction is 0.0101s in a Mac with an Intel Core 2 Duo,
3.06 GHz and 4 GB RAM. It is worth comparing this value with the cost of a FEM approximation
solving a standard linear system with where it rises to 4.7s.
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6.1. Residual error
There are some techniques to measure the error approximation vs the number of PGD terms.

One of the more appropriate error estimator is the L2(ΩX ×ΩS×ΩT )-residual R(n) obtained by
computing:

R(n) =
√

R(n−1)2−‖u1(X) ·u2(S) ·u3(T )‖2
L2(ΩX ,S,T )

(6.1)

Figure 6.2: Residual error

Figure 6.2 shows one of the most important properties of the PGD: the first computed rank-one
terms provide more energy to reduce the residual than the last ones. For a more detailed study of
the behaviour of the residual error the interested reader can be see [1, Theorem 1].

6.2. Streamline computation
As explained in Section 1, the use of harmonic functions solve the problem of deadlocks present

in APF-based techniques. Harmonic functions are based on flow dynamics, described by the Pois-
son equation, where the potential field is free of deadlocks and derives in a set of streamlines
[8]-[13]. These streamlines are independent in time and describe the direction of a massless fluid
element (particle) travelling from a start to a goal position, following the velocity field obtained
from the gradient of the potential field as;

vx =
du
dx

,vy =−
du
dy

(6.2)

The streamlines produced by the velocity field can be computed by means of any interpolation
technique (linear, cubic, spline, etc). FIgure 6.3 shows examples of the streamlines resulting from
a linear interpolation for the PGD reconstruction.
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6.3. A Shortest Path Application
In order to test the advantages that PGD-Vademecum offers, a simulation with Matlab has been

performed. An omnidirectional mobile robot navigates in a 5×5m square environment guided by
a potential field (PGD) with Nx ·Ny = 50×50 nodes, Ns1 ·Ns2 = 5×5 nodes Nt1 ·Nt2 = 5×5 nodes,
r = 0.7 and n= 200. For a realistic implementation, we only reconstruct a Region Of Interest (ROI)
in each algorithm execution. The ROI is composed by the surrounding nodes of the current robot
position and its size depends on the maximum robot velocity. In the present example, for a specific
Start and Goal configurations, the robot selects the shortest streamline, which is a straight line
heading to the Goal. The next figure depicts different trajectories followed by the robot begining
at the starting point S = (1,4) to subsequent target points T = (4,1),(3,4),(2,1),(4,3).

7. Conclusions and Future Work

The present paper provides the mathematical analysis needed to justify the use of the PGD-
vademecum [7]. To this end we prove the convergence of a Progressive Variational Vademecum
based in the PGD. From the point of view of the applications, the PGD-Vademecum is computed
off-line and reconstructed on-line for any particular configuration. It is really fast because its for-
mulation is a simple sum of products. In particular, in path planning robot applications, only the
surrounding nodes of the robot position need to be reconstructed. As a consequence, the computa-
tional costs are nearly negligible. Moreover, the resulting paths are based on the Laplace/Poisson
equation (harmonic functions) and, thus, are free of deadlocks. This property makes it a promis-
ing technique to solve likes the piano mover’s. The only drawback noticed is the generation of
a small offset in the start and goal positions due to the definition of the source term, as start and
goal positions have a coupling effect. Solve this problem is part of our future research about the
applications of the Progressive Variational Vademecum based in the PGD.
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