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Abstract 

Solar hydrogen obtained from photoelectrochemical water splitting offers a versatile 

approach towards the substitution of fossil fuels by decentralized and sustainable 

resources, like water and sun. In the present study we have investigated the Chromium 

doped Copper Vanadate (Cr:Cu3V2O8) as a candidate photoanode for photoelectrochemical 

water splitting. We have synthetized this material through a simple aqueous precipitation 

reaction, which easily allows compositional modifications. We have studied the effect of 

extrinsic doping with substitutional atoms like Chromium on the optical and 

photoelectrochemical properties. The main limiting factor for performance is related to the 

high bulk recombination, which is partially overcome by 0.75 at. % Chromium doping, 

with a five-fold enhancement of the charge separation efficiency at 1.23 V vs RHE. 

Despite this remarkable milestone, significant further improvement is needed for the 

technological exploitation of this material.  
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1. Introduction 

The sun feeds the planet with an enormous amount of power, ~120 000 TW, that 

considerably exceeds the projected global energy demand for the next decades (~30 TW by 

2050) in a moderate scenario.[1] Therefore, the conversion of sunlight into a profitable 

form of energy is almost mandatory to meet the needs of a growing world population with 

increasing living standards. Photoelectrochemical (PEC) water splitting offers an attractive 

technology for the conversion and storage of solar energy as chemical energy in the form 

of molecular bonds. In this process, the water molecule is decomposed into H2 and O2 

under solar illumination. The O2 evolution reaction (OER) is thermodynamically and 

kinetically more demanding, since four holes per molecule of produced oxygen are 

required. The strong oxidizing conditions needed for this reaction, severely limit the choice 

of adequate materials for viable operation. Consequently, the development of efficient and 

stable oxygen evolving photoanodes is one of the key challenges to success of this 

technology.[2, 3]  

Since the pioneering study of Fujishima and Honda demonstrating UV light-assisted 

water splitting with TiO2,[4] intensive research efforts have been carried out to find earth-

abundant, efficient, stable and cost-effective materials that can absorb a significant fraction 

of the solar spectrum to split water. Metal oxides or oxo-metalates based on abundant 

materials, such as TiO2,[4, 5] Fe2O3,[6] WO3,[7] ZnO,[8] and BiVO4,[9, 10] have been 

explored as candidate photoanode materials, satisfying both stability and cost 

requirements. Nevertheless, the low performance of these photoanodes attributed to poor 

electronic properties (Fe2O3 and BiVO4) and/or large bandgaps (TiO2, WO3 and ZnO)[11] 

hinder their large-scale use in PEC systems. In order to overcome these problems, different 

strategies have been accomplished, involving combinatorial synthesis,[12] tuning the band 

structure of semiconductor materials by doping with different elements,[13, 14] surface 



state passivation,[15, 16] surface activation with OER catalysts,[17, 18] and 

nanostructuring.[19-22]  

At present, metal vanadates, mainly BiVO4, are at the forefront of the research for PEC 

water splitting photoanodes.[13, 23, 24] A record photocurrent of 6.72 mA·cm
-2

 at 1.23 V 

vs RHE was obtained for BiVO4, close to its theoretical maximum value (7.5 mA·cm
-2

), by 

means of combining nanostructuring with adequate OER catalysts.[25] Triclinic NiV2O6 

films, fabricated by a vacuum deposition technique, have been recently tested for the first 

time as photoanodes for water oxidation. Although the observed photocurrent is relatively 

low (ca. 0.25 mA·cm
-2

 at 1.23 V vs RHE) according to the band gap (~2.4 eV) both the 

wide availability of the semiconductor components (Ni and V) and its stability in alkaline 

conditions postulate this material as a promising anode for PEC systems.[26]  

Similar to NiV2O6, Cu3V2O8 is an n-type semiconductor composed only of first-row 

transition metals. Although it has been previously examined for different applications 

(Li-ion batteries and degradation of organic pollutants),[27, 28] both, its bandgap near 2 

eV and the adequate position of the valence band maximum make this material suitable 

for water photo-oxidation. To the best of our knowledge, there is only one recent study 

reporting the PEC performance of Cu3V2O8 photoanodes. Seabold and Neale obtained a 

photocurrent of ca. 5 µA·cm
-2

 at 1 V vs RHE in 0.1 M potassium borate buffer at pH 9.2 

for bare Cu3V2O8 samples synthesized from the precipitation of nanoparticles of a 

simple hydroxide precursor. Also, it was found that doping with 0.75 at% Mo yielded 

an improvement of 40% in photocurrent, as a consequence of an increase in the electron 

diffusion length.[29] More recently, two different copper-based metal vanadates, i.e. 

CuV2O6 and Cu2V2O7, were also reported as photoanodes for water splitting achieving 

photocurrent densities about 25 and 35 μA·cm
-2

, respectively, at 1.23 V vs RHE in 0.1 

M sodium borate buffer solution.[30] In both studies, it was highlighted that the main 



limitation of Cu-based vanadate materials for PEC performance is related to the low 

charge separation efficiency. On the other hand, vanadate compounds suffer from rapid 

corrosion due to the anodic dissolution of V species. Zhou et al. demonstrated that, in 

copper vanadate, the V corrosion is mitigated through a self-passivation process in 

which V corrodes from the film, leaving behind a Cu-rich oxide surface layer that 

prevents further V corrosion.[31] This investigation confirms that copper vanadate has 

indeed emerged as a promising photoanode for water splitting due to its stability, 

particularly in weakly alkaline borate electrolytes. 

In the present work, we report our efforts aiming at improving the charge transport and 

charge separation efficiency of this semiconductor material. We have employed a synthetic 

method inspired on that previously reported.[29] This material was doped with chromium 

(Cr: Cu3V2O8), which has an atomic radii of 0.74 Å, close to that of Cu
2+

 (0.73 Å), making 

feasible the exchange of both atoms in the CuO6 octahedra of its crystalline structure, 

enhancing the extrinsic n-type doping of the semiconductor oxide. A detailed 

optoelectronic and photoelectrochemical characterization has been performed to 

quantitatively assess the contribution of the three fundamental processes involved in PEC, 

i.e. charge carrier generation, charge transport to the semiconductor-liquid interface and 

interfacial charge transfer, to the obtained photocurrent. 

2. Materials and methods 

2.1. Materials and synthesis 

Preparation of nanoparticles of Cu3V2O7(OH)2·2H2O was carried out following the 

procedure described in reference [29], with slight modifications, using as reagents: 

NH4VO3 (ASC reagent, ≥99.0%, Sigma-Aldrich) and Cu(CH3COO)2·H2O (puriss. p.a. 

≥99.0%, Sigma-Aldrich). According to this, an initial Cu3V2O7(OH)2·2H2O nanoparticles 



suspension was prepared by a simple precipitation reaction synthesis. The precursor was 

recovered by successive centrifugation at 4000 rpm for 6 min and washing with absolute 

ethanol and finally re-suspended in 20 mL of ethanol. From this solution, a fraction was 

taken and diluted to obtain a 0.22 M copper content solution. Also, a drop of Triton X-100 

was added in order to enhance the homogeneity of the deposition. Cr:Cu3V2O7(OH)2·2H2O 

nanoparticles were prepared by adding the required amount of 0.22 M CrCl3·6H2O (p.a. 

≥98%) solution into 10.0 mL of Cu3V2O7(OH)2·2H2O suspension in order to obtain the 

desired Cr:Cu ratio (e.g. 75 μL of CrCl3·6H2O for 0.75% of Cr content). 

Fluorine doped tin oxide (FTO) coated glass electrodes of 3.0 x 1.0 cm
2 

area were 

washed by successive ultra-sonication for 15 min in soap (Hellmanex), Milli-Q water, 

ethanol, acetone and isopropanol and dried with compressed air. Before the deposition of 

the nanoparticles, the FTO substrates were treated in a UV−O3 chamber for 15 min. Films 

of different thickness were prepared by spin coating a different number of layers of the 

Cu3V2O7(OH)2·2H2O precursor on the FTO glass. Spin coating was carried out at 3000 

rpm for 30 s, using 40 μL of precursor for each deposited layer. These films were dried on 

a hot plate preheated to 200 °C for 2 min and then annealed at 425°C for 1 h, preceded by a 

2 h ramp up to obtain dark orange oxide films.  

2.2 Structural, optical and photoelectrochemical characterizations 

X-ray diffraction (XRD) data were obtained employing Cu Kα radiation at room 

temperature, scanning the samples from 10º to 70º (2θ) with a step of 0.02º. The 

morphology and thickness of both the precursor and oxide films were determined by 

scanning electron microscopy (SEM) using a JEOL JEM-3100F field emission scanning 

electron microscope.  UV-Vis absorption spectra were recovered with a Cary 300 

UV−Vis Varian spectrophotometer, between 300 and 800 nm. The absorbance (A) was 

estimated from transmittance (T) and diffuse reflectance (R) measurements as:   



           . The indirect optical bandgap was estimated by the Tauc plot as: 

     
 

           . In this expression, the absorption coefficient (α) was calculated 

by     , where l is the thickness of the electrode.  

Photoelectrochemical (PEC) measurements were performed using a PGSTAT302N 

potentiostat from AutoLab in a three-electrode configuration, with a Pt wire as counter 

electrode and Ag/AgCl, KCl (3M) as reference electrode, in a buffer of 0.1 M H3BO3 

(≥99.8%, Riedel-deHäen) adjusted to pH 9.2 using KOH. In some cases, a fraction of 0.1 

M Na2SO3 (≥98%, Sigma-Aldrich) was added to the borate buffer as sacrificial hole 

scavenger to suppress undesirable surface recombination reactions[32, 33] and increase the 

hole transfer kinetics at the semiconductor/liquid interface. The scan rate for cyclic 

voltammetry measurements was 50 mV s
−1

. Photocurrent measurements were recorded 

under AM1.5 100 mW/cm
2
 using a Xe lamp previously calibrated with an NREL-

calibrated Si solar cell. In all cases, reported potential (E) was referred to the reversible 

hydrogen electrode (RHE) through the Nernst equation:                        

     The same experimental setup was employed for chronoamperometric measurements, 

which were performed at 1.23 V vs RHE for 1h. For impedance spectroscopy (IS), a 20 

mV amplitude sinusoidal perturbation at frequencies between 0.01 Hz and 1 MHz was 

used. Mott–Schottky analysis was performed in the dark at different frequencies (10 Hz, 50 

Hz and 100 Hz). Incident photon-to-current efficiency (ICPE) was measured by employing 

a 300 W Xe lamp coupled to a monochromator. The photoelectrode was polarized at the 

desired voltage and the photocurrent was measured using an optical power meter 70 310 

from Oriel Instruments. A Si photodiode was used to measure the light intensity to 

calibrate the system. IPCE was calculated with the expression:         
      

    
 

      

      
 

   . 



3. Results and discussion 

In order to optimize both the homogeneity and reproducibility for the preparation of the 

oxide films, the deposition of the precursor solution was rigorously controlled. In first 

place, the synthesis of the precursor by a precipitation reaction provided a very easy and 

versatile way to control both the doping density and the concentration of nanoparticles in 

the precursor solution. On the other hand, spin coating proved to be the most reproducible 

method to obtain different film thicknesses by controlling the number of deposited layers 

of the same volume and concentration. Film thicknesses of 400 nm, 600 nm and 800 nm 

were obtained for 2, 3 and 4 deposited layers, respectively, for the precursor and final 

oxide films (see Supplementary Information, Fig. SI1). Deposition of more than four layers 

of precursor resulted in inhomogeneous films. The crystalline structure of the 

Cu3V2O7(OH)2·2H2O precursor was confirmed by XRD analysis, (Fig. 1). The crystalline 

system is monoclinic with space group C2/m, and no secondary phases were observed. The 

structure of the final oxides was also confirmed as monoclinic (space group P21/c) in good 

agreement with the reference pattern. The effect of the incorporation of chromium on the 

crystalline structure was also studied. No representative changes due to the presence of 

new phases or different peak intensity ratios were detected. However, a slight shift of the 

[012] peak position (2θ=32.2º) with the increase in chromium content is noted, particularly 

at the highest Cr concentration (1.5%), as depicted in Fig. 1. These shifts are directly 

related to the interplanar distance through the Bragg´s equation 2dhklsenθhkl=nλ, 

demonstrating the incorporation of chromium in the crystalline lattice.  



 

Fig. 1. XRD spectra of Cu3V2O7(OH)2·2H2O, Cu3V2O8 and Cr:Cu3V2O8 powders. The 

reference patterns for these phases are also included: ICSD 68994 for 

Cu3V2O7(OH)2·2H2O precursor and ICSD 273110 for Cu3V2O8. The inset graph shows an 

amplification of the maximum corresponding to the [012] direction to clearly illustrate the 

2θ shift with Cr doping. 

The morphology and particle size was determined by SEM (Fig. 2). The films of the 

precursor were composed of nanoflakes with around 70-80 nm size (Fig. 2a). In contrast, 

after annealing, both undoped and Cr-doped nanoparticles showed a globular morphology 

(Fig. 2b and c), with lower particle size for the doped nanoparticles (approximately 40-100 

nm vs 20-80 nm, respectively) at the optimum Cr concentration (0.75%).  

 



Fig. 2. Top-view micrographs of Cu3V2O7(OH)2·2H2O (a), Cu3V2O8 (b), and 

Cr:Cu3V2O8 (0.75%) (c) obtained by SEM. Film thickness: 800 nm 

The optical properties of the Cu3V2O8 films with different thickness values are 

summarized in Fig. 3a. The absorbance increases monotonically with film thickness as 

expected, and the films can absorb light up to approximately 600 nm. Fig. 3b shows the 

effect of Cr doping on the optical properties, clearly indicating that the optical response of 

the Cu3V2O8 films are not significantly modified after doping (Fig. SI2 illustrates this 

effect for all thickness values). The inset in Fig. 3b shows the Tauc plot for indirect 

transitions, and the calculated indirect bandgap for both undoped and doped Cu3V2O8 films 

(2.0 eV) is in excellent agreement with that previously reported.[29]  

 

(a) 

 

(b) 

Fig. 3. (a) Absorbance of Cu3V2O8 with different thickness values. (b) Absorbance 

spectra of Cu3V2O8 (blue) and Cr:Cu3V2O8 (0.75%) (red) films of 800 nm thickness. Inset: 

Tauc plots for the determination of the indirect bandgap transition (2.0 eV). 

In order to evaluate both the optimum thickness and Cr concentration of the films, the 

functional performance as oxygen evolving photoanodes was characterized by the j-V 

curves of doped and undoped Cu3V2O8 photoanodes in the dark and under illumination at 

100 mW·cm
-2

 in a borate buffer solution (pH 9.2), as compiled in Fig. 4. Fig. 4.a shows 

that the 800 nm thick samples yield the best performance, which can be attributed to the 



inhomogeneous material distribution as the number of spin coating cycles increases. With 

respect to the Cr content, the optimum doping concentration appears at 0.75%, which 

means a three-fold enhancement at 1.5 V vs RHE compared to pristine Cu3V2O8 (Fig. 4b). 

Dopant concentrations higher than 0.75% (i.e. 1% and 1.5%) did not improve the obtained 

photocurrent, as showed in the inset on Fig. 4b. 

 
(a) 

 
(b) 

  

Fig. 4. j-V curves of undoped and Cr-doped Cu3V2O8 films in borate buffer at pH 9.2 in 

the dark (dashed lines) and under front-side illumination at 100 mW·cm
-2

 (dashed lines). 

(a) Effect of thickness (0.75% Cr content). (b) Effect of Cr loading (800 nm thickness). 

Insets in (a) and (b) indicate the photocurrent at 1.54 V for different film thickness and Cr 

concentration, respectively.  

Fig. 5a and b show the j-V curves for the optimum Cr concentration and film thickness 

in borate buffer at pH 9.2 in the dark and under front illumination with and without a hole 

scavenger (0.1 M Na2SO3) added to the solution, respectively. This sacrificial agent was 

employed to minimize the surface limitations of the material. The obtained photocurrent 

for sulfite oxidation is increased from 66 to 100 µA·cm
-2

 at 1.0 V vs RHE due to the Cr-

doping. The enhancement reported again for the Cr:Cu3V2O8 film indicates that, as a result 

of the doping process, there is not a significant improvement in the surface catalytic 



properties of the photoanode, as also illustrated by the similar charge injection yield 

obtained for both undoped and Cr doped materials (Fig. 6b).  

The spectral signature of the photocurrent was characterized by incident photon to 

current conversion efficiency (IPCE) for both undoped and Cr-doped films without and 

with the addition of the hole scavenger (Fig. 5). Insets in this Fig. display the magnification 

of the onset region, showing a good correspondence between the onset wavelength for the 

IPCE and the absorbance of the films (Fig. 3), around 600 nm. There is also an excellent 

agreement between the integrated photocurrent extracted from the IPCE spectra and that 

obtained from the j-V measurements (Fig. 5c and d), as illustrated in Supplementary 

Information, Table SI1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



Fig. 5. j-V curves of 800 nm Cu3V2O8 (blue lines) and Cr: Cu3V2O8 (red lines) films 

obtained in the dark (dashed lines) and under front-side illumination at 100 mW·cm
-2

 

(solid lines) in borate buffer at pH 9.2 (a) without and (b) with hole scavenger (0.1 M 

Na2SO3). IPCE spectra of 800 nm undoped Cu3V2O8 (blue symbols) and Cr:Cu3V2O8 (red 

symbols) films obtained in borate buffer at pH 9.2 (c) at 1.54 V vs RHE without hole 

scavenger and (d) at 1.0 V vs RHE with hole scavenger (0.1 M Na2SO3). The inset plots 

show a magnification of the onset region. 

In order to quantitatively evaluate the limiting factors for performance of the 

synthesized materials, the two critical parameters i.e. the charge separation (cs) and charge 

injection (cat) yields were calculated for both doped and undoped oxide. In principle, the 

maximum photocurrent density that can be obtained if all the electron-hole pairs take part 

in the OER, jabs, can be calculated from the optical measurements by integrating the solar 

photon flux (Φλ [photons/(m
2
s)]), from the lower limit of the measured solar spectrum to 

the absorption edge (600 nm) of the oxide:               . The calculated theoretical 

photocurrent was 12.90 mA·cm
-2

 and 11.21 mA·cm
-2

 for 800 nm thick undoped and Cr 

doped films, respectively. In aqueous electrolyte, the photocurrent density        could be 

affected mainly by the charge separation efficiency on the bulk material and the charge 

injection efficiency related with the surface kinetic reaction or catalytic efficiency [33], so 

that:            
  

 
   

. In presence of the hole scavenger, we assume that the 

catalytic efficiency is close to unity, so the obtained photocurrent density       will be 

affected only by the charge separation efficiency:          
  

.  

The comparative behavior of both calculated yields is showed in Fig. 6. The low cs 

values (< 2%) obtained for the undoped material highlight the excessive bulk 

recombination losses in this material, which constitute the main limiting factor for 

performance. Chromium doping significantly increases cs, (with a five-fold enhancement 



at 1.23 V vs RHE), although the obtained values are still low for further technological 

deployment of this material. On the other hand, the effect of chromium doping on cat is 

negligible. The addition of water oxidation co-catalysts could significantly enhance this 

yield, although given the high bulk recombination losses reflected in the low cs yields, 

further efforts towards improving the catalytic performance of this material were not 

attempted. It is important to highlight that the method employed to calculate cs and cat 

based on the use of a hole scavenger does not differentiate between improved catalysis and 

reduced surface recombination, which is a limitation for a more robust assessment. In any 

case, it provides a clear difference between bulk and surface origin of the enhanced 

performance and in the present study it clearly helps to understand that main origin of the 

enhancement produced by Cr doping arises from the bulk properties of the material. 

 

(a) 

 

(b) 

Fig. 6. (a) Charge separation efficiency (cs) and (b) Charge injection efficiency (cat) 

for 800 nm films of Cu3V2O8 (blue) and Cr:Cu3V2O8 (red).  

Impedance spectroscopy (IS) measurements were carried out to assess the electronic 

properties of the Cu3V2O8 photoanodes, i.e., doping density (ND) and flatband potential 

(Vfb), by means of Mott-Schottky (MS) plots. The value for the relative dielectric 

permittivity () was estimated as 44.[34] This study was performed in dark conditions 

covering a wide potential window (from 0.5 to 1.5 V vs RHE) and at single frequencies (10 



Hz, 50 Hz and 100 Hz, respectively). The frequencies were selected from the region at 

which the real part of the capacitance remained constant (10 Hz - 100 Hz) in preliminary 

multi-frequency tests (10 MHz - 100 mHz) at a constant applied bias (see Supplementary 

Information, Fig. SI5). Fig. 7 compares the MS plots obtained at a frequency of 10 Hz for 

doped and undoped Cu3V2O8 films and with these plots, the values for ND and Vfb were 

estimated. Note that identical MS plots were obtained for the measurements at 50 Hz and 

100 Hz (see Supplementary Information, Fig. SI3). The lower slope reported for the 

Cr:Cu3V2O8 samples with 0.75% and more significantly with 1% of chromiun content is 

connected to an increase in the doping density (Table 1) which can be attributed to the 

isomorphic replacement of Cu(II) by Cr(III) in the Cu3V2O8 lattice, analogous to the V(V) 

substitution by Mo(VI) reported in other vanadates.[29, 35] The statistical significance of 

these results is illustrated in Supplementary Information, Fig. SI6, where four identical 

samples were measured at each condition. The flatband potential, Vfb, for Cu3V2O8 

photoanode is 0.79 V vs RHE, which is slightly more positive than the 

frequency-dependent values previously reported (between 0.63 and 0.69 V vs RHE) [29]. 

In addition, Vfb for the optimum Cr-doped film was around 120 mV cathodically shifted 

(0.67 V vs RHE), although this beneficial displacement is not reflected on the onset 

potential for the photocurrent, see Fig. 5a, probably due to the excessive bulk 

recombination losses. It is important to highlight that these very positive flatband 

potentials are detrimental for technological applications and further efforts should be 

conducted to shift cathodically this potential. 



 

Fig. 7. Mott-Schottky plot of Cu3V2O8 and Cr:Cu3V2O8 films performed at 10 Hz in 

borate buffer at pH 9.2 and the lineal fitting showing the x-intercept corresponding to the 

flatband potential value, Vfb. 

By substitutional Cr doping, replacing part of the Cu sites, the Fermi level of copper 

vanadate shifts towards the conduction band increasing the band bending at the 

semiconductor liquid junction and consequently enhancing charge separation (Fig. 6a). 

This has a beneficial effect on the photoelectrochemical performance. On the other hand, 

there is an anomaly on the donor density for 0.5% and 1.5% Cr additions. EDS and XPS 

experiments were carried out to understand the correlation between added Cr during the 

synthetic process and incorporated Cr into the specimens. Unfortunately the Cr contents 

employed are below the detection limit of these techniques and further information could 

not be obtained. XRD analysis did not show the presence of secondary phases at any Cr 

concentration tested, but a significant shift of the maximum on the [012] direction (Fig. 1) 

was registered at the highest concentration (1.5%), which could be related to a degradation 

of the film integrity as result of the strain induced by Cr replacing Cu positions into the 

periodic crystal lattice, with the consequent progressive decrease of the photocurrent 

showed in Fig. 4b for high Cr additions. In any case, further work is needed to understand 

the anomaly at the lowest Cr addition (0.5%). The morphological modification of the 



electrodes with Cr addition, illustrated by Supplementary Information, Fig. SI7 could 

slightly affect the donor densities measured, but it is not believed to the main reason 

explaining the observed behavior. 

Table 1. Estimated dopant density and flat band potential of Cu3V2O8 and Cr:Cu3V2O8 

from the MS plots at 10 Hz. 

 
Cu3V2O8 

Cr:Cu3V2O8 

 
0.5% 0.75% 1% 1.5% 

ND (10
20

cm
-3

) 1.44 0.99 2.20 4.44 0.72 

Vfb (V) 0.79 0.73 0.70 0.75 0.74 

 

 

In order to evaluate the stability of these films, chronoamperometric measurements were 

performed at 1.23 V vs RHE for 1h (Fig. 8), finding a very stable behavior of photocurrent 

response, with an overall loss of around the 14 % at the end of the measurement with 

respect the five initial minutes for the measures with hole scavenger. The higher losses 

observed in the measurements performed in presence of the hole scavenger is related with 

the fact that the rapid removal of the photogenerated holes at the surface by the sulfite can 

compete with photocorrosion process, which was reported indeed in Mo-doped copper 

vanadates as well[29]. This remarks the fact that, for better performance of this material, 

an appropriated surface modification with a suitable oxygen reaction catalyst that can also 

avoid direct contact of the semiconductor surface with the electrolyte to prevent 

photocorrossion, is needed. 



 

Fig. 8 Potentiostatic photocurrent of Cu3V2O8 (blue) and Cr:Cu3V2O8 (red) films at 1.23 

V vs RHE in borate buffer at pH 9.2 without (dashed lines) and with 0.1 M Na2SO3 (solid 

lines). 

Finally, in order to confirm that the obtained photocurrent actually stems from water 

oxidation, the O2 evolution on Cr:Cu3V2O8 (0.75 at. % of Cr content) electrodes was 

determined by performing chronoamperometric measurements at 1.54 V vs RHE under 1 

sun illumination in a sealed cell, and the output gas flow was analyzed by chromatography. 

From the chronoamperometric measurement the theoretical O2 production was estimated 

through the Faraday´s law, as represented in Fig. 9a (black line) and compared with the 

measured values (red symbols). Because of the dispersion on the obtained values, related 

with imperfections on the manual sampling during the chromatography analysis, a linear 

fitting is represented for a better comparison. The measured O2 produced in this 

photoanode correlate well with respect the theoretical estimated, being the faradic 

efficiency > 90% after 1h, as is represented in Fig. 9b. The fact that there is not reached a 

100% of faradic efficiency must likely related with photocorrosion process of the 

semiconductor in contact with the electrolyte, which have been also observed in BiVO4-

based photoanodes, were the faradic efficiency losses have been related with imperfect 

coverage of the semiconductor surface by the catalyst material[36] , which remarks the 



need to employ this kind of strategies in further investigations in order to improve the 

photocatalytic feature of this semiconductor and achieve competitive efficiency 

performance. 

  

(a) (b) 

Fig. 9. (a) Oxygen evolution in borate buffer at pH 9.2 measured under continuous 1 

sun irradiation at 1.54 V versus RHE registered experimentally by gas chromatography 

(red squares) and theoretically calculated from the measured current by the Faraday’s law 

(black line). (b) Faradic efficiency obtained from comparing the theoretical and 

experimental oxygen evolution showed in (a). 

4. Conclusions 

In summary, we have studied the optical and photoelectrochemical properties of 

Cu3V2O8 as a candidate photoanode for photoelectrochemical water splitting and explored 

the effect of Cr doping aiming at overcoming the large bulk recombination losses in this 

material. Our results show that although a remarkable improvement is photocurrent is 

obtained after 0.75 at.% Cr doping, which can be related to an increased extrinsic doping 

of the material, further efforts must be carried out in order to achieve competitive charge 

separation yields (>70%) for technological deployment. Additionally, the flatband should 



be shifted to more cathodic potentials to allow the exploration of alternative configurations 

based on n-n heterojunctions. 
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Figure SI1. Cross sections of the Cu3V2O8 thin films after 425 ºC annealing with 

different thickness values as a result of the number of deposited layers during the spin 

coating. The scale bar is 100 nm in all micrographs. 

 

 

Figure SI2. Absorbance of Cu3V2O8 (dashed lines) and Cr:Cu3V2O8 (0.75%) (solid 

lines) with different thickness values. 
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Figure SI3. Mott-Schottky plot of 600 nm Cu3V2O8 films performed at 10 Hz, 50 Hz 

and 100 Hz in borate buffer at pH 9.2 and the corresponding lineal fitting showing the 

x-intercept. 

0.5% 0.75% 

  

1% 1.5% 

  

Figure SI4. Mott-Schottky plot of 600 nm Cr:Cu3V2O8 films with different Cr vs Cu 

content performed at 10 Hz, 50 Hz and 100 Hz in borate buffer at pH 9.2 and the 

corresponding lineal fitting showing the x-intercept (flatband potential). 



 

Figure SI5. Bode plots of the impedance spectra obtained in borate buffer at pH 9.2 and 

dark conditions, at 1.54 V vs RHE. The frequencies employed for Mott-Schottky 

analysis were selected from the region where the real part of the capacitance (E’) 

remained constant (10-100 Hz).  

 

 

Figure SI6. ND obtained as function of Cr content in the precursor solution. Four 

samples were tested at each condition and the error bars are indicated. 



 

Figure SI7. Top-view of a) Cu3V2O8, b-e) Cr: Cu3V2O8 with 0.5%, 0.75%, 1% and 

1.5% of Cr content in the precursor solution respectively, showing the effect of doping 

in the surface area. Scale bar is 100 nm in all micrographs. 

Table SI1. Integrated currents from IPCE records compared with those obtained from 

the j-V curves. (Reported values are obtained at 1.54 V vs RHE and at 1 V vs RHE for 

water oxidation and hole scavenger oxidation, respectively). 

 Integrated Current  

(A/cm
2
) 

Experimental Current 

(A/cm
2
) 

Cu3V2O8 24 25 

Cu3V2O8  

(in 0.1 M Na2SO3) 
52 67 

Cr:Cu3V2O8 114 113 

Cr:Cu3V2O8  

(in 0.1 M Na2SO3) 
123 102 

 

 




