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Abstract

The class of commutator-free quasi-Magnus (CFQM) exponential integrators pro-
vides a favourable alternative to standard Magnus integrators, in particular for
large-scale applications arising in the time integration of non-autonomous linear
evolution equations. The schemes are given by compositions of several exponentials
that comprise certain linear combinations of the values of the defining operator at
specified nodes. Due to the fact that previously proposed CFQM exponential inte-
grators of order five or higher involve negative coefficients in the linear combinations,
severe instabilities are observed for spatially semi-discretised parabolic equations or
for master equations describing dissipative quantum systems. In order to remedy
this issue, two different approaches for the design of efficient time integrators of or-
ders four, five, and six are pursued: (i) the study of CFQM exponential integrators
involving complex coefficients that satisfy a positivity condition, and (ii) the study
of unconventional methods in the sense that an additional exponential involving
a commutator of higher order with respect to the time stepsize occurs. Numerical
experiments confirm that the identified novel time integrators are superior to other
integrators of the same family previously proposed in the literature.
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1 Introduction

Simulation of quantum systems. In order to describe the evolution of a quantum
system subjected to a time-dependent potential, one must deal with the time-dependent
Schrödinger equation

i ∂tψ(t) = H(t)ψ(t) ; (1)

here, H denotes the time-dependent Hamiltonian operator, and the wave function ψ(t) rep-
resents the state of the system at time t. For convenience, we employ a compact formulation
as evolution equation and the normalisation ~ = 1.

Dynamical processes involving dissipation are better described by a master equation

∂tρ(t) = L (t) ρ(t) , (2)

defined by a time-dependent Liouville operator L , see [19]; this in particular applies to
quantum systems with dissipation caused by cavity losses and spontaneous emission of
energy input from external pumping [3,30] and also when a complex absorbing potential
is present [36].

Due to the fact that analytical solutions to time-dependent partial differential equations
such as Schrödinger equations and master equations are available only in academic exam-
ples, numerical methods are inevitable tools in their simulation. A common approach is
to first discretise in space, for which procedures such as finite differences, pseudo-spectral
methods based on collocation with trigonometric polynomials, or Galerkin methods with
a Hermite basis are used, see [31] and references therein. The (large) system matrix of
the resulting linear ordinary differential equation inherites fundamental properties of the
Hamiltonian and the Liouville operator, respectively. In the first case, it is skew-Hermitian
reflecting (high) oscillations in the solution; in the second case, it comprises eigenvalues
with large negative real part reflecting dissipation.

Evolution equation. In the simulation of (dissipative) quantum systems, one is thus
led to numerically integrate a non-autonomous evolution equation of the form




u′(t) = A(t)u(t) , t ∈ (t0, T ) ,

u(t0) = u0 ,
(3a)

defined by a family of time-dependent linear operators (A(t))t∈[t0,T ]. In view of a spatial
semi-discretisation, we assume in addition that A(t) is a family of real or complex matrices

A(t) ∈ Kd×d, K = R ,C , (3b)

which have large dimension and large operator norm, in general.

2
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In addition to (1) and (2) leading in a natural way to a non-autonomous linear evolution
equation (3), we mention the variational equations related to periodic solutions in nonlinear
parabolic equations, see [39].

Exponential time integrators. Compared to standard time integration methods such
as explicit or implicit Runge-Kutta methods, exponential integrators have shown to be
particularly useful in approximating the exact solution of (oscillatory) stiff differential
equations in an efficient manner whilst preserving qualitative properties of the system, see
[13] and references therein. As a matter of fact, there is a considerable research interest
in the study of different methods involving exponentials and the design of novel schemes;
we mention time-splitting methods, Magnus and Fer integrators, Crouch–Grossman meth-
ods, and commutator-free exponential integrators, see [6,10,13,23,26,27,33]. Two relevant
classes, time-splitting methods and interpolatory Magnus integrators, will be reviewed in
Section 2.

Exponential midpoint rule. An elementary time integrator of exponential type re-
quiring the computation of one single matrix-exponential per time step is the so-called
exponential midpoint rule. For certain equidistant grid points

t0 ≤ tn < tn+1 = tn + τ ≤ tN = T , (4a)

the time-discrete solution of (3) is defined by the recurrence

un+1 = CF
[2]
1 (τ, tn)un = eτA(tn+ 1

2
τ) un ≈ u(tn+1) , n ∈ {0, 1, . . . , N − 1} . (4b)

The exponential midpoint rule provides an approximation that has non-stiff order two
in the time stepsize. When the arising matrices are of large dimension, the scheme is
frequently implemented by means of an efficient algorithm that approximates the ac-
tion of a matrix-exponential on a vector, instead of computing the matrix-exponential
itself, see [1,26,35,38,41] and references therein; in this respect, procedures that involve
only matrix-vector products such as Chebyshev or Krylov methods are usually preferred,
see [25,31].

Higher order methods can be achieved by applying different strategies, in particular by
constructing the scheme as a single exponential (Magnus integrators) or as a product of
exponentials (Fer integrators, splitting methods, commutator-free methods, etc.). In any
case, the presence of commutators and/or negative coefficients in the methods lead to
serious issues concerning well-definedness and stability. The reason is easy to grasp making
use of backward error analysis [23]. Suppose we have a numerical map provided by a given
integrator of order, say, r, u1 = Φh u0. Then u1 = ũ(h) = u(h) +O(hr+1) and ũ(h) is the
exact solution of the modified equation




ũ′(t) =

(
A(t) + hrÂ

)
ũ(t) , t ∈ (t0, T ) ,

ũ(t0) = u(t0) ,

3
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where Â = A1(t) + hA2(t) + h2A3(t) + . . . is an asymptotic series in general. Whereas low
order exponential methods usually show excellent stability and convergence properties, for
higher order methods the corresponding modified equation is not well conditioned, the
norm of the perturbation term ‖Â‖ takes exceedingly large values and thus only very small
time steps provide meaningful results.

One of the goals of the present paper is indeed to develop high-order integrators avoid-
ing these drawbacks. This can be achieved, in particular, by considering commutator-free
methods of exponential type involving complex coefficients. Splitting methods with com-
plex coefficients have been proposed for Hamiltonian systems, see [21], in the context of the
time-dependent Schrödinger equation in quantum mechanics, see [5,7,8], and also in the
more abstract setting of evolution equations with unbounded operators generating analytic
semigroups, see [11,20,24].

Commutator-free quasi-Magnus exponential integrators. To be more specific, in
this work we primarily focus on a class of high-order commutator-free integrators which
can be considered as a generalisation of (4): they are given by a composition of several
exponentials that comprise certain linear combinations of the values of the defining oper-
ator at specified quadrature nodes. We call them commutator-free quasi-Magnus (CFQM)
exponential integrators to distinguish themselves from other classes of commutator-free
integrators and to emphasise the close relationship with interpolatory Magnus methods, in
the sense that both make use of the Magnus expansion in their derivation.

For our purposes, it suffices to study the initial step of a commutator-free quasi-Magnus
exponential integrator of order r

u1 = CF
[r]
J (τ)u0 =

J∏

j=1

eBj(τ) u0 = eBJ (τ) · · · eB1(τ) u0 ≈ u(t1) = u(t0 + τ) , (5a)

Bj(τ) = τ
K∑

k=1

ajk Ak(τ) , j ∈ {1, . . . , J} , (5b)

Ak(τ) = A(t0 + ckτ) , ck ∈ [0, 1] , k ∈ {1, . . . , K} , (5c)

u1 = u(t1) + O
(
τ r+1

)
; (5d)

for notational simplicity, here and in the sequel, we only indicate the dependence on the
decisive quantity τ > 0.

Integrators of this class with real coefficients have been designed and analysed in [18,43];
we in particular mention [2], where optimised methods of orders four, six, and eight have
been proposed and tested.

Evidently, for the special case of a time-independent operator A, the composition (5a)

4
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reads CFJ(τ) = eτaJA · · · eτa1A, where

aj =
K∑

k=1

ajk , j ∈ {1, . . . , J} . (5e)

As shown in [16], the positivity condition

∀ j ∈ {1, . . . , J} : Re(aj) > 0 (5f)

ensures that a CFQM exponential integrator is well-defined within the framework of sec-
torial operators and analytic semi-groups.

Depending on the prescribed order, condition (5f) can be satisfied by a commutator-free
quasi-Magnus exponential integrator with real coefficients or demands the consideration
of complex coefficients. For instance, for order four, there exist schemes comprising two
exponentials that satisfy property (5f). On the contrary, it has been noticed in [3] that for all
schemes with real coefficients of order six and higher the positivity condition (5f) is violated
for at least one index; numerical experiments confirm that these schemes exhibit poor
stability when applied to spatially semi-discretised partial differential equations of parabolic
type or to equations modelling driven open quantum systems, respectively. Since we are
interested in designing high-order schemes that are also suitable for the time integration
of parabolic equations and for master equations describing dissipative quantum systems,
we explore the more general approach of complex coefficients.

In the present work, we trace back this unfavourable feature to the non-stiff order con-
ditions and show that, at least if the CFQM exponential integrator does not involve an
exceedingly large number of stages, this property is characteristic for schemes with real co-
efficients of order five or higher. To remedy the issue, we explore the following approaches:
The design of novel commutator-free quasi-Magnus exponential integrators that involve
more stages than strictly required to satisfy as many conditions at order five as possible
whereas keeping positive coefficients, and the design of novel fifth- and sixth-order CFQM
exponential integrators with complex coefficients satisfying the positivity condition. As
confirmed by numerical experiments, the proposed schemes can be safely applied to prob-
lems related to parabolic equations and to dissipative quantum systems. Moreover, we
study unconventional methods that comprise in addition a single exponential involving a
commutator which is of higher order with respect to the time stepsize.

Convergence analysis. A rigorous stability and error analysis of high-order
commutator-free quasi-Magnus exponential integrators with complex coefficients applied
to non-autonomous linear evolution equations of parabolic type is carried out in [16]; the
stated convergence estimate in particular implies that a CFQM exponential integrator re-
tains its non-stiff order under suitable regularity and compatibility requirements on the
exact solution.

5
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Extension. The time integration of nonlinear evolution equations of the form

u′(t) = A(t)u(t) + ε g
(
t, u(t)

)
, t ∈ (t0, T ) , |ε| � 1 , (6)

is often advantageously based on the previous accurate numerical solution of the non-
autonomous linear equation (3); the equation associated to the perturbation, u′(t) =

ε g
(
t, u(t)

)
, is solved separately with the time frozen. The techniques provided in this

work and the obtained novel schemes are thus of use in this setting.

Outline and overview. The present work is organised as follows. In Section 2, we
introduce two classes of numerical methods based on exponentials, to put commutator-
free quasi-Magnus exponential integrators into perspective with them. In Section 3, we in
particular state a set of independent order conditions to be satisfied by time-symmetric
CFQM exponential integrators of order six. In Section 4, we solve the order conditions
and collect several families of commutator-free quasi-Magnus exponential integrators and
related methods. Finally, in Section 5, efficient novel schemes are tested on model equations.

An overview of the different time-splitting methods, interpolatory Magnus integrators, and
commutator-free quasi-Magnus exponential integrators that are discussed in this work is
given in Table 1. In particular, for sixth-order methods, it is seen that CFQM exponential
integrators involve a significantly reduced number of exponentials, which is a first indicator
of the computational cost. In the design of novel schemes, an additional objective is to keep
the quantity ρ defined in (18) as small as possible.

2 Splitting methods and Magnus integrators

In this section, we briefly review splitting methods and interpolatory Magnus integrators for
the time integration of non-autonomous linear evolution equations, paying special attention
to stability issues and computational effort. In conclusion, we relate commutator-free quasi-
Magnus exponential integrators to them.

Estimating the computational cost. In view of the design of novel time integration
methods, it is essential to compare efficiency. To this end, we introduce the computational
cost of evaluating the action of a matrix-exponential of the form ea0A(t) with real or complex
coefficient a0 on a vector u by polynomial approximations such as Krylov-type methods,

C
(
ea0A(t) u

)
,

as a basic measure.

Working with complex coefficients instead of real coefficients potentially makes an algo-
rithm about four times more costly; however, this is not necessarily what happens in our

6
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Method Coefficients Order Indicator for computational cost

S (see [17]) real r = 4 J = 6

S (see [20]) complex r = 4 J = 4

S (see [17]) real r = 6 J = 10

S (see [11]) complex r = 6 J = 16

M (see (9)) real r = 4 C
(
eΩ[4](τ) u0

)
' 5 C

(
eA(t) u0

)

M real r = 6 C
(
eΩ[6](τ) u0

)
' 13 C

(
eA(t) u0

)

CFQM (see (12)) real r = 4 = 2 s ρ(CF
[4]
2 ) = 1

CFQM (see [2, Eq. (43)]) real r = 4 = s+ 1 ρ
(
CF

[4]
3

)
= 1.35

CFQM real r = 4 = s+ 1 ρ
(
CF

[4]
4

)
≈ 1.1547

CFQM real r = 4 = s+ 1 ρ
(
CF

[4]
5

)
≈ 1.12605

CFQM complex r = 5 = s+ 2 ρ
(
CF

[5]
3

)
= 1.2

CFQM (see [2, Eq. (43)]) real r = 6 = 2 s ρ
(
CF

[6]
6

)
≈ 3.40428

CFQM complex r = 6 = 2 s ρ
(
CF

[6]
4

)
≈ 1.17458

CFQM complex r = 6 = 2 s ρ
(
CF

[6]
5

)
= 1.29727

CFQM real r = 6 = 2 s CF
[6]
5C , additional commutator

Table 1
Overview of various higher-order time-splitting methods (S), Magnus integrators (M), and
commutator-free quasi-Magnus exponential integrators (CFQM). The number of Gaussian
quadrature nodes s corresponds to the minimum number of nodes. Indicators for the compu-
tational cost are the number of exponentials J and the quantity (18). For Magnus integrators,

the cost comparable to the computation of eA(t) u0 is given. We recall that the abbreviation CF
[r]
J

reflects the number of exponentials.

situation. For instance, in applications from quantum mechanics, where A ∈ Cd×d and
the solution of (3) evolves in the complex space, the evaluation of ea0A(t) u by a Krylov
method requires the computation of certain products (A(t))m u and the computational cost
is comparable for real and complex coefficients; if A(t) ∈ Rd×d and u ∈ Rd, the extra cost
to compute U = ea0A(t)u with a0,∈ C corresponds to the computation of the exponential
of a complex matrix of relatively small dimension. However, if one has next to compute,
say, Ũ = eã0A(t)U , the products (A(t))m U duplicate their computational cost, since U is a
complex vector.

Due to the fact that a matrix-vector product of the form (A1 + A2)u commonly has the
same complexity as either A1 u or A2 u, first considerations given below for time-splitting

7
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methods essentially extend to commutator-free quasi-Magnus exponential integrators.

2.1 Time-splitting methods

Splitting methods. Given two non-commuting square matrices X and Y , a time-
splitting method of order r for approximating the solution of the linear differential equation

y′(t) = (X + Y ) y(t) , t ∈ (t0, T ) ,

or equivalently the corresponding matrix-exponential is given by a composition of the form

L∏

`=1

(
eτa`X eτb`Y

)
≈ eτ(X+Y ) .

Simply by adding the trivial relation d
dt
t = 1, this splitting method applied to (3) yields

u1 =
L∏

`=1

eτa`A(t0+c`τ) u0 , c` =
∑̀

i=1

bi , ` ∈ {1, . . . , L} . (7)

Efficient splitting methods are found in [17,33]; for instance, the coefficients of a fourth-
order scheme comprising six exponentials and of a sixth-order scheme comprising ten ex-
ponentials are given there.

Stability. A well-established result states that time-splitting methods of order higher than
two necessarily involve negative coefficients and hence are not suitable for non-reversible
systems [9,22,40,42]; in particular, such schemes have poor stability properties for non-
autonomous linear evolution equations of parabolic type and for dissipative quantum sys-
tems.

An alternative approach is to employ time-splitting methods that are defined by complex
coefficients a` ∈ C+ and real coefficients b` ∈ R for ` ∈ {1, . . . , L}; we note that this ensures
t0+c` τ ∈ R for ` ∈ {1, . . . , L}. A fourth-order scheme comprising four exponentials is given
in [20], and a sixth-order scheme comprising 16 exponentials is found in [11].

Computational effort. In situations where the defining operator family and the time-
discrete solution are complex-valued, the presence of complex coefficients in the composi-
tion (7) does not lead to an increment in the computational cost, compared to splitting
methods with real coefficients; however, if A(t) ∈ Rd×d and u0 ∈ Rd, the computational
effort of schemes with complex coefficients will increase, in general. In this situation, the
computation from time t0 to t1 proceeds as




U1 = eτa1A(t0+c1τ) u0 ,

U` = eτa`A(t0+c`τ) U`−1 , ` ∈ {2, . . . , L} ,

8
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and the projection on the real part defines the new time-discrete solution value

Re(UL) ≈ u(t1) ;

the computational effort for evaluating U1 by means of polynomial approximations such
as Krylov methods is basically the same for a1 ∈ C+ and a1 ∈ R, whereas the effort for
computing the remaining vectors doubles for complex coefficients.

2.2 Interpolatory Magnus integrators

Magnus expansion. The Magnus expansion provides a formal solution representation
of (3) as the exponential of an infinite series

u(t0 + τ) = eΩ(τ) u0 , Ω(τ) =
∞∑

m=1

Ωm(τ) , (8a)

which involves multiple integrals of nested matrix-commutators such as

Ω1(τ) =
∫ t0+τ

t0
A(s) ds ,

Ω2(τ) = 1
2

∫ t0+τ

t0

∫ s1

t0

[
A(s1), A(s2)

]
ds2 ds1 ,

Ω3(τ) = 1
6

∫ t0+τ

t0

∫ s1

t0

∫ s2

t0

[
A(s1), [A(s2), A(s3)]

]
+
[
A(s3), [A(s2), A(s1)]

]
ds3 ds2 ds1 ;

(8b)

here, as standard, the commutator of two square matrices is defined by

[X, Y ] = X Y − Y X .

Recursive procedures to generate the Magnus expansion are found in [13,27,32].

Magnus integrators. The natural approach of truncating the infinite series and apply-
ing quadrature approximations of the integrals leads to the class of interpolatory Magnus
integrators. For instance, from considering the two principal terms in (8), Ω1 + Ω2, and ap-
plying a quadrature formula of order four or higher, defined by K nodes and corresponding
weights, a fourth-order Magnus integrator results [14,28]

u1 = eΩ[4](τ) u0 = u(t1) + O
(
τ 5
)
,

Ω[4](τ) = B̃1(τ) +
[
B̃2(τ), B̃3(τ)

]
,

B̃j(τ) = τ
K∑

k=1

ãjk Ak(τ) , j ∈ {1, 2, 3} ,

Ak(τ) = A(t0 + ckτ) , ck ∈ [0, 1] , k ∈ {1, . . . , K} ,

(9a)

9
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in comparison with (5); the particular choice of the fourth-order Gauss–Legendre quadra-
ture formula yields

c1 = 1
2
−
√

3
6
, c2 = 1

2
+
√

3
6
,

Ω[4](τ) = 1
2
τ
(
A1(τ) + A2(τ)

)
+
√

3
12
τ 2
[
A2(τ), A1(τ)

]
.

(9b)

In the context of partial differential equations, however, higher-order interpolatory Magnus
integrators exhibit serious difficulties, due to the presence of nested commutators.

Well-definedness and stability. A first issue is that commutators in general do not
inherit the properties of the operator family (A(t))t∈[t0,T ]; as a consequence, characterising
well-definedness and stability of higher-order interpolatory Magnus integrators for partial
differential equations is a delicate question.

Computational effort. A second issue is the potential exceedingly large computa-
tional cost of higher-order interpolatory Magnus integrators. Suppose for instance that the
fourth-order Magnus integrator (9) is implemented by Krylov techniques. The computation

of eΩ[4](τ) u0 requires to evaluate the action of certain powers of Ω[4](τ) at the cost of five
matrix-vector multiplications per product; specifically, the relation

Ω[4](τ)u0 = v1 + (v4 − v5) ,

v1 = B̃1(τ)u0 , v2 = B̃2(τ)u0 , v3 = B̃3(τ)u0 ,

v4 = B̃2(τ) v3 , v5 = B̃3(τ) v2 ,

in general implies the computational cost

C
(
eΩ[4](τ) u0

)
' 5 C

(
eA(t) u0

)
.

In some cases, however, the evaluation of the commutators acting on the vector can be
efficiently carried using an appropriate approach, e.g. the linear Schrödinger equation in
the semiclassical regime with time-dependent potential [6].

For a sixth-order Magnus integrator at least 13 matrix-vector multiplications are needed
[15]; consequently, computing the action of the matrix-exponential is about 13 times more
expensive than the cost of evaluating a single matrix-exponential

C
(
eΩ[6](τ) u0

)
' 13 C

(
eA(t) u0

)
.

2.3 Commutator-free quasi-Magnus exponential integrators

Favourable conjunction of method classes. The class of commutator-free quasi-
Magnus exponential integrators combines the favourable properties of time-splitting meth-

10
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ods and standard interpolatory Magnus integrators. On the one hand, CFQM exponential
integrators can be considered as generalisations of time-splitting methods (7), but with a
significantly reduced number of exponentials, see also Sections 3 and 4. On the other hand,
they circumvent difficulties exhibited by higher-order interpolatory Magnus integrators,
especially the presence of the often cumbersome (from the stability point of view) and in
many cases computationally costly nested commutators; the single exponential involving
commutators is replaced by a composition of several exponentials that comprise linear
combinations of the values of the defining operator at certain quadrature nodes, which
leads to the general format (5). As for interpolatory Magnus integrators, the coefficients
of a commutator-free quasi-Magnus exponential integrator can be easily recalculated for
each particular choice of the nodes.

3 Derivation and analysis of order conditions

In this section, we deduce the non-stiff order conditions for CFQM exponential integrators;
we thus may restrict ourselves to the case where the operator norm of A(t) ∈ Kd×d is of
moderate size, see (3). We first indicate the general approach; as illustration, the expan-
sions are rendered more precisely for the special case of a fourth-order CFQM exponential
integrator involving two exponentials. Following up these considerations, and employing
additional algebraic means, we attain a set of independent order conditions that is suitable
for a detailed analysis of its solutions.

3.1 Expansions

The requirement that a commutator-free quasi-Magnus exponential integrator of the
form (5a)–(5c) satisfies relation (5d) for a given r, implies certain conditions on the coef-
ficients. Among a number of ways, suitable for ordinary differential equations, a possible
approach for the derivation of these conditions consists in representing the exact solution
by the Magnus expansion (8) and reproducing it by the time-discrete solution up to the
prescribed order

CF
[r]
J (τ)u0 − eΩ(τ) u0 = O

(
τ r+1

)
.

For simplicity, in the presentation, we take t0 = 0. Given (wi, ci), i = 1, . . . , K, the weights
and nodes of a quadrature rule of order r, it is shown in [28] that the evaluations A(ciτ), i =

1, . . . , K suffice to get an approximation of the solution of (3) up to order O
(
τ r
)

(see also

[34,37,44]). This is so because the solution of the differential equation




ũ′(t) = Ã(t) ũ(t) , t ∈ (0, τ) ,

ũ(0) = u(0) ,
(10)
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where Ã(t) is the polynomial of degree K − 1 in t that interpolates A(t) on the interval
[0, τ ] at the nodes ciτ, i = 1, . . . , K, i.e.

Ã(t) =
K∑

i=1

Li(t)Ai

with Ai = A(ciτ) and Li(t) are the usual Lagrange polynomials

Li(t) =
K∏

j=1,j 6=i

t− cjτ
ciτ − cjτ

, t ∈ [0, τ ] ,

verifies
‖u(τ)− ũ(τ)‖ = O

(
τ r+1

)
.

On the other hand, the Magnus expansion can be used to solve the initial value prob-
lem (10), so that

ũ(τ) = eΩ̃(τ) u0 , Ω̃(τ) =
∞∑

m=1

Ω̃m(τ) . (11)

Now, since Ã(t) is a polynomial of degree K − 1 in t, it is clear that all the terms in
the series (11) can be evaluated analytically. An approximation to u(τ) up to order p can
then be achieved by taking into account the first terms of the series, since it holds that
Ω̃1(τ) = O(τ) and Ω̃2m(τ) = O(τ 2m+1), Ω̃2m+1(τ) = O(τ 2m+3), m > 0.

Let us take in particular the K nodes of a Gauss–Legendre quadrature rule, so that p =
2K. Since these nodes are symmetrically distributed with respect to the midpoint, it is
advantageous to consider a Taylor expansion of Ã(t) around τ

2
,

Ã(t) = Ã
(
τ
2

+ σ
)

= 1
τ

K∑

i=1

(
σ
τ

)i−1
αi , σ ∈

[
− τ

2
, τ

2

]
,

αi = τ i 1
(i−1)!

di−1

dσi−1

∣∣∣∣
σ=0

Ã
(
τ
2

+ σ
)
.

Notice that αi = O(τ i), [αi, αj] = O(τ i+j), etc., and Ω̃(τ) can be written as an element of
the free Lie algebra generated by α1, . . . , αK . Since the exact solution is time-symmetric
and αi are derivatives with respect to the midpoint, no even terms will appear in the
expansion [15].

Specifically, with r = 2K = 4 (order four) one has

c1 = 1
2
−
√

3
6
, c2 = 1

2
+
√

3
6
, w1 = w2 = 1

2
,

Ã( τ
2

+ σ) = L1( τ
2

+ σ)A1 + L2( τ
2

+ σ)A2 = 1
2

(A1 + A2) + σ
√

3
τ

(A2 − A1) = 1
τ
α1 + σ

τ2
α2 ,

with Ai ≡ A(ciτ), so that

Ω̃1(τ) = α1 , Ω̃2(τ) = − 1
12

[
α1, α2

]
,

12
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and
‖u(τ)− eΩ̃1(τ)+Ω̃2(τ) u0‖ = O

(
τ 5
)
.

The approximation eΩ̃1(τ)+Ω̃2(τ) can also be reproduced up to order O(τ 5) by a product of
two exponentials. Specifically,

Ψ
[4]
2 (τ) = e

1
2
α1+ 1

6
α2 e

1
2
α1− 1

6
α2 u0 = eΩ̃(τ) u0 + O

(
τ 5
)
. (12a)

Finally, expressing α1, α2 in terms of the evaluations A1, A2, results in the fourth-order
CFQM exponential integrator

CF
[4]
2 (τ) = eτa21A1+τa22A2 eτa11A1+τa12A2 ,

a = (aij) =




1
4

+
√

3
6

1
4
−
√

3
6

1
4
−
√

3
6

1
4

+
√

3
6


 ;

(12b)

for the benefit of a compact formulation, the coefficients are given in matrix-form. We
point out that although negative coefficients necessarily arise,

a21 = a12 < 0 ,

the positivity condition (5f) is satisfied, since

a1 = a11 + a12 = a2 = a21 + a22 = 1
2
.

Additional considerations (r = 2K = 6). For order six we consider the nodes and
weights of the sixth-order Gauss–Legendre quadrature formula,

c1 = 1
2
−
√

15
10
, c2 = 1

2
, c3 = 1

2
+
√

15
10
,

w1 = 5
18
, w2 = 4

9
, w3 = w1.

Then

Ã
(
τ
2

+ σ
)

= A2 + σ
√

15
3 τ

(A3 − A1) + σ2 10
3 τ2

(A1 − 2A2 + A3)

= 1
τ
α1 + σ

τ2
α2 + σ2

τ3
α3 ,

(13)

and
u(τ) = eΩ̃1(τ)+Ω̃2(τ)+Ω̃3(τ)+Ω̃4(τ)u0 + O

(
τ 7
)

with

Ω̃1(τ) = α1 + 1
12
α3 ,

Ω̃2(τ) = − 1
12

[
α1, α2

]
+ 1

240

[
α2, α3

]
,

Ω̃3(τ) = 1
360

[
α1, [α1, α3]

]
− 1

240

[
α2, [α1, α2]

]
+ O

(
τ 7
)
,

Ω̃4(τ) = 1
720

[
α1, [α1, [α1, α2]]

]
+ O

(
τ 7
)
.

13
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The exact solution can be approximated by a composition of the form

Ψ
[r]
J (τ)u0 =

J∏

j=1

exj1α1+xj2α2+xj3α3 u0 = eΩ̃(τ) u0 + O
(
τ r+1

)
(14)

with r = 6 and appropriately chosen coefficients in the linear combinations. Once such
coefficients are determined by solving certain order conditions, see Section 3.2, this product
defines a CFQM exponential integrator (5) with K = 3 and

Bj(τ) = τ
3∑

k=1

ajk Ak(τ) =
3∑

k=1

xjk αk(τ) , j ∈ {1, . . . , J} ; (15)

besides, the positivity condition (5f), where α1 = τA, α2 = α3 = 0, corresponds to the
requirement

∀ j ∈ {1, . . . , J} : Re(xj1) > 0 . (16)

3.2 Order conditions

Approach based on BCH formula (r = 4). Different approaches can be used to
determine the coefficients that arise in the factorization (14). For instance, we can apply
recursively the Baker–Campbell–Hausdorff (BCH) formula to get a series expansion with
respect to the time stepsize τ ; for (12), this yields

log
(
Ψ

[r]
J (τ)

)
= w1 α1 + w2 α2 + w3 α3 + w12

[
α1, α2

]
+ w13

[
α1, α3

]
+ O

(
τ 5
)
,

where w1, w2, w3, w12, w13 are polynomials in terms of xj1, xj2, xj3. The order conditions are
then obtained by requiring that this expansion agrees with the corresponding expansion
of Ω̃(τ) up to the desired order, that is

w1 = 1, w2 = 0, w3 = 1
12
, w12 = − 1

12
, w13 = 0.

Order conditions and time-symmetry (r = 6). A more elegant approach to deduce
a set of necessary and sufficient independent order conditions for splitting methods has
been proposed in [12] (see also [4]) and makes use of Lyndon words. Roughly speaking,

one computes the series expansion of the product of exponentials defining Ψ
[r]
J (τ), but only

takes into account those terms in the expansion corresponding to a Lyndon word. Then

these terms are equating to those obtained by applying the same procedure to eΩ̃(τ). The
order conditions thus derived are shown to be equivalent to those given by applying the
BCH formula.

More specifically, let us consider the set of all multi-indices comprising positive integers
with lexicographical order <; a tuple (i1, . . . , im) ∈ Nm is called a Lyndon multi-index if

14
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for each integer ` ∈ {1, . . . ,m} the condition (i1, . . . , i`) < (i`+1, . . . , im) is satisfied, and
for each Lyndon multi-index there is a Lyndon word on the alphabet {α1, α2, . . . , αm}. In
view of (14), anticipating that the additional requirement of time-symmetry will raise the
order to six, we list all Lyndon multi-indices with cross sum at most five

(1), (2), (3), (4), (5) ∈ N , (1, 2), (1, 3), (1, 4), (2, 3) ∈ N2 ,

(1, 1, 2), (1, 1, 3), (1, 2, 2) ∈ N3 , (1, 1, 1, 2) ∈ N4 ;

the word α1α3 corresponds to (1, 3), the word α1α2α2 corresponds to (1, 2, 2), and so on.
Using that the composition in (14) agrees up to order five or higher with the power series
corresponding to the Magnus expansion (8) if and only if the coefficients multiplying the
Lyndon words on the alphabet {α1, α2, α3} are equal in both expansions, gives us ten
independent polynomial equations to be satisfied by the coefficients. Setting

yj =
j∑

`=1

x`1 , zj =
j∑

`=1

x`2 , j ∈ {1, . . . , J} , (17a)

explicit expressions of these order conditions are

(1) : yJ = 1 ,

(2) : zJ = 0 ,

(3) :
J∑

j=1

xj3 = 1
12
,

(1, 2) :
J∑

j=1

xj2
(
xj1 + 2 (1− yj)

)
= − 1

6
,

(1, 3) :
J∑

j=1

xj3
(
xj1 + 2 (1− yj)

)
= 1

12
,

(2, 3) :
J∑

j=1

xj3
(
xj2 − 2 zj

)
= 1

120
,

(1, 1, 2) :
J∑

j=1

xj2
(
x2
j1 + 3 (1− yj)2 + 3xj1 (1− yj)

)
= − 1

4
,

(1, 1, 3) :
J∑

j=1

xj3
(
x2
j1 + 3 (1− yj)2 + 3xj1 (1− yj)

)
= 1

10
,

(17b)

(1, 2, 2) :
J∑

j=1

xj1
(
x2
j2 + 3xj2 zj−1 + 3 z2

j−1

)
= 1

40
,

(1, 1, 1, 2) :
J∑

j=1

xj2
(
x3
j1 + 4 (1− yj)3 + 6xj1 (1− yj)2 + 4x2

j1 (1− yj)
)

= − 3
10
.

When dealing with a non-autonomous linear evolution equation (3), time-symmetric meth-
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ods (14) satisfying the condition

Ψ
[r]
J (−τ) =

(
Ψ

[r]
J (τ)

)−1

are usually preferred. As shown in [18], this corresponds to the requirement

xJ+1−j,k = (−1)k+1xjk , j ∈ {1, . . . , J}, k ∈ {1, 2, 3} ; (17c)

due to the fact that the order conditions at odd orders are then automatically satisfied,
a time-symmetric scheme is of even order. In particular, to achieve order six, the seven
equations in (17b) associated with

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2) (17d)

have to be solved.

Positivity condition. In (17b), the four equations related to α3, namely

(3), (1, 3), (2, 3), (1, 1, 3)

are linear with respect to xj3 for j ∈ {1, . . . , J}; thus, we proceed by first solving the
remaining equations

(1), (2), (1, 2), (1, 1, 2), (1, 2, 2), (1, 1, 1, 2)

and then computing xj3 for j ∈ {1, . . . , J}. Up to J = 7, we have analysed the equations
related to α1 and α2 in regard to real solutions that satisfy in addition the positivity
condition (16); it turned out that all of them involve at least one negative coefficient.
Moreover, we have studied the case of a composition (14) with identical coefficients

xj1 = 1
J
, j ∈ {1, . . . , J},

such that yJ = 1 by construction; up to J = 80, the remaining five equations do not
admit a real solution. Thus, there is strong evidence that the order conditions (17b) under
the positivity requirement (16) do not admit real solutions, unless for an impractial high
number of exponentials.

Special case (r = 2s = 4, J = 2). In order to achieve order four, only the equations
in (17b) related to

(1), (2), (1, 2), (1, 1, 2)

with xj3 = 0 for j ∈ {1, . . . , J} need to be solved; setting J = 2 and employing the
requirement of time-symmetry, we retain (12)

x11 = x21 = 1
2
, x12 = − 1

6
, x22 = 1

6
.
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4 Families of novel commutator-free quasi-Magnus exponential integrators

In this section, we design efficient commutator-free quasi-Magnus exponential integrators
of orders four, five, and six and related methods of order six.

Efficient novel schemes. From the analysis provided in Section 3, we conclude that for
CFQM exponential integrators, cast into the form (14) with real coefficients and satisfying
the positivity condition xj1 > 0 for j ∈ {1, . . . , J}, there is an order barrier at order four,
at least from a practical point of view. This is also confirmed by [2], where an exhaustive
study of fourth-, sixth- and eighth-order time-symmetric CFQM exponential integrators
with up to three, six and eleven exponentials, respectively, was carried out; when more
exponentials than strictly necessary were included in the composition, an optimisation cri-
terion was adopted. Any of the sixth- and eighth-order schemes considered in [2] contain
at least one index j ∈ {1, . . . , J} such that xj1 < 0, and hence their applicability to non-
reversible systems is problematic. Our objective is to design CFQM exponential integrators
which do not present this limitation; in doing so, we eventually consider schemes includ-
ing compositions with complex coefficients. Moreover, we study unconventional methods
comprising an additional exponential that involves a commutator which is of higher order
with respect to the time stepsize.

Short notation. For the sake of a compact formulation, instead of

CF
[r]
J (τ) =

J∏

j=1

eτaj1A1(τ)+τaj2A2(τ)+τaj3A3(τ) , Ψ
[r]
J (τ) =

J∏

j=1

exj1α1(τ)+xj2α2(τ)+xj3α3(τ) ,

see (5a)–(5c) and (14), we henceforth write

ψ
[r]
J =

J∏

j=1

(xj1, xj2, xj3) ,

for short. We recall that the coefficients of a sixth-order time-symmetric CFQM exponential
integrator are determined by seven conditions associated with the multi-indices

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2),

see (17); we collect these coefficients in matrix-form.

In order to measure the computational effort needed to achieve a given accuracy 1 , we

1 Given, for example, Φ1 = eτ/2A eτ/2A and Φ2 = e−τ/2A e3τ/2A, it is obvious that formally
Φ1 = Φ2, but from the computational point of view Φ2 u can be more costly since, in general,
e3τ/2A will require to consider more terms in the Krylov space.

17
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introduce, as a reference, the quantity

ρ
(
CF

[r]
J

)
= J × max

j∈{1,...,J}
|aj| . (18)

Thus, in particular, for the method (12) one has

ρ(CF
[4]
2 ) = 1.

Notice that ρ(CF
[r]
J ) is independent of the quadrature nodes used.

4.1 Fourth-order schemes with real coefficients

First, we design favourable fourth-order time-symmetric commutator-free quasi-Magnus
exponential integrators with real coefficients satisfying the positivity condition xj1 > 0 for
any j ∈ {1, . . . , J}, see (14) and (17c). We use the extra degrees of freedom due to the
inclusion of sixth-order Gaussian quadrature nodes and additional exponentials to verify
certain conditions at order five and to minimise the deviation of the remaining fifth-order
conditions without increasing the overall computational cost.

Scheme (r = 4, s = 3, J = 3). For three exponentials, we have not found fourth-order
time-symmetric CFQM exponential integrators that are substantially more efficient than
the optimised scheme proposed in [2, Eq. (43)]. For this reason, we take this scheme as
representative.

Novel scheme (r = 4, s = 3, J = 4). For four exponentials, the time-symmetric
composition reads

ψ
[4]
4 = (x11,−x12, x13) (x21,−x22, x23) (x21, x22, x23) (x11, x12, x13) ,

and thus six coefficients have to be determined.

(i) When solving the order conditions associated with

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 1, 1, 2),

it turns out that the condition related to (1, 2, 2) is automatically satisfied, and so one
ends up with a sixth-order method; this feature was already noticed in [2]. However,
as the resulting scheme does not fulfill the positivity condition, we discard it for
non-reversible systems.

(ii) Alternatively, we solve the order conditions that correspond to

(1), (3), (1, 2), (2, 3), (1, 1, 3)
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in terms of x11; moreover, we minimise the amount by which the remaining order
conditions

(1, 2, 2), (1, 1, 1, 2)

are not satisfied. This yields the solution

x =




3−
√

3
6

−5+
√

3
36

11 (3−
√

3)
360

1
2
√

3
1−
√

3
18

−18+11
√

3
360

x21 −x22 x23

x11 −x12 x13




;

by (15) with (13), the coefficients of the actual scheme read

a =




0.2463347584748155 − 0.0469610812011527 0.0119511881315244

0.0622500005170514 0.2691833034233750 − 0.0427581693456134

a23 a22 a21

a13 a12 a11




.

For this particular scheme, a measure for the computational cost is

ρ
(
CF

[4]
4

)
≈ 1.1547 ,

see (18).

Novel scheme (r = 4, s = 3, J = 5). For five exponentials, where the time-symmetric
composition (14) involves eight coefficients

ψ
[4]
5 = (x11,−x12, x13) (x21,−x22, x23) (x31, 0, x33) (x21, x22, x23) (x11, x12, x13) ,

we first solve the order conditions associated with

(1), (3), (1, 2), (2, 3), (1, 1, 3), (1, 2, 2)

in terms of x11 and x31; then, we minimise the amount by which the conditions related to
(1, 1, 1, 2) at order five and to (1, 1, 1, 1, 1, 2) at order seven are not satisfied. This results
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in the coefficients

x =




0.162183524371561442 − 0.072694239085678008 0.038866376472869818

0.225210983752292371 − 0.049795311423950918 − 0.013159721466654280

x21 0 0.031920023320902257

x21 −x22 x23

x11 −x12 x13




,

a =




0.223402447357583129 − 0.096925652114237345 0.035706729128215657

0.020419732399210346 0.312942460196654240 − 0.108151208843572214

0.106400077736340858 0.012410828279610654 a31

a23 a22 a21

a13 a12 a11




,

and implies

ρ
(
CF

[4]
5

)
≈ 1.12605 .

4.2 Schemes with complex coefficients

Complex coefficients. In the following, we make use of the fact that the order conditions
for higher-order commutator-free quasi-Magnus exponential integrators admit complex so-
lutions such that Re(xj1) > 0 for any j ∈ {1, . . . , J}. Irrespective of their favourable
stability behaviour for non-reversible systems, schemes with complex coefficients generi-
cally involve smaller values and exhibit better accuracy, compared to related schemes with
real coefficients; in certain situations, these benefits compensate the additional compu-
tational cost. Besides, contrary to the real case, the optimisation strategy of considering
additional parameters to design more efficient schemes is usually not needed, since solving
the order conditions with the minimum number of degrees of freedom often yields more
efficient schemes.

Novel scheme (r = 5, s = 3, J = 3). Remarkably, the ten conditions (17b) for order five
can be verified by a composition of three exponentials which only contains nine coefficients.
The resulting scheme is not time-symmetric but exhibits a special symmetry

ψ
[5]
3 = (x∗11,−x∗12, x

∗
13) (x21, x22, x23) (x11, x12, x13) ;
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the coefficients are given by

x =




3
10
− 1

10
i − 37

300
+ 3

100
i 29

600
− 1

200
i

2
5

− 3
50

i − 1
75

x∗11 −x∗12 x∗13



,

a =




145+37
√

15
900

+ 5+3
√

15
300

i −1
45

+ 1
15

i 145−37
√

15
900

+ 5−3
√

15
300

i

− 2
45
−
√

15
50

i 22
45

a∗21

a∗13 a∗12 a∗11



,

which implies

ρ
(
CF

[5]
3

)
= 1.2 .

Novel scheme (r = 6, s = 3, J = 4). As alternative to a sixth-order time-symmetric
scheme with real coefficients that violates the positivity condition, since x21 < 0, we con-
sider the composition

ψ
[6]
4 = (x11,−x12, x13) (x21,−x22, x23) (x21, x22, x23) (x11, x12, x13)

with complex coefficients given by

x =




0.210073786808784558 − 0.091050437198396164 0.038531990496200024

0.289926213191215441 − 0.040603931666806409 0.003134676170466642

Re(x21) −Re(x22) Re(x23)

Re(x11) −Re(x12) Re(x13)




+ i




0.046600721949282283 − 0.016773967556035159 0.005123787068714588

− Im(x11) 0.024540754547582206 − Im(x13)

Im(x21) − Im(x22) Im(x23)

Im(x11) − Im(x12) Im(x13)




,
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a =




0.245985577298764294 − 0.046806149832548937 0.010894359342569201

0.062868370946917202 0.269028372054771159 − 0.041970529810472921

Re(a23) Re(a22) Re(a21)

Re(a13) Re(a12) Re(a11)




+ i




0.038734389227164527 0.012442141491185027 − 0.004575808769067271

− 0.048761268117765233 − Im(a12) 0.014602687659667977

Im(a23) Im(a22) Im(a21)

Im(a13) Im(a12) Im(a11)




,

which implies

ρ
(
CF

[6]
4

)
≈ 1.17458 ;

as well, the complex conjugate of x defines a scheme that verifies the established requisites.

Novel scheme (r = 6, s = 3, J = 5). For a time-symmetric composition of the form

ψ
[6]
5 = (x11,−x12, x13) (x21,−x22, x23) (x31, 0, x33) (x21, x22, x23) (x11, x12, x13) ,

defined by eight coefficients, we can choose one free parameter to fulfill the seven order
conditions (17d); requiring in addition the condition (1, 1, 1, 1, 1, 2) at order seven to be
satisfied, we obtain

x =




0.152650950104799817 − 0.069507847652388833 0.031345110126188879

0.226364275186039762 − 0.052927811715861823 0.010656132772422111

0.241969549418320839 0 − 0.000669152463888648

Re(x21) −Re(x22) Re(x23)

Re(x11) −Re(x12) Re(x13)




+ i




0.030279967163699065 − 0.012546214668641093 0.004976222877716327

0.016537249619936515 0.009492678652216735 − 0.005955196194270531

− 0.093634433567271162 0 0.001957946633108408

Im(x21) − Im(x22) Im(x23)

Im(x11) − Im(x12) Im(x13)




,
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a =




0.194217945883437680 − 0.056316450736459376 0.014749454957821513

0.103849953683651922 0.155323390036559016 − 0.032809068534171175

− 0.002230508212962162 0.246430565844245165 Re(a31)

Re(a23) Re(a22) Re(a21)

Re(a13) Re(a12) Re(a11)




+ i




0.032784503082251144 − 0.002894852021076449 0.000390316102524370

− 0.032105649424546467 0.056238557581740060 − 0.007595658537257078

0.006526488777028029 − 0.106687411121327221 Im(a31)

Im(a23) Im(a22) Im(a21)

Im(a13) Im(a12) Im(a11)




,

which yields
ρ
(
CF

[6]
5

)
= 1.29727 .

It turns out that for this scheme also the condition at order seven related to (1, 1, 1, 1, 3)
is verified.

Scheme (r = 6, s = 3, J = 6). For comparison, we consider an optimised sixth-
order time-symmetric CFQM exponential integrators with real coefficients involving six
exponentials, proposed in [2, Table 3].

4.3 Sixth-order schemes with one commutator

Unconventional schemes. The reason for the high computational cost of interpolatory
Magnus integrators can be traced back to the large number of matrix-vector products that
are required to approximate eΩ[r]

u, since Ω[r](τ) = O(τ). However, if the considered matrix
has a special form say, D = [B1, B2], such that

D = O
(
τ 3
)
,

the evaluation of Du requires only four matrix-vector products and hence the action of
the matrix-exponential can be approximated to a certain accuracy with 4m products

eD u =
m∑

i=0

1
i!
Di u+ O

(
τ 3(m+1)

)
;

thus, in practice, the computational effort of eD u is comparable to that of a single matrix-
exponential

C
(
eD u

)
∼ C

(
eτA(t) u

)
.
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This observation opens the door to consider yet another unconventional possibility to
design sixth-order schemes satisfying the positivity condition by including a single com-
mutator of the form [

d1 α1(τ) + d2 α3(τ), α2(τ)
]

= O
(
τ 3
)

in the composition (14).

Novel scheme involving commutator (r = 6, s = 3, J = 5). Based on our consider-
ations, we study a time-symmetric composition of the form

CF
[6]
5C(τ) =

5∏

j=4

eτaj1A1(τ)+τaj2A2(τ)+τaj3A3(τ) eτ
2 [C1(τ),C2(τ)]

2∏

j=1

eτaj1A1(τ)+τaj2A2(τ)+τaj3A3(τ) ,

ψ
[6]
5,1C = (x11,−x12, x13) (x21,−x22, x23) ([d1α1 + d2α3, α2]) (x21, x22, x23) (x11, x12, x13) ,

involving eight coefficients, required to fulfill the seven order conditions (17d); the free
parameter is chosen such that the condition related with (1, 1, 1, 1, 1, 2) at order seven is
verified. The uniquely determined solution is given by

C1(τ) = e1

(
A1(τ) + A3(τ)

)
+ e2A2(τ) , C2(τ) = A3(τ)− A1(τ) ,

e1 = 0.000210514641318946 , e2 = 0.000355878988200746 ,

x =




0.166598694406302052 − 0.075210207247722093 0.033881593332661472

0.333401305593697947 − 0.063751516929898526 0.007785073334005194

x21 −x22 x23

x11 −x12 x13




,

a =




0.210034604487283585 − 0.059278594478107764 0.015842684397126231

0.108253098901669707 0.281500816700329986 − 0.056352610008301747

a23 a22 a21

a13 a12 a11




.

5 Numerical experiments

In this section, we present numerical results for two representative examples, a diffusion-
advection-reaction equation and a high-dimensional (dissipative) Rosen–Zener model. In
particular, we illustrate the behaviour of the novel schemes

CF
[4]
4 , CF

[4]
5 , CF

[5]
3 , CF

[6]
4 , CF

[6]
5 , CF

[6]
5C ,
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compared to the optimised fourth- and sixth-order commutator-free quasi-Magnus expo-
nential integrators proposed in [2, Eq. (43), Table 3], where

ρ
(
CF

[4]
3

)
= 1.35 , ρ

(
CF

[6]
6

)
≈ 3.40428 . (19)

We note that the sixth-order scheme does not satisfy the positivity condition (5f) result-
ing in poor stability properties for evolution equations of parabolic type and dissipative
quantum systems; besides, as the value of ρ(CF

[6]
6 ) is considerably larger than the corre-

sponding values for the novel schemes, the computational effort for the evaluation of the
matrix-exponential will in general be higher.

5.1 Test equation of parabolic type

Variational equation. Following [16], we consider a nonlinear diffusion-advection-
reaction equation, prescribing a smooth solution U : [0, 1] × [0, T ] → R : (x, t) 7→ U(x, t)

∂tU(x, t) = f2

(
U(x, t)

)
∂xxU(x, t) + f1

(
U(x, t)

)
∂xU(x, t) + f0

(
U(x, t)

)
+ g(x, t) ,

f2(w) = 1
10

(
cos(w) + 11

10

)
, f1(w) = 1

10
w , f0(w) = w

(
w − 1

2

)
,

U(x, t) = e− t sin(2πx) .

(20a)

The associated variational equation is of the form (3)

∂tu(x, t) = α2(x, t) ∂xxu(x, t) + α1(x, t) ∂xu(x, t) + α0(x, t)u(x, t) ,

α2(x, t) = f2

(
U(x, t)

)
, α1(x, t) = f1

(
U(x, t)

)
,

α0(x, t) = f ′2
(
U(x, t)

)
∂xxU(x, t) + f ′1

(
U(x, t)

)
∂xU(x, t) + f ′0

(
U(x, t)

)
.

(20b)

We in particular consider the initial state

u(x, 0) =
(

sin(2πx)
)2
, x ∈ [0, 1] , (20c)

and impose periodic boundary conditions; the solution profile is displayed in Figure 1.

Numerical results. For the space discretisation, we choose M = 100 equidistant
grid points and apply standard symmetric finite differences. The time integration is per-
formed by the schemes introduced in the previous section with time stepsizes 2−` for
` ∈ {1, . . . , 10}; the numerical approximation obtained for the finest time stepsize serves as
reference solution. The global errors at time T = 1 versus the time stepsizes are displayed
in Figure 2; in addition, as a rough estimate of the computational cost, we include the
errors versus the numbers of exponentials. In accordance with the convergence result given
in [16], the nonstiff orders are retained for smaller time stepsizes. The numerical compar-

isons also confirm the poor stability behaviour of the sixth-order scheme CF
[6]
6 , which does

not satisfy the positivity condition.
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Fig. 1. Non-autonomous linear evolution equation (20). Solution profile for t ∈ [0, 1].
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Fig. 2. Time integration of test equation (20) by different commutator-free quasi-Magnus expo-
nential integrators of orders r = 4, 5, 6 and related scheme of order r = 6. First row: Global errors
at time T = 1 versus chosen time stepsizes. Second row: Global errors at time T = 1 versus
number of exponentials.

Effect of space discretisation. For completeness, we include the results obtained for
M = 150, see Figure 3. Here, the instabilities are more severe; otherwise, we observe
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that the spatial error is negligible and that the numerical results are independent of the
considered space discretisation method.

5.2 High-dimensional Rosen–Zener model with dissipation

Non-autonomous linear system. As a further application, we consider a quantum
system that is closely related to the model analysed in [29]. For a Rosen–Zener model with
dissipation, the associated Schrödinger equation in the interaction picture has the following
form 



u′(t) = A(t)u(t) = − iH(t)u(t) , t ∈ (t0, T ) ,

u(t0) = u0 ,
(21a)

see (3). After normalisation, the time-dependent Hamiltonian reads

H(t) = f1(t)σ1 ⊗ I + f2(t)σ2 ⊗R + δD ∈ Cd×d , d = 2 k , (21b)

with identity matrix I ∈ Rk×k, Pauli matrices

σ1 =




0 1

1 0


 , σ2 =




0 − i

i 0


 , (21c)

and dissipation parameter δ > 0 with

R = tridiag
(
1, 0, 1

)
∈ Rk×k , D = − i diag

(
12, 22, . . . , d2

)
∈ Cd×d . (21d)

Evidently, the components of the matrix D increase in modulus for larger dimensions. We
in particular set

f1(t) = V0 cos(ω t)
(

cosh
(
t
T0

))−1
, f2(t) = −V0 sin(ω t)

(
cosh

(
t
T0

))−1
. (21e)
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Fig. 3. Corresponding results for refined spatial grid width.
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Fig. 4. Time integration of (21)–(22) by fourth-order commutator-free quasi-Magnus exponential
integrators involving J = 3, 4, 5 exponentials. Implementation by Taylor series approximation
of order M = 6. Global errors in fundamental matrix solution versus number of matrix-vector
products.

Time integration. In principle, commutator-free quasi-Magnus exponential integra-
tors (5a)–(5c) that do not satisfy the positivity condition (5f) are suitable for the time
integration of a Rosen–Zener model with dissipation (21). However, if the dimension of
the system is large, the dissipative term forces the time stepsize to be sufficiently small, in
order to avoid instabilities; in this situation, the proposed novel schemes involving complex
coefficients provide a favourable alternative.

Global error. In the sequel, we choose t0 = − 4T0 for some T0 > 0 as initial time
and determine numerical approximations uapp(T ) at final time T = 4T0 for different time
stepsizes τ = T−t0

N
; in addition, a reference solution uref(T ) is computed numerically to high

accuracy. In order to obtain numerical results that are independent of the prescribed initial
value, we determine the global errors in the corresponding fundamental matrix solutions

error =
∥∥∥Uapp(T )− Uref(T )

∥∥∥ , uapp(T ) = Uapp(T )u0 , uref(T ) = Uref(T )u0 ;

in all cases, the errors are measured with respect to the Euclidian norm.

Implementation and computational cost. For the considered test problem and the
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Fig. 5. Corresponding results for sixth-order commutator-free quasi-Magnus exponential integra-
tor with real coefficients involving J = 6 exponentials and for related method with real coefficients
involving five exponentials and single commutator of higher order in time stepsize.

chosen parameter regimes, it suffices to use a relatively low order truncated Taylor series
approximation for the computation of the matrix-exponentials to illustrate the performance
of the novel schemes, whereas other approximations to the matrix-exponentials might be
more appropriate for longer times or more challenging models, respectively. In fact, for the
novel schemes, it turned out that the Taylor method is nearly optimal, since polynomials
of degrees four to eight suffice in most cases; contrary, the optimal truncation order for
the schemes proposed in [2], resulting in larger values (19), is usually higher. In order to
measure the computational cost of a commutator-free quasi-Magnus exponential integrator
by an Mth-order Taylor approximation, we count the number of matrix-vector products
per time step

cost
(
T [M ]

(
CF

[r]
J

))
= JM .

Numerical results. In a first test comparing the performance of the novel schemes, we
fix the frequency, the time interval, and the dimension of the system

ω = 5 , T0 = 1 , d = 10 . (22)

The order of the Taylor series approximation is set to M = 6; for the computation of the
action of the matrix-exponential involving the commutator, a second-order Taylor approx-
imation is applied, and a first-order approximation essentially yields the same results. The
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Fig. 6. Corresponding results for fifth- and sixth-order commutator-free quasi-Magnus exponential
integrators with complex coefficients involving J = 3, 4, 5 exponentials.

amplitude of the initial value is set to V0 = 2 or V0 = 1
2
, respectively. Besides, we contrast

the special case of vanishing dissipation to the case δ = 10−1, respectively.

(i) Fourth-order schemes. The numerical results obtained for the optimised CFQM ex-
ponential integrator with three exponentials proposed in [2] and for the novel schemes
with J = 4 and J = 5, respectively, are displayed in Figure 4. We observe that for
medium to high accuracies the novel schemes perform better.

(ii) Sixth-order schemes with real coefficients. The numerical results obtained for the
optimised CFQM exponential integrator with six exponentials proposed in [2] and for
the novel method involving a single commutator are displayed in Figure 5. We observe
that the novel scheme performs better; in addition, in the presence of a dissipative
term, its stability properties are clearly superior.

(iii) Fifth- and sixth-order schemes with complex coefficients. The numerical results ob-
tained for the novel fifth- and sixth-order schemes with complex coefficients are dis-
played in Figure 6. The schemes are appropriate for dissipative quantum systems and
show a good performance, whenever high accuracy is desired, see also Figure 5. In
particular, the non-time-symmetric fifth-order scheme involving three exponentials is
favourable in efficiency.
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Fig. 7. Left: Global errors in fundamental matrix solution versus number of matrix-vector prod-
ucts. Right: Corresponding errors in preservation of norm | ‖Uapp(T )‖ − 1|.

Comparison with standard integrators. Next, we take into account that the order
of accuracy when computing the action of the arising matrix-exponentials on vectors influ-
ences the performance of the novel schemes; in our case, this corresponds to the order of
the Taylor series approximation. In order to illustrate this influence, we consider the novel
schemes

CF
[4]
4 , CF

[5]
3 , CF

[6]
5C ,

which performed well in the previous test, and compare them with the standard sixth-order
interpolatory Magnus integrator involving a single exponential and a standard explicit
sixth-order Runge–Kutta method with seven stages

RK
[6]
7 , M

[6]
13 ;

for the Magnus integrator, each product of the exponent with a vector requires 13 products,
whereas the explicit Runge–Kutta method only requires seven products per time step and
thus is considerably cheaper than all other exponential integrators. Consequently, for our
simple test problem, this would be in favour of the Runge–Kutta method.

Numerical results. We consider the case of vanishing dissipation and in particular
choose

δ = 0 , V0 = 5 , ω = 1
2
, T0 = 5 , d = 20 .

For most accuracies, a Taylor series approximation of order M = 6 for the fourth-order
scheme and M = 8 for the fifth- and 6th-order schemes is nearly optimal. However, due
to the fact that the matrix-exponentials are replaced by polynomial approximations, the
‖Uapp(T )‖ is not exactly preserved.

In Figure 7, we display the global errors as well as the errors in the norm preservation
| ‖Uapp(T )‖ − 1|. We observe that the standard Magnus integrator is not appropriate for
the considered situation; its performance would improve for low dimensional problems,
where matrix-matrix products are feasible. In spite of its very low computational cost, the
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Fig. 8. Global errors in fundamental matrix solution versus number of matrix-vector products.

Comparison of optimised sixth-order scheme CF
[6]
6 (dashed lines), see [2], and novel scheme CF

[5]
3

(solid lines). Implementation by Taylor series approximations of orders M = 4 (circles), M = 6
(squares), and M = 8 (stars).

standard explicit Runge–Kutta method shows a poor performance; this is more manifest
when qualitative properties are of interest or for longer time integrations.

A benefit of (commutator-free quasi-) Magnus integrators is that different underlying
quadrature rules as well as different approximations to the exponentials can be used; their
optimal choice will depend on the considered problem and the sizes of the parameters. In
order to illustrate this, we set

δ = 10−2 , (V0, ω) ∈ {(5, 2), (2, 5)} , T0 = 5 , d = 10 .

In Figure 8, we display the results obtained for different orders of Taylor series approxi-
mations and the optimised sixth-order CFQM exponential integrator proposed in [2] and
for the novel fifth-order scheme with complex coefficients. We conclude that the optimal
choice of Taylor series approximations indeed depends on the accuracy desired and on the
particular problem considered; in all cases, the novel scheme is superior.
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A Appendix

A.1 Magnus integrators in terms of arbitrary quadrature rules

To build methods of order 2K that can easily be used with any quadrature rule of order
2K or higher we introduce the one-dimensional momentum matrices with respect to the
interpolating matrix Ã in (10)

Ã(i) =
∫ τ

2

− τ
2

(
σ
τ

)i
Ã
(
τ
2

+ σ
)

dσ =
K∑

j=1

1− (−1)i+j

(i+ j)2i+j
αj , i = 0, . . . , K − 1 .

For example, at order four and six we have



α1

α2


 =




1 0

0 12






Ã(0)

Ã(1)


 ,




α1

α2

α3




=




9
4

0 −15

0 12 0

−15 0 180







Ã(0)

Ã(1)

Ã(2)



,

and the Magnus expansion can be written in terms of Ã(i). If we take into account that

A(i) =
∫ τ

2

− τ
2

(
σ
τ

)i
A
(
τ
2

+ σ
)

dσ = Ã(i) + O
(
τ 2K+1

)
,

we can safely replace Ã(i) by A(i) in the Magnus integrators and then to use any quadrature

rule of order p ≥ 2K to approximate A(i), i = 0, . . . , K − 1. If {ŵi, ĉi}K̂i=1 correspond to
the weights and nodes of a quadrature rule of order p ≥ 2K, then we have that

τ
K∑

j=1

wj
(
cj − 1

2

)i
︸ ︷︷ ︸

Gi,j

Aj + O
(
τ 2K+1

)
= A(i) = τ

K̂∑

j=1

ŵj
(
ĉj − 1

2

)i
︸ ︷︷ ︸

Qi,j

Âj + O
(
τ 2K+1

)
,

where Âj = A(ĉj τ). This relation allows to change from the Gauss-Legendre quadrature
rule to any other quadrature rule, e.g. we can replace

Ai =
K̂∑

j=1

(
G−1Q

)
i,j
Âj , j = 1, . . . , K ,

that keeps accuracy up to order 2K so, in (5) we can take

Bj(τ) = τ
K̂∑

k=1

âjk Âk(τ)

33



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

with coefficients
â = a

(
G−1Q

)

to obtain another approximation in terms of the evaluations at the new quadrature rule
that is correct up to terms of order τ 2K .
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