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Abstract. In this short note, it is proved the existence of infinite matrices that
not only preserve convergence and limits of sequences but also convert every mem-
ber of some dense vector space consisting, except for zero, of divergent sequences,
into a convergent sequence.

1. Introduction

Summation methods of sequences possess applications in many branches of math-
ematics. If this method is carried out by an infinite matrix A = (aij)i,j≥1 then the
A-transform of a sequence of scalars x = (xn)n≥1 is given by Ax =

(∑∞
j=1 aijxj

)
i≥1

,

provided that every series (Ax)i :=
∑∞

j=1 aijxj (i = 1, 2, . . . ) converges. Hence A
can be viewed as a linear operator A : DA → ω, where ω and DA denote, respec-
tively, the vector space KN of all scalar sequences (K = R or C, N := {1, 2, . . . })
and the subspace of all sequences x ∈ ω for which Ax ∈ ω, i.e., for which every
series (Ax)i (i ∈ N) converges.

Let C denote the set of convergent members of ω. One of the problems in this area
is to determine what matrices A are “tempering” in the sense that they preserve not
only convergence but also the limit or, in other words, what A’s satisfy A−1(C) ⊃ C
and

A- lim
i→∞

:= lim
i→∞

(Ax)i = lim
i→∞

xi

for all x = (xi)i≥1 ∈ C. This problem was completely solved by Toeplitz and Sil-
verman, who proved that a matrix A satisfies the latter properties if and only if the
following three conditions are fulfilled (see for instance [8] or [10, Chap. 1]):

(1) supi∈N
∑∞

j=1 |aij| <∞,

(2) limi→∞
∑∞

j=1 aij = 1, and

(3) limi→∞ aij = 0 for all j ∈ N.
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Such matrices A will be called TS-matrices from now on.
In this vein, one can wonder whether there are tempering matrices satisfying that

they also convert some divergent (= non-convergent, in the whole text) sequence into
a convergent one. As a matter of fact, this kind of matrices does exist. For instance,
the TS-matrix A0 = (aij)i,j≥1 defined by aij = 1/i if 1 ≤ j ≤ i and aij = 0 if
i < j, that is

A0 =


1 0 0 0 0 · · ·
1
2

1
2

0 0 0 · · ·
1
3

1
3

1
3

0 0 · · ·
1
4

1
4

1
4

1
4

0 · · ·
...

...
...

...
...

. . .

 ,

sends the divergent sequence ((−1)n+1)n≥1 to the sequence
(

1+(−1)n+1

2n

)
n≥1

, which

converges to 0 (see [6, pp. 64–65]).

Our purpose in this short note is to show the existence of “highly tempering” ma-
trices, in the sense that they are TS-matrices converting many divergent sequences
into convergent ones. As a result, this will be possible in a strong sense. Specifically,
it will be proved that there are TS-matrices satisfying the last property for all mem-
bers of some dense maximal dimensional vector subspace of ω consisting entirely
(but for 0) of divergent sequences.

2. Divergent sequences that become convergent

In order to establish our result, it is convenient to fix some notation and to recall
a number of facts from functional analysis and set theory (see, e.g., [7] and [9]), and
also from the modern theory of lineability (see [2–4]). The set ω will be endowed
with the topology product, that is, the one of coordenatewise convergence. Then ω
becomes an F-space, that is, a completely metrizable topological vector space. It is
separable because, for instance, the sequences in c00 with entries in Q (the rationals)
or Q + iQ (according to K = R or C, respectively) form a dense countable subset
of ω. Here c00 denotes the family of sequences with finitely many nonzero entries.
A standard application of Baire’s category theorem shows that dim(ω) = c, the
cardinality of the continuum.

A family {Aλ}λ∈Λ of infinite subsets of N is called almost disjoint (see, e.g., [5])
if

Aλ ∩ Aµ is finite whenever λ 6= µ.

The usual procedure to generate such a family is the following (see, e.g., [1]): denote
by (qn)n≥1 an enumeration of the rational numbers. For every irrational α, we
choose a subsequence (qnk

)k≥1 of (qn)n≥1 such that limk→∞ qnk
= α and define
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Aα := (nk)k≥1. By construction, we obtain that {Aα}α∈R\Q is an almost disjoint
uncountable family of subsets of N. A more general result, due to Sierpiński, can be
found in [9, pp. 301–302].

Let X be a vector space and A, B be two subsets of X. Then we say that A
is stronger than B whenever A + B ⊂ A. The following assertion can be found in
[2, Chap. 7].

Lemma 2.1. Suppose that X is a separable infinite dimensional F-space and that
A, B are subsets of X satisfying the following properties:

(i) A is stronger than B.
(ii) A ∩ B = ∅.

(iii) A ∪ {0} contains some vector space whose dimension equals dim(X) (= c).
(iv) B ∪ {0} contains some dense vector subspace of X.

Then there exists a dense c-dimensional vector subspace of X contained, except for
0, in A.

We are now are ready to state our theorem. By a subsequence {nk}k≥1 we mean
a strictly increasing sequence n1 < n2 < · · · < nk < · · · of natural numbers.

Theorem 2.2. Assume that A = (aij)i,j≥1 is an infinite matrix over the scalar field
K satisfying the following properties:

(a) For every j ∈ N, the sequence (aij)i≥1 converges.

(b) There is a subsequence (nk)k≥1 ⊂ N such that, for each one of its subse-
quences (mk)k≥1 ⊂ (nk)k≥1 we have:
(b1) the sequence (aimk

)k≥1 is summable for every i ∈ N, and
(b2) the sequence

(∑∞
k=1 aimk

)
i≥1

converges.

Then there exists a dense c-dimensional vector subspace of ω all of whose nonzero
members diverge but their A-transforms converge.

Proof. Let A denote the family of all divergent sequences x ∈ ω such that Ax is a
well-defined convergent sequence, that is

A := A−1(C) \ C.
For every sequence x = (xn)k≥1 ∈ ω, we denote by σ(x) its support, that is,

σ(x) = {n ∈ N : xn 6= 0}. If we have finitely many sequences x1, x2, . . . , xp ∈ ω \ c00

such that the family of their supports {σ(x1), . . . , σ(xp)} is almost disjoint, then
such sequences are linearly independent: indeed, if (λ1, . . . , λp) ∈ Kp \ {(0, . . . , 0)}
and

∑p
j=1 λjx

j = 0, with xj = (xj,n)n≥1 and, say, λl 6= 0, then we can choose

n0 ∈ σ(xl) \
⋃

j 6=k
j,k=1,...,p

(σ(xj) ∩ σ(xk)), which yields λl xl,n0 = 0, so xl,n0 = 0, a

contradiction. This shows the linear independence.
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Pick an almost disjoint family {Ns}s∈Λ of infinite subsets of N with card(Λ) =
c. Divide each set Ns into two disjoint infinite sets, say Ns = N1s ∪ N2s. Let
n1 < n2 < · · · < nk < · · · be the sequence given by the assumption (a). Consider
the almost disjoint family {(nk)k∈Ns}s∈Λ. For each s ∈ Λ, we define the sequence
us = (usm)m≥1 ∈ ω by

usm =

 1, if m = nk with k ∈ N1s

−1, if m = nk with k ∈ N2s

0, otherwise.

Note that σ(us) = Ns and that us diverges. Fix a finite family {s(1), . . . , s(p)} ⊂
Λ}, with the s(j)’s pairwise different. The preceding paragraph shows that the
sequences us(1), . . . , us(p) are linearly independent. Then the vector space M :=
span({us}s∈Λ) is c-dimensional.

Fix u ∈M\{0}. Then there is (λ1, . . . , λp) ∈ Kp \{(0, . . . , 0)} (with, say, λl 6= 0)
such that u = (um) :=

∑p
j=1 λju

s(j). The set

J :=
⋃
j 6=k

j,k=1,...,p

Ns(j) ∩Ns(k)

being finite, we may consider ν := max J . It is evident that, provided k ∈ Ns(l) ∩
{ν + 1, ν + 2, . . . }, we get unk

= λl (unk
= −λl) if k ∈ N1s(l) (if k ∈ N2s(l), resp.).

To summarize, u contains infinitely many 1’s and infinitely many −1’s, hence it is
divergent.

Now, M ⊂ DA because DA is a vector space and each us ∈ DA: indeed, the ith-
coordinate of Aus is

∑∞
k=1(aimk

− aipk) for certain subsequences (mk), (pk) of (nk)
(namely, (mk) = (nl)l∈N1s , (pk) = (nl)l∈N2s); so the convergence of the latter series is
guaranteed by (b1). By a similar reason, in order to prove that M ⊂ A−1(C), it is
enough to fix s ∈ Λ as before and show that the sequence (

∑∞
k=1(aimk

− aipk))i≥1

converges. This is guaranteed by (b2). Therefore condition (iii) of Lemma 2.1 (with
X := ω) is fulfilled. Conditions (ii) and (iv) are satisfied too if we define B := c00.
Indeed, c00 ⊂ C and c00 is itself a dense vector subspace of ω.

It remains to prove condition (i) of Lemma 2.1. Firstly, observe that c00 ⊂ DA
since c00 is algebraically generated by the basic sequences ej = (δjn)n≥1 (j ∈ N)
and each Aej is simply the jth-column (aij)i≥1 of A. Moreover, these columns
being convergent (due to (a)), we get by linearity that Av converges for all v ∈ c00.
From the facts that A acts linearly and the sum of a convergent sequence and a
divergent one (of two convergent sequences, resp.) diverges (converges, resp.), we
obtain that A+B = (A−1(C) \ C) + c00 ⊂ A, as required. Finally, Lemma 2.1 yields
the conclusion. �
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Notice that every TS-matrix satisfies conditions (a) and (b1) of Theorem 2.2:
indeed, each column tends to 0 and (b1) is fulfilled with any subsequence (nk) ⊂ N
due to the absolute convergence of each series

∑∞
j=1 aij (i ∈ N). Condition (b2) is

satisfied by, for instance, the TS-matrix A0 defined in Section 1 (take nk := k2; this
would give 0 as the limit for all sequences of (b2)), so concluding the existence of
TS-matrices converting a large amount of divergent series in convergent ones.

Finally, one may wonder whether there are TS-matrices converting every divergent
sequence into a convergent one. This is far from be true. As a matter of fact, given a
TS matrix A, there is a sequence x = (xn) ∈ ω with xn = ±1 for all n ∈ N whose
A-transform Ax diverges (see [6, pp. 66–67]).
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Escuela Superior de Tecnoloǵıa y Ciencias Experimentales
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