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Abstract Semi-analytical methods are a common way

of solving non-hertzian contact problems when design-

ing mechanical components. These methods require of

the discretization of the domain into a set of pressure

elements and their accuracy and computational cost are

related to the number of elements in which the domain

is discretized. But, while the accuracy increases as the

pressure element mesh is refined, the computational

cost increases quadratically with the number of pres-

sure elements. So in the great majority of the cases, a

commitment between accuracy and computational cost

must be achieved. In this work, a new approach has

been developed to improve the performance of semi-

analytical methods for solving contact problems. This

approach uses an adaptive mesh refinement strategy,

based on the quadtree decomposition of the domain.
As a result, the computational cost decreases, while the

accuracy of the method remains constant.

Keywords Contact analysis · Non-hertzian contact ·
Adaptive refinement

1 Introduction

The contact stress analysis plays an important role dur-

ing the design process of several mechanical elements
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like roller bearings, gear transmissions, etc. In order to

accomplish this contact analysis, the so-called contact

problem must be solved to obtain the following relevant

information:

(i) The contact area, that involves the determination

of the size, shape, and location of the contact areas

in each one of the contacting bodies.

(ii) The contact stresses, that involves the determina-

tion of the contact pressure distribution on the sur-

face of the bodies and also the stress distribution

underneath the surfaces.

(iii) The deformation of the bodies produced by the con-

tact pressure.

Different approaches have been used to solve the

contact problem when designing mechanical components.
Some of them are numerical methods based on the dis-

cretization of the domain, such as the finite element

method (FEM) [4,2]. Other type of approaches use an-

alytical solutions [3], generally based on Hertz contact

theory [10], to determine the stress and the displace-

ment fields produced by the contact. Compared to the

FEM approach, it can be said that the analytical ap-

proaches are more efficient in terms of computational

cost, but they have severe applicability limitations, since

the assumptions of the Hertz theory must be met. On

the other hand, the FEM approach can overcome these

limitations, but at a much higher computational cost.

Semi-analytical methods (SAMs) [13,8] can be con-

sidered as an intermediate solution to the contact prob-

lem. Many of these methods solve the contact problem

by means of influence coefficients that relate contact

pressures to surface displacements. The influence co-

efficients may have different nature, but in the great

majority of the cases, they are determined using the

Boussinesq-Cerruti analytical solution for point loads
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acting on an elastic half-space [14,12]. This method re-

quires of the discretization of the domain in n pressure

elements and then, the total displacement at any point

is determined by superposition of the displacements

produced by contact pressures acting on each pressure

element of the domain. These methods are potentially

more efficient and faster than the FEM approach and

they allow to overcome some of the limitations of the

analytical approaches in non-hertzian contacts.

For these reasons, SAMs have been commonly used

in machine design. Harnett [7] and de Mul [16] per-

formed bearing contact calculations using SAMs. Jin [9]

and Pascal [18] used these methods to determine con-

tact pressure distribution in wheel/rail contact. Finally,

SAMs have also been used in the field of gear transmis-

sions, where relevant works have been carried out by

Sheveleva [20], Wu [22] and Guilbault [6].

Similarly to the FEM approach, the computational

cost of the SAMs depends on the desired accuracy when

determining the contact pressure distribution and the

true contact area. Kalker [11] demonstrated that the

computational cost of these methods is proportional to

n2 and stated that the accuracy of the SAMs is defined

by the number of pressure elements in which the true

contact area is discretized, specially in the areas close to

the border of the contact. This implies that, in the great

majority of the cases, a commitment between accuracy

and computational cost must be adopted.

When both shape and location of the true contact

area are known in advance, the efficiency of the method

can be maximized by discretizing an area similar to the

true contact area. But when the true contact area is

unknown, it is difficult to optimize the efficiency of the
method, since the whole potential contact area must be

discretized to consider any possible shape and location

of the true contact area. In consequence, there could be

many pressure elements in the discretization out of the

true contact area, what causes a loose in the efficiency

of the method.

These difficulties could be partially overcome using

adaptive mesh refinement strategies. These techniques

have been previously used to improve the efficiency of

the numerical methods based in the discretization of the

domain, specially in FEM procedures [21,17]. However,

no previous use of adaptive refinement has been found

in the literature for the solution of non-hertzian contact

problems through the influence coefficient method.

In this work, the influence coefficient method is used

to define an algorithm to solve non-hertzian contact

problems, which performance is improved by using an

adaptive mesh refinement strategy. The proposed algo-

rithm is based on the quadtree decomposition of the

domain, and the mesh refinement is performed based

on the rate of change of the contact pressure, that is a

discrete estimation of the gradient of pressure. A para-

metric study of the performance of this new approach is

performed and illustrated with point and line contacts.

2 Description of the contact model

In this work, a contact model based on influence co-

efficients has been used to solve the frictionless elastic

contact between two bodies, under the assumption that

both of them can be approached to elastic half-spaces

in the vicinity of the contact. This approach provides a

powerful method to predict the contact pressure distri-

bution that appears when two bodies become in con-

tact. It is based on the superposition of the Boussinesq

solution for a point load applied on an elastic half-space,

and its main ideas are explained below.

Let us consider two bodies 1 and 2 in its undeformed

contact position, contacting at the initial point of con-

tact OL (Fig. 1a). In this point, a common tangent

plane Π is defined, that is assumed to be so close to

the surface of the bodies in the vicinity of the contact

area that the deformation of the surfaces of both bodies

may be referred to it in the linear small strain theory

of elasticity.

A Cartesian coordinate system is defined with origin

at OL, being the local axis ZL normal to the plane Π

and pointing inward the body 2.

Consider a generic point Q in the plane Π, whose

position is defined by the vector r(xL, yL, zL), being

zL = 0. The gap between the two bodies at point Q,

measured along the ZL axis, is denoted by the function

B(r).

The two bodies are pressed together in absence of

friction by the effect of the force FT (Fig. 1b), causing

an approximation between them that is denoted by δ.

This distance can be defined as the approach, in the

direction of the ZL axis, between two reference points

(each one associated to each body) that are placed in

regions of the bodies that are not affected by the local

deformations produced by the contact.

Since penetration is physically inadmissible, a con-

tact pressure distribution p(r) is generated in the con-

tact area A, which produces a normal elastic deflection

ω(r) in the bodies. Both magnitudes are related by the

Boussinesq equation [14]:

ω(r) =

(
1− ν(1)
2πG(1)

+
1− ν(2)
2πG(2)

)∫

A

p(r′)

r′ − r
dA (1)

where r′ is the position vector of dA, ν is the Poisson

coefficient, G is the shear modulus and superscripts 1

and 2 refer to each of the bodies involved in the contact.
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Fig. 1 Contact bodies in (a) undeformed contact position
and (b) deformed contact position

As stated by Kalker [11], the true contact area and

the pressure distribution may be determined minimiz-

ing the total complementary energy V (Eq. 2) under

the condition that contact pressures are positive every-

where.

V =
1

2

∫

A

p(r) · ω(r) · dA+

∫

A

p(r) · [B(r)− δ] · dA (2)

To enable the numerical solution, the potential con-

tact area is discretized into a set of n rectangular pres-

sure elements ∆j (j = 1..n) of area Aj , as shown in

Fig. 2, where the contact pressure on each element is

assumed to be constant (p(r) = pj). The position of the

centroid of each element is defined by vector ri.

Under this discretized domain, Eq. 1 can be rewrit-

ten as:

ω(ri) =

n∑

j=1

pj · fj,i (3)

where fj,i is the influence coefficient of pressure element

∆j over the centroid of element ∆i. If the pressure ele-

ments have a rectangular shape, the magnitude of fj,i
may be determined as described by Johnson [10].

Δi

Plane Π

YL

XL

ZL

OL

ri

pj

Δj

rj

Fig. 2 Discretization of the potential contact area

Finally, if B(r) is assumed to be constant over each

pressure element (B(ri) = Bi), Eq.2 may be rewritten

as:

V =
1

2

n∑

i=1

n∑

j=1

pi pj fj,i Ai +

n∑

i=1

Ai pi [Bi − δ] (4)

For a given value of δ, the solution to the contact

problem can be found, in terms of the contact pres-

sure distribution, by minimizing V under the following

conditions:

∂V

∂pi
=

n∑

j=1

pj fj,i Ai +Ai [Bi − δ] = 0 if pi > 0

∂V

∂pi
=

n∑

j=1

pj fj,i Ai +Ai [Bi − δ] ≥ 0 if pi = 0

(5)

However, in the great majority of the cases the solu-

tion of the contact problem is required for a given value

of FT instead of being required for a given value of δ. In

those cases, an additional force equilibrium constraint

can be added to the minimization problem, which is

given by:

FT =

n∑

j=1

pj ·Aj (6)

In this way, not only the contact pressure distribu-

tion can be calculated for a given value of FT , but also

the corresponding approximation δ between the contact

bodies. The true contact area is defined, within the pre-

cision of the mesh size, by the boundary between the

zero and non-zero pressures. The size of the true con-

tact area A is calculated as the sum of the areas of the

pressure elements Ai where pi > 0.

If any of the contact bodies has finite dimensions,

the assumptions of the proposed contact model are no

longer fulfilled, because that body cannot be approached
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to an elastic half-space, and in consequence, an erro-

neous solution of the contact problem may be obtained.

In these cases, the mirroring method proposed by de

Mul [15] combined with the overcorrection factor pro-

posed by Guilbault [5] can be used to take into account

the influence of the free surfaces over the contact. This

method involves the calculation of additional influence

coefficients of pressure elements which are mirrored re-

spect to the end planes of the bodies, multiplying the

computational cost by (M + 1), being M the number

of finite dimensions taken into account.

3 Quadtree decomposition of the domain

According to Samet [19], the basic concept of the quadtree

is to enclose the domain of the problem Γ into a con-

taining cell, usually a square, which is denoted as the

root of the quadtree, as shown in Fig. 3a. This cell

is, then, subdivided into four sons of the same size

(Fig. 3b), one in each direction: North-West (NW),

Nord-East (NE), South-West (SW) and South-East (SE).

Each one of these cells is subdivided recursively until a

stopping criterion is reached, which may be based upon

the local geometry of the domain or in user-defined pa-

rameters (Fig. 3c and Fig. 3d).

The information related to the quadtree decomposi-

tion of the domain is stored in a hierarchical tree struc-

ture, as shown in Fig 3e. For every cell, references to

its ancestor and sons are stored. This kind of structure

ease the performance of several operations, such as the

neighbour finding in a defined direction, that will pay

an important role in the proposed method.

Each corner of a cell is called vertex. The level of

a cell j in the structure is denoted by Lj , and repre-

sents the number of divisions performed from the root

of the quadtree. According to this definition, Lj is also

related to the relative size of the cell inside the quadtree

structure and the degree of mesh refinement that this

size represents. Given the size of the root cell of the

quadtree, the size of any cell can be determined if its

degree of refinement Lj is known. The root cell of the

quadtree is usually denoted by level 0.

Any cell that is not subdivided anymore is a leaf cell

(displayed in grey in Fig. 3e), while subdivided cells are

referred to as non-leaf cells.

4 Contact algorithm with adaptive refinement

The application of the contact model described in sec-

tion 2 requires the discretization of the potential con-

tact area in a set of n pressure elements ∆j . As usual

in numerical methods based on the discretization of the

Fig. 3 Example of a quadtree decomposition of the domain

domain, the election of the number of pressure elements

in which the domain is divided involves a commitment

between accuracy and computational cost. Kalker [11]

stated that the computational cost of the algorithm is

proportional to n2, that is the number of influence co-

efficients that need to be calculated to solve the contact

problem. He also argued that the accuracy of the model

to describe the true contact area depends on the mesh

refinement, specially in the areas close to the border of

the contact area. Consequently, an improvement of the

accuracy of the results necessarily implies an increment

of the computational cost.

When the size and position of the true contact area

are known in advance, the efficiency of the model can

be easily maximized by discretizing the portion of the

domain that fits the true contact area. But when they

are unknown, the whole potential contact area must be
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discretized to take into account any possible shape and

location of the true contact area. Then, it is usual to

use a uniform mesh for the whole domain [5,22], being

more or less dense depending on the desired accuracy

and on the capabilities of the computer used to solve

the contact problem. In these cases, the efficiency of

the method gets worse as the true contact area gets

smaller compared to the potential contact area. And

this effect is accentuated when the contact bodies have

finite dimensions, since extra operations are required to

take into account the influence of the free surfaces over

the contact area, as described in Ref. [15].

To cope with that problems, a contact algorithm

with adaptive mesh refinement has been developed. This

algorithm uses the quadtree decomposition of the do-

main (described in section 3) as discretization to solve

the contact problem. In this case, the domain to be en-

closed by the root cell of the quadtree is the interference

area (Γ ), which is defined as the boolean intersection of

the projection of the bodies on the plane Π, as shown in

Fig. 4. All the leaf cells of the quadtree are considered

pressure elements.

Body
surface

2

Body
surface

1

Interference
area Γ

XL

ZL

YL

Plane Π

OL

Fig. 4 Determination of the interference area Γ

To maximize the efficiency of the proposed algo-

rithm, it is important to minimize the number of leaf

cells of the quadtree (pressure elements) located outside

of the interference area. This can be achieved by ensur-

ing that the interference area is enclosed by a root cell

of the quadtree coincident with the minimum bound-

ing rectangle (MBR), defined as the minimum rectan-

gle that contains every point in the region [1]. If the

interference area has a predominant direction, multiple

quadtrees may be joined together in that direction, to

avoid undesired aspect ratios of the resulting pressure

elements.

The use of a quadtree data structure offers two in-

teresting features to this algorithm. In first place, the

recursive division of the cells provides a robust local

mesh refinement strategy. In second place, transverse

operations such as neighbor finding algorithms are com-

putationally efficient and easy to implement.

The main routine of the contact algorithm with adap-

tive mesh refinement is shown in Fig. 5. The following

inputs are required by the algorithm:

(i) The geometry and position of the contact surfaces

in undeformed contact position (Fig. 1a).

(ii) The initial point of contact (OL) and a vector defin-

ing the contact normal.

(iii) The magnitude of the contact force (FT ).

(iv) The initial level of uniform mesh density (Lini), that

is a parameter that describes the size of the elements

of the initial uniform pressure element mesh.

The algorithm starts determining the common tan-

gent plane Π, where a local Cartesian coordinate sys-

tem is defined, being the ZL axis normal to the plane

Π (step A1). The boundaries of the contacting bodies

are normally projected onto the plane Π to determine

the interference area Γ (step A2).

The interference area is enclosed by the root cell of

one (or more) quadtree that is determined using a gen-

eral purpose algorithm to find the MBR [1]. The local

Cartesian coordinate system is rotated so the XL and

YL axes become aligned with the principal directions

of the MBR. The root cell of the quadtree is, then,

recursively subdivided until the desired initial level of

uniform mesh density Lini is reached for all the cells

of the quadtree (step A3), obtaining a uniform mesh

of pressure elements. All leaf cells of the quadtree are

considered pressure elements ∆j for the initial iteration

of the algorithm. All the pressure elements are marked

with the flag Λi = TRUE indicating that their proper-

ties (normal gap Bi and influence coefficients fj,i) are

not computed yet.

Then, an iterative process starts whose first step

is the determination of the normal gap Bi for all the

pressure elements (step A4). The influence coefficients

fj,i of those elements are also determined (step A5)

following the equations described by Johnson [10].

Finally, the solution to the contact problem is found

by solving the linear system of equations given by Eq. 5

and Eq. 6 (step A6). As explained by Wu [22], since the

interference area overestimates the true contact area,

negative values of pj will be obtained when solving this

system of equations. In order to satisfy the conditions

given by Eq. 5, an iterative process starts, in which neg-

ative values of pj are set to zero and the corresponding

pressure elements ∆j are discarded for the next iter-
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A. Contact algorithm with adaptive mesh refinement

RETURN

A9. Show results

A7. Call Determine element to split

A8. A7Split elements selected in step

Λi = TRUE?

(i = 1...n)

YES

NO

Λi = TRUE (i = 1...n)

Λi = FALSE (i = 1...n)

A1. Determination of plane Π

A3. Initial uniform discretization of the
interference area in n in pressure elements Δi

A6. Solve the contact problem

A2. Determination of interference area Γ

For pressure elements where

Determine normal gap

Λi

j,if

= TRUE:

Determine influence coefficients

A4. Bi

A5.

B. Determine elements to split

B1. Find neighbours of pressure elementk Δi

i = 1

φ φj,i max>

YES

L = Lj i

YES

NO pi > 0

j = 1

NO

NO

L < Li max
YES

Ki = TRUE

Kj = TRUE j = j + 1

j k£

i = i + 1

RETURN

i n£
YES

NO

YES

NO

NO

K = FALSE (i = 1...n)i

L > Lj i

YES

K

K
i

j

= TRUE

= TRUE

NO YES

Fig. 5 Flowchart of the contact algorithm with adaptive mesh refinement and of the algorithm to determine the elements to
split
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ation. Then the system of equations is solved again,

and this iterative process is repeated until the condi-

tion pj ≥ 0 is satisfied. As a result, the contact pressure

distribution pj and the corresponding approximation

between the contact bodies δ are obtained.

The flag Λi is defined as FALSE for all the elements

present in the discretization, indicating that the prop-

erties of these elements have already been computed.

Then, the algorithm to determine the elements to split

(described in section 4.1) is called (step A7), returning

an array with the indexes of the elements that must

be split. These elements are split (step A8) and the

quadtree data structure is updated with the informa-

tion of the new elements, which are marked with the

flag Λi = TRUE, indicating that their properties are

not computed yet. If no new elements are created, the

iterative process finishes and the contact results are dis-

played (step A9). In contrast, if new elements are cre-

ated, the iterative process starts again (step A4), and

it is repeated until no new elements are created.

The main advantage of this algorithm is that only

the normal gap and the influence coefficients related to

the new elements are computed for each iteration, de-

creasing the global computational cost of the algorithm.

The number of influence coefficients calculated by the

algorithm (Nf ) can be determined afterwards using the

following equation:

Nf =

t∑

i=1

[
n(i) · nnew(i) + nnew(i) · nold(i)

]
(7)

where t is the number of iterations performed by the

algorithm, n(i) is the number of elements in iteration

i, nnew(i) is the number of new elements in iteration i

and nold(i) = n(i) − nnew(i).

4.1 Algorithm to determine the elements to split

An adaptive mesh refinement may be based upon sev-

eral criteria, such as the local geometry of the domain

or the rate of change of physical magnitudes. In a con-

tact problem under the small strain domain, the con-

tact area is usually small (compared to the dimensions

of the contacting bodies) and the gradient of pressures

is usually high in part of the contact area. Moreover,

for a given level of accuracy, the approximation to the

pressure distribution with discrete elements of constant

pressure requires small elements in areas where the gra-

dient is high, but the elements can be larger where the

gradient is low. For this reason, the gradient of the con-

tact pressure is used as criterion for refinement in this

work. But, since the algorithm works with a discretiza-

tion of the domain, the gradient is estimated as the rate

of change of the contact pressure (ϕj,i) between two ad-

jacent elements ∆i, ∆j . Finally, to make the parameter

dimensionless, it is defined as the absolute difference

of the contact pressure of element ∆i and a neighbor-

ing element ∆j divided by the average value of these

pressures:

ϕj,i =
|pj − pi|

pj+pi

2

=
2 |pj − pi|
pj + pi

(8)

The obtained value for ϕj,i is compared to an arbi-

trarily defined value ϕmax (representing the maximum

allowed rate of change of contact pressure between ad-

jacent elements) to decide if the related elements should

be split or not. Therefore, when ϕj,i > ϕmax both pres-

sure elements are marked as candidates to be split.

However, in the border of the contact area the pres-

sure function is not differentiable. Then, according to

Eq. 8, the rate of change between an element ∆i that is

within the contact area (having contact pressure pi >

0) and an adjacent element ∆j that is outside of the

contact area (having no contact pressure, pj = 0) is

ϕj,i = 2 regardless of the value of pi. As the value spec-

ified for ϕmax will usually be lower than 1, it can be

concluded that this refinement strategy based on the

rate of change of the contact pressures will refine the

mesh at the boundary of the contact area endlessly.

In order to limit the number of iterations performed

by the algorithm, an additional stopping criteria based

on the minimum size allowed for a pressure element

is included. As mentioned before, the level Lj that a

pressure element occupies in the quadtree structure is

related to its size, so limiting the former will also limit

the latter. This limit is defined by an user defined pa-

rameter Lmax, referred to as the maximum degree of

mesh refinement.

It is important to point out that ϕmax is a target

value and may not be always reached. If the maxi-

mum degree of mesh refinement Lmax is reached for

all pressure elements before the target value for ϕmax

is achieved, the algorithm will finish. This guarantees

that the maximum degree of mesh refinement will be

reached at the border of the true contact area, so the

precision in which the border of the contact area is de-

termined is defined beforehand by Lmax, regardless of

the value selected for Lini.

Other criteria to perform and stop the mesh refine-

ment could be implemented, but depending on the in-

volved variables it could lead to some inconveniences,

like a higher time of computation or a poorer descrip-

tion of the contact pressure distribution. Since the con-
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tact pressure is the primary result of the approach, hav-

ing a good description of the pressure distribution is

essential to get realistic values of the derived variables

(like displacements). For this reason, a refinement cri-

terion based on pressure is highly recommended here.

The main routine of the algorithm to determine el-

ements to split is shown in Fig. 5. The following input

information is required by the algorithm:

(i) An array containing the contact pressures pj asso-

ciated with every pressure element of the current

discretization.

(ii) The quadtree data structure.

(iii) The maximum degree of mesh refinement (Lmax).

(iv) The maximum allowed rate of change of contact

pressure between adjacent elements (ϕmax).

The algorithm starts defining the flagKi as FALSE

for all the elements present in the current discretization.

The flag Ki indicates when a pressure element must be

split, so in principle, it is assumed that none of the

elements will be divided.

Then, the iterative process starts searching the k

neighbors of every pressure element with a positive as-

sociated contact pressure (step B1). For this purpose,

the algorithm proposed by Samet [19] is used, which is

based in the quadtree data structure. This algorithm

has been conveniently modified to account for several

quadtree structures joined together. By using the quadtree

data structure, the neighbors of a pressure element can

be found although they do not share a vertex. As a re-

sult, this algorithm provides an array that contains the

indexes of the k neighbors of a given pressure element.

The rate of change of the contact pressure ϕj,i be-

tween a pressure element ∆i and any of his neighbors

∆j is obtained using Eq. 8. If ϕj,i is lower than a user

defined value ϕmax, the next neighbor pressure element

∆j+1 is evaluated. In contrast, if the rate of change of

the contact pressure between both elements is greater

than ϕmax, these elements are candidates to be split.

Three different situations arise:

1. Both pressure elements have the same level (Li =

Lj) and its value is lower than Lmax. Then, both

elements are marked to be split, defining Ki = Kj =

TRUE.

2. Both pressure elements have the same level (Li =

Lj) and its value is greater or equal to Lmax. Then,

none of these elements are marked to be split, and

the next neighbor is evaluated.

3. The pressure elements have different level (Li 6=
Lj). If Li < Lj the pressure element ∆i is marked

to be split, defining Ki = TRUE. Otherwise, the

pressure element ∆j is marked to be split, defining

Kj = TRUE.

By using this criteria it is ensured that the level

difference between two adjacent elements does not differ

more than one level in the quadtree structure, avoiding

unbalanced meshes.

The algorithm finishes when all the elements have

been evaluated, returning an array which contains the

indices of those elements where Ki = TRUE.

4.2 Final remarks

The topology of the resulting pressure element mesh,

inside and outside the true contact area, depends on

the configuration of the proposed approach, which is

defined by a unique combination of the three input pa-

rameters:

- The initial level of uniform mesh density, Lini

- The maximum degree of mesh refinement, Lmax

- The maximum allowed rate of change of contact

pressure between adjacent elements, ϕmax

The possible configurations of the approach, and

their effect on the resulting pressure element mesh, are

categorized into three different settings, that are shown

in Tab. 1. Strictly speaking, Lini must be greater than

zero, although it is recommended that Lini ≥ 2, so a

difference between neighbor pressure elements is guar-

anteed for the first iteration of the algorithm, even in

axisymmetric contact problems.

Regarding the computational cost of the proposed

approach, it has been observed that the most time-

consuming steps of the main algorithm are step A5

and step A6.

It can be demonstrated that the computer time in-

vested in step A5 (tA5) is proportional to Nf (Eq. 7),

that is a quadratic function of the number of pressure

elements involved in the solution of the contact prob-

lem. On the other hand, the computer time invested in

step A6 (tA6) can be represented by a cubic function of

the same number of elements. Taking this into account,

it could be expected that tA6 > tA5 when the number

of pressure elements is relatively high. However, as it

is explained by Kalker [11], the higher polynomial co-

efficients of tA5 compared to the ones of tA6 make tA5

much higher than tA6 for the vast majority of real cases.

In fact, in all the studied cases, tA5 represents be-

tween 80% and 95% of the computer time of the ap-

proach, in such a way that the former almost defines

de latter. For this reason, and because tA5 is strictly

related to Nf , the parameter Nf is considered a good

descriptor of the computational cost of the algorithm.
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Table 1 Parameter ranges of the proposed approach.

Setting Parameter ranges
Mesh inside the true

contact area
Mesh outside the true

contact area

1
Lini ≥ Lmax

ϕmax not relevant
Uniform at level

Lini

Uniform at level
Lini

2
Lini < Lmax

ϕmax = 0
Uniform at level

Lmax

Adaptive
refinement

3
Lini < Lmax

ϕmax > 0
Adaptive

refinement
Adaptive

refinement

5 Numerical examples and discussion

The performance of the proposed approach, in terms of

accuracy and computational cost, is illustrated with two

different cases of study. The case of study I corresponds

to a punctual contact between a plane and a spheroidal

indenter. The case of study II corresponds to a line

contact between a plane and a cylindrical indenter. The

dimensions of the indenters are shown in Fig. 6. A total

contact load FT = 40 kN is considered.

(I) (II)

Fig. 6 Cases of study: (I) spheroidal and (II) cylindrical in-
denter

The material of the plane is assumed to have a

Young modulus of 70 GPa and a Poisson coefficient

of 0.35. The material of both indenters (cases I and

II) have a Young modulus of 210 GPa and a Poisson

coefficient of 0.3.

In both cases, the root cell of the quadtree results in

a 20 mm× 20 mm square. The spheroidal indenter has

been considered as an elastic half space. In contrast,

finite dimensions have been considered for the longitu-

dinal direction of the cylindrical indenter.

The accuracy and computational cost of the pro-

posed approach are evaluated by solving the contact

problems defined by cases of study I and II under sev-

eral configurations of the approach, defined by its input

parameters, that are shown in Tab. 2. For the aim of

clarity, these configurations are categorized into several

subgroups, where one of the input parameters is varied

in a given range of values. The subgroups are catego-

rized into three groups, where two input parameters

can be varied. Each group allows for the study of the

Table 3 Summary of reference results

Case of study I II
Method Hertz theory Finite element
pmax 5034.1 MPa 4677.0 MPa
A 11.92 mm2 31.5 mm2

δ 255.18 µm 94.6 µm

performance of the approach under one of the settings

described in Tab. 1:

- Group 1. A uniform mesh is used for the whole do-

main of the contact problem (section 5.1).

- Group 2. Adaptive mesh refinement is performed

outside the true contact area (section 5.2).

- Group 3. Adaptive mesh refinement is performed

both inside and outside the true contact area (sec-

tion 5.3).

In addition, the evolution of the computational cost

with the size of the true contact area is also studied

(section 5.4).

The computational cost of the approach to solve

the contact problem under each configuration defined in

Tab. 2 is measured using Eq. 7. On the other hand, the

accuracy of the obtained solution is evaluated through

the following parameters, that are measured as relative

errors from the reference results shown in Tab. 3:

- Relative error in maximum contact pressure, εR(pmax)

- Relative error in the size of the true contact area,

εR(A)

- Relative error in approximation between bodies, εR(δ)

For case of study I, the reference results are deter-

mined using the analytical solution provided by the

Hertz theory [10]. In constrast, Hertz theory is not

longer applicable for case of study II, since its assump-

tions are not fulfilled because of the finite dimensions of

the indenter in the longitudinal direction of the cylin-

der. For this reason, in this case the reference results

are obtained using a validated finite element model of

the contact problem.

In addition, in those cases where Hertz theory pro-

vides an analytical description of the contact pressure
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Table 2 Configurations used to solve the contact problems defined by cases of study I y II

Group Subgroup Lini Lmax ϕmax Setting evaluated

Group 1
Lini = Lmax

G1.1 5 5
Not

relevant
Setting 1

G1.2 6 6
G1.3 7 7
G1.4 8 8

Group 2
Lini ≤ Lmax

ϕmax = 0

G2.1 2, 3,...,5 5 0.0

Setting 2
G2.2 2, 3,...,6 6 0.0
G2.3 2, 3,...,7 7 0.0
G2.4 2, 3,...,8 8 0.0

Group 3
Lini ≤ Lmax

ϕmax ≥ 0

G3.1 2 5 0.0, 0.2,...,1.0

Setting 3
G3.2 2 6 0.0, 0.2,...,1.0
G3.3 2 7 0.0, 0.2,...,1.0
G3.4 2 8 0.0, 0.2,...,1.0

distribution (e.g. case of study I), an additional param-

eter is studied, that measures the error committed by

the algorithm in the description of the contact pressure

distribution. This parameter is defined as:

ε(p) =

∑n
j=1

∫
Aj
|p(r′)− pj |dA
FT

(9)

where r′ is the position vector of dA, and p(r′) is the

theoretical contact pressure at position r′, determined

from the Hertz theory.

5.1 Performance of the approach when a uniform mesh

is used for the whole domain of the contact problem

When a uniform pressure element mesh is used for the

whole domain of the contact problem, a convergence of
the results obtained by the proposed approach towards

the reference results (Tab. 3) is expected as the pressure

element mesh is refined (by increasing the value selected

for Lini).

The performance of the approach under this situa-

tion is evaluated in this section. To do so, the contact

problems defined by cases of study I and II are solved

using the group 1 of configurations shown in Tab. 2.

An example of the resulting contact area and pressure

element mesh is shown in Fig. 7a.

The evolution of the parameters that define the ac-

curacy of the approach as Lini is varied is shown in

Fig. 8. As expected, it can be observed that as the pres-

sure element mesh is refined, the results obtained by the

proposed approach converge to the reference solution

(i.e. the relative error tends to zero).

On the other hand, when a uniform mesh is used,

the number of pressure elements in the discretization

of the contact problem is n = 4Lini , and the computa-

tional cost of the algorithm is proportional to n2. For

any value of Lini, the computational cost of the ap-

proach to solve the case of study II is always greater

than the computational cost of the approach to solve

the case of study I. This is because the factor of propor-

tionality of the computational cost is 1 when no finite

dimensions are taken into account, and 3 when two fi-

nite dimensions are taken into account, as happens in

case of study II.

5.2 Performance of the approach when adaptive mesh

refinement is performed outside the true contact area

In this section, the performance of the proposed ap-

proach when adaptive refinement is performed outside

the true contact area is studied. To do so, the con-

tact problems defined by cases of study I and II have

been solved using the group 2 of configurations, shown

in Tab. 2. Figure 7b shows an example of the result-
ing contact area and pressure element mesh when these

configurations are used. The visual comparison between

Fig. 7a and Fig. 7b allows to understand the reduction

of pressure elements outside the true contact area under

these configurations.

The results obtained in these cases show that the

accuracy in which the contact problem is solved is in-

dependent of the value selected for Lini. For any given

value of Lmax, the same results as the ones shown in

Fig. 8 (obtained with a uniform pressure element mesh

for the whole domain of the contact problem) have been

obtained, regardless of the value selected for Lini. This

implies that the variations of the pressure element mesh

outside the true contact area does not have any impact

on the solution of the contact problem.

On the other hand, the evolution of the computa-

tional cost of the proposed approach to solve case of

study I is shown in Fig. 9a. It can be observed that

an important reduction of the computational cost is

achieved as the difference between Lmax and Lini is
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Fig. 7 Axisymmetric representation of the resulting contact area and pressure element mesh to solve case of study I under
several configurations of the proposed approach
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increased, specially for those cases where the value se-

lected for Lmax is large.

Although specifying a low value for Lini implies that

more subdivisions of the pressure elements are required

to reach Lmax in all the elements of the true contact

area, the number of influence coefficients that need to

be calculated during the refinement is globally reduced,

and so it is the computational cost of the proposed ap-

proach.

However, the observed reduction of the computa-

tional cost is asymptotic, and once a certain value of

Lini is reached, reducing Lini does not necessarily bring

a significant reduction of the computational cost. Simi-

lar tendencies are observed for case of study II, although

they are not shown for the aim of brevity.

In conclusion, it can be said that when ϕmax = 0,

the computational cost of the proposed approach can be

reduced by maximizing Lmax−Lini, while its accuracy

remains unaffected.

5.3 Performance of the approach when adaptive mesh

refinement is performed both inside and outside the

true contact area.

In this section, the performance of the proposed ap-

proach when adaptive refinement is also performed in-

side the true contact area is studied. To do so, the con-

tact problems defined by cases of study I and II are

solved using the group 3 of configurations shown in

Tab. 2. An example of the resulting pressure element

mesh is shown in Fig. 7c.

The obtained results show that the accuracy of the

approach to predict the size of the true contact area

does not depend on the value selected for ϕmax, since

the same values are obtained regardless of the value se-

lected for this parameter. This is because the accuracy

in which the border of the contact area is computed

depends only on the value selected for Lmax, as stated

in section 4.1. In a similar way, it has been observed

that the variation of the value selected for ϕmax has a

minor impact in the resulting approximation between

bodies δ, since the variation of the relative error εR(δ)

with ϕmax in any subgroup of configurations is lower

than 0.01%.

On the other hand, Fig. 10a shows that the varia-

tion of ϕmax produces changes in the accuracy in which

the maximum contact pressure is calculated, since it de-

pends on the resulting mesh distribution inside the con-

tact area. However, as the value specified for ϕmax gets

lower, the result obtained for maximum contact pres-

sure with the presented algorithm converges towards

the reference solution.

In addition, Fig. 10b shows that the error committed

in the description of the contact pressure distribution is

slightly increased as it does the value selected for ϕmax,

specially in those cases where Lmax is large.

The consequences of the variations of ϕmax over

the contact pressure distribution are better observed in

Fig. 11, where the calculated contact pressure distribu-

tion along the major and minor semiaxes of the contact

ellipsis of case of study I are shown for two representa-

tive configurations of the approach, where only ϕmax is

varied. These contact pressure distributions correspond

to the contact solutions shown in Fig 7. It can be ob-

served that increasing the value selected for ϕmax im-

plies that a coarser mesh is used in those areas where

the contact pressure gradient is small, without a sig-

nificative loss of accuracy when describing the contact

pressure distribution. However, in those cases where the

maximum contact pressure is produced in an area where

the pressure gradient is small, an increase of εR(pmax)

can be expected.

Finally, Fig. 9b shows the evolution of the computa-

tional cost of the algorithm to solve the contact problem

as ϕmax is varied. It can be observed that the com-

putational cost can be reduced by increasing the value

selected for ϕmax. Although this reduction is not as im-

portant as the one achieved by maximizing Lmax−Lini

(Fig. 9a), it still can help to reduce the computational

cost of the approach, specially in those cases where large

values are selected for Lmax.

The results shown in this section show that the vari-

ation of ϕmax has no effects in the solution of the con-

tact problem when any configuration of subgroup G3.1

is used. This is because in this case, in all pressure ele-

ments within the contact area, Lmax is reached before

the target value for ϕmax is achieved.

In conclusion it can be said that specifying a value

of ϕmax > 0 can help to reduce the computational cost

of the approach. The accuracy in which the contact area

is determined is unaffected by the variations of ϕmax,

but a loose of accuracy can be expected for the rest of

the observed parameters.

5.4 Evolution of the computational cost with the size

of the true contact area

When a uniform pressure element mesh is used to solve

a contact problem with the proposed approach, its com-

putational cost only depends of the value selected for

Lini. In contrast, when adaptive refinement of the pres-

sure element mesh is used, the computational cost is

also dependent on the relation between the size of the

true contact area (A) and the total size of the dis-

cretized domain (AT ).
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Fig. 10 Evolution of results with ϕmax when Lini = 2 for case of study I
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Fig. 11 Contact pressure distribution along the major and minor semiaxis of the contact ellipsis obtained by two configurations
of the subgroup G3.4 to solve case of study I.

In this section, the evolution of the computational

cost with the ratio A/AT is studied. For such a purpose,

the case of study I has been solved varying the nominal

value of the total contact force FT , and consequently,

the size of the resulting true contact area is also varied,

as shown in Fig. 12.

In first place, the evolution of the computational

cost when adaptive refinement is only performed out-

side the true contact area is studied. Figure 13a shows

the evolution of the computational cost when the con-

tact problem is solved using the subgroup of configu-

rations G2.4 described in Tab. 2. It can be observed

that the benefit of using adaptive refinement outside

the true contact area, in terms of computational cost,

is greater as FT decreases (the ratio A/AT decreases).

In second place, the evolution of the computational

cost when adaptive refinement is performed both inside

and outside the true contact area is studied. Figure 13b

shows the evolution of the computational cost of the

approach when the contact problem is solved under the

subgroup of configurations G3.4 described in Tab. 2. In

these cases it can be seen that the benefit of using an

adaptive refinement is greater as FT increases (the ratio

A/AT increases).

These results lead to the conclusion that the benefit

of performing adaptive refinement outside the true con-

tact area is increased as its relative size is decreased.

In addition, it has been observed that the benefit of

performing adaptive refinement inside the true contact

area is increased as its relative size is increased.
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Fig. 12 Axisymmetric representation of the resulting contact area for case of study I under several contact loads FT . These
results are obtained using Lini = Lmax = 8.
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Fig. 13 Influence of the size of the true contact area on the computational cost of the proposed approach

6 Conclusions

In this work, a new approach has been developed to

solve non-hertzian contact problems through the in-

fluence coefficient method, that improves the classical

approach by using an adaptive mesh refinement that

is based in a quadtree decomposition of the domain.

Starting from an initial level of uniform mesh density

(defined by the parameter Lini), a mesh refinement is

performed based on two different criteria: (i) the maxi-

mum allowed rate of change of contact pressure between

adjacent elements, defined by the parameter ϕmax, and

(ii) the maximum degree of mesh refinement, defined

by the parameter Lmax.

The configuration of the approach is defined by a

unique combination of values for Lini, Lmax and ϕmax.

Depending on its configuration, the approach performs

a mesh refinement, that can be performed only outside

the true contact area, or both inside and outside the

true contact area.

The proposed approach has been tested through

several study cases and configurations. The obtained

results, in terms of maximum contact pressure, true

contact area and approximation between bodies, enable

us to draw the following conclusions:

- When Lini = Lmax, a uniform mesh is used to solve

the contact problem, regardless of the value selected

for ϕmax. Under this configuration, it can be ob-

served that the obtained results converge towards

the reference solution as Lini is increased. However,

the computational cost increases exponentially.

- When Lini < Lmax and ϕmax = 0, adaptive mesh

refinement is performed outside the true contact

area. Under these circumstances, it can be observed

that the computational cost of the approach is re-

duced by maximizing the ratio Lmax − Lmin, while

the accuracy of the solution remains unaffected.

- In last place, when Lini < Lmax and ϕmax > 0,

adaptive mesh refinement is performed both inside

and outside the true contact area. Under these cir-

cumstances, it can be observed that a further re-

duction of the computational cost can be achieved.

However, although the accuracy in the predicition

of the size of the contact area and approximation

between bodies is not affected by ϕmax, a loss of

accuracy can be expected in the prediction of the

contact pressure distribution as ϕmax is increased.

In terms of computational cost, the benefit of using

adaptive mesh refinement outside the true contact area

is greater as the size of the true contact area decreases.

On the other hand, the benefit of using adaptive refine-
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ment inside the true contact area increases as the size

of the true contact area increases.

In general, it can be said that when using the pro-

posed approach to solve frictionless elastic non-hertzian

contacts, maximizing Lmax−Lini and specifying a low

value for ϕmax can yield an important reduction of the

computational cost without a significant loss of accu-

racy.

Further works on this topic could go directed to-

wards adapting the proposed mesh refinement strat-

egy to solve contact problems in which the friction ef-

fect and the tangential behavior need to be considered.

Apart from that, the investigation of other refinement

criteria or the exploration of other adaptive mesh re-

finement strategies (such as the anisotropic mesh adap-

tation) could be an interesting extension of this work.
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