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Abstract 

This report studies the influence of alkali elements (Na, K) to morphological, structural 

and optoelectronic properties of CIGS ceramic tile solar cell. Several ceramic enamels 

with altered chemical composition in terms of amount of alkali elements have been 

tested and compared. The influences of alkali type, its quantity and transfer mechanism 

have been investigated. The solar cell device has been assembled and characterized.  

The achieved results indicate that alkali elements (Na and K combination) modified the 

surface roughness and its diffusion from the enamel toward the absorber affect to the 

structural and final optoelectronic properties of the device. The alkali doping improve 

the Ga incorporation in the crystal lattice and an increasing in open circuit voltage (Voc) 

values, fill factor (FF) and the device efficiency. Optimal alkali quantities have been 

also determined. The best conversion efficiency is achieved for the cell with 4% wt 

Na2O and 3.2 % wt K2O (Eff. = 3,5 %), which presents an improvement of 30 % in 
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efficiency relative to the standard (STD)  solar cell sample chosen for comparative 

purposes. 
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1. Introduction 

Thin film technology have several potential advantages to Si for PV applications, such 

as better light absorption (10-110 times more efficient), allowing the use of very thin 

absorbers (ranging from 1.5 to 3 µm in contrast to hundred microns for Si) and thus less 

materials use for the fabrication of solar cells (El Chaar, et al. 2011; Park, et al. 2012; 

Todorov, et al. 2006; Todorov, et al. 2013; Jung, et al. 2010; Contreras, et al. 2006; 

Reinhard, et al. 2013). They can easily be integrated on several kinds of substrates as 

soda-lime glass (Zhang, et al. 2014; Furue, et al. 2013; Park, et al. 2011), light weight 

polymers (Reinhard, et al. 2015; Chirilă, et al. 2011; Caballero, et al. 2011), stainless 

steel (Pianezzi, et al. 2012; Liang, et al. 2016; Wuerz, et al. 2012) and ceramics (Fraga, 

et al. 2016; Calvet, et al. 2015; Fraga, et al. 2015; Calvet, et al. 2015). The 

Cu(In,Ga)(S,Se)2 chalcopyrites- based (CIGS) thin film technology had been already 

manufactured and demonstrates higher efficiencies than those achieved by 

polycrystalline Si (with record values of 22.1% and 22.3%, respectively) even their 

lower production costs.  

The addition of Na is an important feature for the CIGS thin film solar cells, since it 

directly affects to the crystallinity, morphology and opto-electronic properties of the PV 

device (Salomé, et al. 2015; Theelen and Daume 2016; Rudmann, et al. 2005; Eid, et al. 

2015). Potential role of sodium (Na) doping for improvement of device efficiency have 

been already investigated, but not in details. So far, it have been reported that Na self-

difused from the glass substrate towards the absorber layer and benefits the cell 

properties. Thus, many authors starts to add it by dropping NaI into the absorber paste 

before or during CIGS growth or as Na post deposition treatment (PDT) after CIGS 

growth  (He, et al. 2016; Hsu, et al. 2015; Moriwaki, et al. 2015; Wuerz, et al. 2011). 

Few studies on alkali elements such as potassium (K) have been also reported (Salomé, 



et al. 2015; Reinhard, et al. 2015; Laemmle, et al. 2015). Althought, there are no clear 

information concerning the alkali effect on the cell proeperties, nighher any 

quantification of how many is needed to improve the photovotaic device.  

Here we are presenting, the influences of alkali elements (Na and K) on the CIGS solar 

cell properties. We have also tried to measure the minimum quantity necessary to 

provide efficiency improvements and to ascertain the doping mechanism comparing 

with device without any dopants. In this report, we are performing a discussion on PV 

ceramic tiles with CIGS absorber. Several ceramic supports have been selected for the 

study based on enamels with varying chemical compositions according the alkali 

content. The ceramic substrate for CIGS solar cells requires adequate adjustment. Thus, 

an introduction of extra layer based on enamel is necessary (Fraga, et al. 2015; Fraga, et 

al. 2016) and also simulates glass surface. The enamel acts as an intermediate barrier 

between Mo back contact coating and the substrate providing chemical stability 

simulating glass surface with no porosity. In addition, the enamel also prevents 

diffusions from the clayey support to the Mo and the absorber CIGS layer and acts as 

Na and K source (Lee, et al. 2015; Becerril-Romero, et al. 2016). The mechanism 

process and quantification of the alkali dopants have been investigated. The solar cells 

have been completed and fully characterised with comparison purposes.  

 

2. Experimental details 

2.1.Ceramic substrate 

Porcelain stoneware tiles were made by traditional industrial ceramic method of 

preparation that includes pressing and further sintering of green bodies in a 

conventional roller kiln (Casasola, et al. 2011). The ceramic bodies were covered by 

different industrial enamels to protect the surface roughness and to provide Na and K 



elements as dopants. Enamels are produced by frits. Frits are prepared from a mixture of 

raw materials (quartz, feldspar, kaolin, etc) and obtained by fusion and rapid cooling 

(Nandi, et al. 2015; Siligardi, et al. 2014). The enamels are formed by a vitreous 

structure (SiO2, B2O3 o P2O5), modifiers network elements (Li, Na, K, Ca, Ba, Mg, Pb, 

Sr o Zn) and stabilized (mainly Al2O3). 

Several samples have been studied in this report. First, standard enamel, referred as 

STD, was selected for comparison reason. The alkali elements in it composition are 

fixed as a minimum quantity necessary to prepare enamel with adequate physical and 

chemical properties. Stand on this, the rest of the samples are composed by different 

amount of alkalis (Table 1). An increasing in Na2O content is proposed for samples A, 

B, C and D (starting from 1% for the STD sample to 2% for A, 2% for B, 4% for C and 

6.64 % for D sample). The difference between samples A and B are in the K2O content 

(Table 1). The K2O is complementary and act as compensating agent to the Na2O in the 

compositions. Thus, various percentages are tested in agreement with the enamel 

requirements (Table 1). In the literature has been reported that higher contain than 8% 

of Na2O could provide cracks and pinholes on the enamel surface (Becerril-Romero, et 

al. 2016), so this amount was selected as maximum alkali (Na2O + K2O) content in this 

work.  

It had to me mentioned that a “ceramic tile without enamel” had been prepared for 

comparative reason to display the role of the vitreous layer. This photovoltaic tile was 

made identically as the others in this paper, but without enamel, so the Mo back contact 

coating was directly deposited to the ceramic substrate followed by the absorber layer 

and the rest of the cell components. 

 

2.2.CIGS synthesis and deposition 



CuIn0.7Ga0.3Se2 solid solution was synthesized using co-precipitation route and further 

deposited by doctor Blade technique according the procedure described in the literature 

(Martí, et al. 2015). In order to remove secondary phases, the absorbers were chemically 

etching with diluted KCN. Immediately, the solar cells were completed depositing CdS 

(60 nm) by chemical bath deposition (CBD) above the absorber layers. The i-ZnO layer 

with 50 nm thickness was deposited by the DC-pulsed sputtering deposition using ZnO 

target and Ar/O2 mixture as process gas. The cells were completed with the deposition 

of a conductive indium tin oxide (ITO). For the optoelectronic characterization 3x3 mm
2
 

cells were scribed using a micro diamond scriber MR200 OEG. 

 

2.3.Characterization techniques 

Enamel composition has been studied by X-Ray Fluorescence (XRF), using a sequential 

spectrometer X-ray scattering wavelengths S4 Pioneer by Bruker with a Rh X-ray tube 

of 4 kW. The enamel surfaces were studied by Atomic Force Microscope (AFM) with a 

JSPM-5200 JEOL Scanning Probe Microscope operating in contact approach. The sheet 

resistance (Rsheet) of the molybdenum back contact layers was measured with the 4-point 

probe method. 

The crystal structure of enamels and the CIGS films were monitored by X-ray 

diffraction (XRD) using a D4 Endeavor, Bruker-AXS equipped with a Cu Kα radiation 

source. Data was collected by step-scanning from 10º to 80º with step size of 0.05º 2θ 

and 1 s counting time per step. Scanning Electron Microscopy (SEM) model JEOL 

7001F attached with an energy dispersive X-ray analysis (EDX) was employed to study 

the morphology and elemental composition of the films. The layer thickness was valued 

from cross-section micrographs. The solar cells were optoelectronically characterized 

through I-V curves. A Sun 3000 class AAA solar simulator from Abet Technology 



(uniform illumination area of 15x15 cm
2
) was used. Measurements were carried out 

after the calibration of the system with a reference Si solar cell under AM 1.5 

illumination and fixing the temperature of the samples to 298 K. All solar cell 

parameters and efficiencies presented refer to the active area (0.087 cm
2
) of the devices. 

  



3. Results  

Chemical analyses of alkali element detection in the enamels composition were 

determined by X-ray fluorescence (XRF). It has to be mentioned, that the enamels are 

commercials products and it exact chemical composition is a confidential issue. Thus, 

data referred only to Na2O and K2O content is exposed and discussed hereafter.  

 

Table 1. Chemical analysis of the enamels performed by XRF. 

Sample reference/ 

alkali content (wt %) 
STD A B C D 

Na2O 1 2 2 4 6.64 

K2O 1 4.2 4.6 3.20 2.20 

Na2O + K2O 2 6.2 6.6 7.2 8.84 

 

The X-ray diffraction spectra of studied enamels are exposed in Figure 1. The STD 

sample is a glass-ceramic type glaze and shows some typical reflections corresponding 

to ZrSiO4 (JCPDS 006-0266) crystalline phase at (2θ): 20.19º (101), 27.09º (200), 

35.73º (112) and 53.55º (312) and SiO2 cristobalite (101) (JCPDS 39-1425) glass 

former at 21.87º. The samples A, B and D show amorphous structure, while C displays 

also slight glass-ceramic nature deduced from the ZrSiO4 existence. 

 



 

Figure 1. XRD data of the enamels. 

 

Detailed surface morphological check is performed by AFM. The images are placed in 

Figure 2. Different surfaces can be observed in all samples. The lowest roughness is 

observed for samples STD and A (Ra=8 and 5 nm respectively), while the highest 

(Ra=41 nm) for sample D. Visually; the smoothest sample is A as less dispersed crystals 

are found on the surface. The trend is that higher amount of alkali elements in the 

enamel increases surface roughness. The Ra of sample C is ̴19 and the grains are 

homogeneously disperse on the surface, while sample D, with the highest Ra values, 

exhibit crystals heterogeneously distributed giving empty and mountains areas.  It is 

challenging to perform adequate relation between the alkalis types present in the 

samples.  



 

Figure 2. AFM images of enamelled ceramic substrates. 

 

Figure 3 shows the surface morphology of the enamels, but observed under SEM 

conditions. The STD sample shows heterogeneous surface with many pinholes and 

some crystallization in agreement with the XRD results (Fig. 1). The samples A, B and 

C have similar and homogeneous appearance with almost any variations. Finally, the 

sample D (with the highest amount of alkali in the composition) clearly differs from the 

others with deteriorated surface. Thus, it can be concluded that the alkali elements affect 

to the layer morphology and the maximum quantity that do not failed the surface 

morphology corresponds to the chemical composition of sample C (4% Na2O and 

3.20% K2O).  

 

 



 

Figure 3. SEM surface images of the enamels. 

 

 

Figure 4. Enamelled ceramic substrate covered with molybdenum as back contact. 

 

Molybdenum as back conductive contact was deposited on previously covered 

enamelled ceramic substrate using DC magnetron sputtering system (Alliance AC450). 

Figure 4 shown digital images of the different covered samples. These results are agreed 

with AFM and SEM images. Also, it can be observed visually the roughness increment 

with the alkali content. The different surface morphology of the ceramic substrates does 



not seem to harm the Mo back contact quality. The sheet conductivity was measured 

and exhibit Rsheet of 0.4 Ω/sq for all samples. 

 

The XRD patterns shown in Figure 5 correspond to the synthesized absorber and 

confirms that the resulting layer contain the Cu(In0,7Ga0,3)Se2 compound (JCPDS 35-

1102). The diffraction peaks labelled with hkl correspond to the CIGS phase, while Mo 

(JCPDS 42-1120) back contact reflections are indicated by stars. Extra peaks were also 

detected at 2θ: 31.82º and 53.07º that could be assigned to MoSe2 phase (JCPDS 20-

0757). Reflections at 2θ = 21.8º, and 35.7º corresponds to SiO2 cristobalite (JCDPS 39-

1425) coming from the enamel.  

Closer view of the CIGS main reflections (Fig.6), e.g. at ̴ 27º for hkl 112, show shifting 

towards higher 2θ degree with increasing of the alkali quantity in the composition (for 

samples B, C and D). These results is associated with contraction of the unit cell that 

could be due to the higher amount of Ga incorporation in the crystal lattice as rGa
3+

 

(0.47Å) ˂ rIn
3+ 

 (0.62Å) tetrahedrally coordinated (Shannon et al., 1976) (Shannon 

1976). So, it can be related that alkali doping favor the Ga insertion in the lattice. The 

sample A seems to be an exception from this declaration as the peaks shifts towards 

lower 2θ. We couldn´t explain this result.  

These outcomes, could be related with the alkali diffusion mechanism discussed in the 

literature as Na distribution along the grain boundaries (Salomé, et al. 2015). Recently, 

have been reported that K could also diffuses toward CIGS (Salomé, et al. 2015) and it 

is possible that other elements from the enamel might have the same behavior. It has 

been debated that K reduce the overall amount of Na and thus allowed a higher Cd 

diffusion into CdS without changing in microstructure of the CIGS layer and this 

increase the cell efficiency (Chirilă, et al. 2011). This statement settles the degree of 



diffusion starting from the support, passing through the back contact and absorber 

coating and finally ending to the buffer layer (CdS).  

 

Figure 5. XRD data of the CIGS films prepared on ceramic tile with applied enamels. 

 

 

Figure 6. Zoomed section of XRD results. 

 



 

Figure 7. Cross section SEM images of CIGS device: STD, A, B, C and D 

 

Figure 7 displays a cross section of the completed solar cells. The solar cells are 

composed by: enamel (bottom layer), followed by Mo coating (̴ 800nm), absorber CIGS 

layer (̴ 1,5µm), CdS buffer (̴ 20nm), zinc oxide (̴ 50 nm) and ITO window layer (̴ 400 

nm). In all cases, dense and well attached homogeneous layers are observed. The lack of 

larger grains could be related with the use of amine compounds during the synthesis 

procedure and with the thermal treatment applied. It is demonstrated that the amine 

binders inhibit the crystal growth (Lee and Yong 2013), an undesirable effect for the 

solar cell morphology and thermal cycle with slopes and retention times is also 

advisable. Here, the amines are used to enhance the reduction process and further CIGS 

formation, an essential step in the proposed synthesis procedure. As a conclusion, it can 

be resumed that after thermal treatment do not appear any morphological differences as 

a function of the alkali content.  

In order to determine the dopant disuse mechanism, an EDX line profile was measured 

only for sample C (Fig. 8), selected as optimum. The results confirmed the presence of 

sodium and potassium in the enamel. The elemental detection corresponding of the rest 

of the layers was also correct. The diffusion of alkali elements from enamel towards the 



CIGS absorber layer was not clear by the performed EDX analysis. This fact could be 

due to overlapping of the spectral lines of Na and Ga, and also K and In. So, the 

obtained result is ambiguous.  

 

Figure 8. EDX line profile of the sample C. 

 

The CIGS devices were optoelectronically characterized through current density-voltage 

(J-V) curves under AM1.5 global spectrum (Fig. 9). The photovoltaic behaviour is 

summarized in Table 2. 

 



 

Figure 9. Current density (mA/cm
2
) vs voltage (V). 

 

Table 2. Summary of the optoelectronic parameters. 

 Jsc (mA/cm
2
) Voc (mV) FF (%) Efficiency (%) 

Ceramic 

without enamel  
5.49 89.5 28.5 0.1 

STD 18.0 319.3 47.4 2.7 

A 16.2 320.8 47.4 2.5 

B 16.2 332.1 47.3 2.6 

C 17.8 344.3 57.2 3.5 

D 18.5 323.9 49.5 3.0 

 

The photovoltaic parameters for the investigated solar cells summarized in Table 2. In 

the Table a “ceramic tile without enamel” data is displays for comparative reason. It 

can be seen that 0.1 % conversion efficiency and inferior electrical parameters are 

obtained. It is evident that the enamel is compulsory cell component for the 

functionality of the photovoltaic tile. The best conversion efficiency is achieved for 

device C (Eff. = 3,5 %), which presents an improvement of 30 % in efficiency 

compared to STD sample. Also, the device performance parameters such as open-

circuit voltage (Voc) and fill factor (FF) are improved, while the short-circuit current 

density (Jsc) is the same in both cases. Sample D present an improvement of 10 % in 

efficiency compared to STD sample and open circuit voltage and fill factor are slightly 

improved. The device B also showed a slight improvement in Eff, Voc and FF 



parameters. Sample A shows very similar to the STD behavior. Only a slight 

improvement in the Voc is observed. As a conclusion, the combination of Na and K 

incorporation in the enamel has positive influence on optoelectronic properties of CIGS 

devices. Other groups also observed a significant increasing in Voc and FF when K was 

used (Jackson, et al. 2014; Adrian Chirilă 2013).   

Solar cell efficiencies and surface roughness were plotted vs % wt alkali concentration 

(Fig. 10). It can be observed the dependence of roughness with the alkali concentration. 

The trend is that efficiency increases with the concentration of alkaline until it reaches a 

maximum efficiency of 3.5% and a roughness of 18.9 nm. From this point, the 

efficiency begins to decrease. 

 

Figure 10. Solar cell efficiencies vs enamel roughness and alkali content. 

  



4. Conclusion 

The effect of alkali doping in the CIGS photovoltaic ceramic tile have been 

investigated. Several ceramic enamels with altered chemical composition in terms of 

amount of alkali metals have been tested and compared. It is demonstrated that enamel 

barrier layer is compulsory cell component for the functionality of the solar cell device. 

It was quantify the optimum amount of alkali (i.e 4% wt Na2O and 3.2 % wt. K2O) that 

provides the best conversion efficiency of 3.5 % for the CIGS solar cell. It was also 

observed that the alkali affect structurally by improving of Ga incorporation in the 

CIGS crystal lattice. The combination of both alkali (Na and K) increase an open-circuit 

voltage (Voc), fill factor (FF) and efficiency of the final device.  
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