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Selection of Evolutionary Multicriteria 
Strategies: Application in Designing a Regional 
Water Restoration Management Plan 

Angel Udías, Andrés Redchuk, Javier Cano, and Lorenzo Galbiati 

Abstract. Sustainability of water resources has become a challenging problem 
worldwide, as the pollution levels of natural water resources (particularly of riv-
ers) have increased drastically in the last decades. Nowadays, there are many 
Waste Water Treatment Plant (WWTP) technologies that provide different levels 
of efficiency in the removal of water pollutants, leading to a great number of com-
binations of different measures (PoM) or strategies. The management problem, 
then, involves finding which of these combinations are efficient, regarding the de-
sired objectives (cost and quality). Therefore, decisions affecting water resources 
require the application of multi-objective optimization techniques which will lead 
to a set of tradeoff solutions, none of which is better or worse than the others, but, 
rather, the final decision must be one particular PoM including representative fea-
tures of the whole set of solutions. Besides, there is not a universally accepted 
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standard way to assess the water quality of a river. In order to consider simultane-
ously all these issues, we present in this work a hydroinformatics management 
tool, designed to help decision makers with the selection of a PoM that satisfies 
the WFD objectives. Our approach combines: 1) a Water Quality Model (WQM), 
devised to simulate the effects of each PoM used to reduce pollution pressures on 
the hydrologic network; 2) a Multi-Objective Evolutionary Algorithm (MOEA), 
used to identify efficient tradeoffs between PoMs’ costs and water quality; and 3) 
visualization of the Pareto optimal set, in order to extract knowledge from optimal 
decisions in a usable form. We have applied our methodology in a real scenario, 
the inner Catalan watersheds with promising results.  

1 Introduction 

Water is a precious resource, often jeopardized by its poor quality. Watersheds are 
constantly subject to increasing threats such as over-exploitation of both surface 
and ground water, and rising levels of contamination from point and diffuse 
sources of pollution [8]. In this context, the development and application of new 
political and management strategies and methodologies, aimed at reversing the 
degradation in water quantity and quality, has become of vital importance. 

Although the European Commission has published a number of guidance doc-
uments to ease the implementation of WFD [5-7], no specific methodology has 
been suggested to evaluate the practical efficiency of PoMs; nor it is mentioned 
how such combinations of measures should be selected in order to achieve the best 
cost-effective strategy. In this regard, the restoration of water quality at watershed 
level (considering the water bodies as management units) is related to a series of 
objectives that should be taken into account when defining the river basin man-
agement plan. 

From a methodological point of view, water resources planning and manage-
ment is a sub-field of natural resource management, in which decisions are partic-
ularly amenable to multiple criteria analysis [23]. Moreover, decisions in water 
management are characterized by multiple objectives and involves several stake-
holders groups with different interests and goals. In this regard, decision makers 
are increasingly looking beyond conventional cost-benefit analysis and looking 
towards techniques of multi-criteria analysis that can handle a multi-objective  
decision environment [12].  

Water Quality Models (WQM) have been widely used to assess and simulate 
the efficiency of PoMs in increasing the availability and quality of water. Al-
though such models are useful for evaluating single “what-if” scenarios and  
testing potential management alternatives, they are unable to solve, in an automa-
tized way, the multi-criteria (cost, water quality, water availability) optimization 
problems involving the selection of the best cost-effective PoM tradeoffs.  

Thus, linear programming [1], non-linear programming [2] and integer program-
ming [25] have been used as alternatives to solve the cost optimization and river  
quality management model for regional wastewater treatment. Some approaches also 
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consider the river flow as a random variable, building a probabilistic model for it 
[10]. However, most of the abovementioned approaches, consider only one or two 
water quality parameters, and, therefore, optimal decisions do not take into account 
the general state of the watershed regarding its contamination levels, the political 
strategies and the socioeconomic status of the region. Besides, the inherent nonlinear-
ity of water quality models, the presence of integer decision variables (implementa-
tion or not of the WWTPs), and the multiple criteria that are considered  
simultaneously, make Multi Objective Evolutionary Algorithms (MOEA) a suitable 
tool to identify tradeoffs between multiple objectives. Over recent years, MOEA [3, 
26] have been applied to obtain the Pareto optimal set of solutions for the multiobjec-
tive management of watershed with promising results in a single execution [15, 22].  

Our proposal to deal with this type of complex problems is a new multicriteria 
decision support methodological tool, devised to help the decision makers with the 
management of water quality during WFD implementation at a catchment scale. 
This methodology results from the integration of various elements: (1) the Qual2k 
water quality model [16]; (2) a new efficient MOEA, designed to efficiently solve 
expensive multiobjective optimization problems [24], and a set of tools for visua-
lization and analysis. Our model can incorporate different approaches in order  
to assess the overall quality of the river, promoting, in this way, new points of 
view between the stakeholders within the negotiation process, and improving the 
robustness of the final decision. 

Our methodology is being currently used in practice. Specifically, it has been 
applied on the inner Catalan watersheds to select a robust cost-efficient PoM, in 
order to achieve the WFD objectives within a reasonable cost. We describe in this 
paper how to identify the problems on each watershed, how our tool is designed to 
help in the decision process, and how the optimum PoM is finally selected. We 
must emphasize that the results provided by our tool have been an essential con-
tribution to the definition of the Catalan hydrological plan to achieve the WFD ob-
jectives by 2015. The PoM provided by our model has been recently approved by 
the Directive Board of the Catalan Water Agency (ACA, by its initials in Span-
ish). It will be endorsed by the Catalan Government [4], together with the River 
Basin Management Plan of Catalonia within the next months, being, then, imple-
mented in practice, using, among others, the indications and conclusions obtained 
by our tool. 

2 Multicritera Strategies Selection (MC-SS) Methodology 

2.1 The Strategies 

The European Directives [5-7] have, as their main motivation, the protection of the 
environment from the adverse effects of waste water discharges. In order to carry 
out these directives, the ACA has developed an urban and industrial WWTP pro-
gram [18, 19], that, in a preliminary study, allowed to identify a number of suitable 
locations to build more than 670 WWTPs for all the Catalan internal catchments. 
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Nowadays, there are many reclamation technologies that provide different lev-
els of efficiency in the removal of water pollutants [20]. For the PoM implementa-
tion analysis, ACA considered seven WWTP technology types, in terms of their 
nutrient removal efficiency, and the investment and operational costs, see Table 1. 
We consider here three different nutrients: ammonium (NH4), nitrate (NO3) and 
phosphates (PO4). Then, in a hypothetic river with n WWTP possible locations, 
we would have 7n different possible combinations of PoMs (strategies). The man-
agement solution involves finding which of these PoM combinations are efficient, 
according to the criteria established by the ACA for the 2010 scenario. 

Table 1 Cost and nutrient removal efficiency of the WWTP technologies considered by ACA 

Treatment 
Type 

Nutrient Effic. 
Remov. (%) Monthly Cost (€/m3) 

XT NH4 NO3 PO4 Investment  Operation 

Primary 0 100 0 222 (fixed) -0.0001 · QP
0.115 

Secondary 30 95 50 2.758 · QD
-0.357 4.645 · QP

0.337 

Nitrif (60%) 60 10 50 3.172 · QD
-0.357 5.342 · QP

-0.337 

Nitrdeni 70% 75 85 50 3.447 · QD
-0.357 5.342 · QP

-0.337 

Nitde70% Pr 75 85 75 3.447 · QD
-0.357 5.574 · QP

-0.337 

Nitde85% Pre 85 90 80 4.137 · QD
-0.357 5.574 · QP

-0.337 

Advanced 95 85 85 4.413 · QD
-0.357 6.604 · QP

-0.337 

 
Here, QD and QP are, respectively, the design and operational capacities of a 

WWTP in m3/day. 

2.2 Problem Formulation 

Optimization problems with multiple conflicting objectives lead to a set of trade-
off solutions, each of which is no better or worse than the others. Most environ-
mental optimization problems are of this nature. In the WFD scenario, achieving a 
solution usually implies determining the best tradeoffs strategies in order to satisfy 
the WFD’s objectives within a reasonable cost.  

To fix ideas, let us assume that we are dealing with an arbitrary optimization 
problem with M objectives, all of them to be maximized. Then, a general multi-
objective problem can be formulated as follows: ݉ܽ݁ݖ݅݉݅ݔ    ௠݂ሺݔሻ, ݉ ൌ 1, 2, … , ሻݔ௝ሺ݃  :݋ݐ ݐ݆ܾܿ݁ݑݏ,ܯ ൒ 0, ݆ ൌ 1, 2, … , ሻݔ௞ሺ݄                       ,ܬ ൌ 0,             ݇ ൌ 1, 2, … , ௜ሺ௅ሻݔ                      ,ܭ ൑ ௜ݔ ൑ ௜ሺ௎ሻݔ ݅ ൌ 1, 2, … , ݊ 

(1) 

where x is the n-vector of decision variables: ݔ ൌ ሺݔଵ, ,ଶݔ … ,  ,௡ሻ். In our caseݔ
x describes the waste water treatment alternatives, corresponding to each WWTP 
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(strategy) planned to be built in the region. The inequality and equality constraints, ݃௝ሺݔሻ, ݆ ൌ 1, … , ,ሻݔand ݄௞ሺ ,ܬ ݇ ൌ 1, … , ݅   ,௜ሺ௎ሻݔ ௜ሺ௅ሻ andݔ together with the bounds ,ܭ ൌ 1, … , ݊, define the decision variable space D. We say that ݂כ ൌ ሺ ଵ݂כ, ଶ݂כ, … , ெ݂כ ሻ is a Pareto optimal objective vector if there is no feasible so-
lution x´, such that ݂ᇱ ൌ ሺ ଵ݂ᇱ, ଶ݂ᇱ, … , ெ݂ᇱ ሻ ൌ ൫ ଵ݂ሺݔᇱሻ, ଶ݂ሺݔᇱሻ, … , ெ݂ሺݔᇱሻ൯, satisfying ௠݂כ ൑ ௠݂ᇱ  for each ݉ ൌ 1, 2, … , כand ௝݂ ,ܯ ൏ ௝݂ᇱ for at least one index j in1 ൑ ݆ ൑ܯ. Each decision variable ݔ௜, ݅ ൌ 1, … , ݊ is actually a discrete variable with 7 pos-
sible values, see Table 1. In some cases, and according to the physicochemical 
characteristics of the stretches, a constraint for the minimum purification treatment 
must be added. ݔ௜ ൐ ௜,௠௜௡ݔ ݅׊ ൌ 1, … , ݊ (2) 

In our specific application to the Catalan inner watersheds, we shall consider 
two objective functions, the first one having to do with economic factors, the  
second one dealing with quality aspects of the water.  

2.3 The Cost Objective Function 

The cost of each strategy corresponds to the sum of the investments in all the 
catchment WWTP, and the operation costs. The costs for each WWTP facility de-
pend on the flow rate and the type of treatment plant, see Table 1. Then, the first 
objective function has the form  

݂ଵ ൌ ෍ ൫ݐݏ݋ܥܫ௝ ൅ ௝൯ே௨௠ௐௐ்௉ݐݏ݋ܥܱ
௝ୀଵ  (3) 

where j is the WWTP index and NumWWTP is the total number of WWTPs. 
Besides, ݐݏ݋ܥܫ௝ ൌ ݂ሺܳ஽, ௝ݐݏ݋ܥܱ ௝ሻ andݔ ൌ ݂ሺܳ௉,  ௝ሻ represent the investmentݔ
needed to build the j-th WWTP (monthly cost with a 15-year payback period), and 
the monthly operating costs, respectively.  

2.4 The Water Quality Objective Function 

The quality criteria considered are the relative concentration of NH4, NO3 and 
PO4, according to the WFD limits. For a given river stretch, and using the WFD 
reference, we can evaluate the water quality according to:  ߜ௦௞ ൌ ሺܹܮܦܨ௦௞ െ ௦௞ܮܦܨ௦௞ሻܹܥܣ  (4) 

where ܹܮܦܨ௦௞  ௦௞ represent, respectively, the WFD concentrationߜ ௦௞ andܥܣ ,
limits, the current level of concentration, and the relative concentration of the k-th 
contaminant (݇ =2,3,4 stand for NH4, NO3 and PO4, respectively) in the s-th 
stretch, according to the WFD’s limits.  
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As the global river water quality depends on the quality of all the river stretches, each 
quality objective function (݂ଶ is the NH4 river quality, ݂ଷ is the NO3 river quality 
and ݂ସ is the PO4 river quality) must be computed based on the values of ߜ௦௞ for 
all the river sections. There are many possible ways (metrics) to do this [9], possi-
bly leading to significantly different results, but saying that one particular solution 
is better than the others is a very subjective and subtle issue. To avoid this contro-
versy, it is possible to run our methodology using different metrics, in order to as-
sess the objective functions of global quality of a river with respect to the three 
contaminants. The three metrics considered are described below: 

1. Utilitarian  
This metric considers all river sections as equivalent, and the objective is, then, 

to minimize the average of ߜ௦௞ in all river sections. A usual formulation is [17]  

min ௨݂௞ ൌ ݏ1݊ ෍ ௦௞௡௦ߜ
௦ୀଵ ݇ ൌ 2,3,4 (5) 

where ns is the number of stretches. 

2. Egalitarian (Smorodinsky-Kalai) 
Another possibility is to seek an equitable strategy that tries to reduce the dif-

ferences on quality in all river sections. To achieve an egalitarian solution we 
minimize the Smorondinsky-Kalai objective function [13] min ௘݂௞ ൌ ௞ߤ ݇ ൌ 2,3,4 (6) 

such that ߜ௦௞ ൑ ݇   ௞ߤ ൌ 2,3,4; ݏ׊ א ݏ݊ ௦௞ߜ ൑ ߤ ݏ׊ א   ݏ݊

3. Separate Utilities (fulfilling and unfulfilling of WFD) 
This quality function has two different approaches, depending on whether it 

measures the success or failure in the achievement of a good ecological status. 
Positive values of the metric mean that the WFD objectives are accomplished for 
every basin stretch. Otherwise, a negative value means that the WFD objectives 
are exceeded by at least one river stretch [24].  

min ௦݂௨௞ ൌ
۔ۖەۖ
ۓ ݏ1݊ ෍ ௦௞ߜ ௦௞ߜ׊ ൒ 0௡௦

௦ୀଵ1݊݅ݏ ෍ ௦௞ߜ ௦௞ߜ׊ ൏ 0௡௦௜
௦ୀଵ

   ݇ ൌ 2,3,4 (7) 

where nsi is the number of stretches that do not satisfy the WFD limits 
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2.5 The MOEA 

As we have already mentioned, evolutionary computation methods are becoming 
increasingly popular for the resolution of environmental problems. Especially 
suitable are those MOEAs for which conventional techniques are not easily 
adapted, including nonconvex, mixed integer, non-linear, constrained and/or noisy 
cost functions. In this regard, a MOEA is a heuristic search algorithm based on a 
population of strings (called chromosomes) that mimic the process of natural evo-
lution. This population encodes candidate solutions to an optimization problem, 
called individuals, and evolves toward better solutions.  

The MOEA developed in this work to optimize (select) WWTP tradeoff strate-
gies, applies binary gray encoding [11] for each chromosome (optimization 
string). The length of each optimization string corresponds to a total number of 
genes, one for each facility. Each gene uses 3 bits to encode the 7 sewage treat-
ment levels for each plant. After decoding the chromosome in treatment levels for 
each WWTP, the water quality in each stretch is forecasted by the water quality 
model. The associated goodness-of-fit value is assessed for each one of the cost 
and quality equations describe above.  

The MOEA algorithm applies the usual procedures of selection (tournament), 
crossover (multi-point) and mutation (uniform) to generate the new population. 
Efficient convergence is achieved with small populations (10 chromosomes per 
generation) and mutation rates of 3%. For more details about the convergence of 
the algorithm see [24]. This MOEA algorithm also introduces elitism by maintain-
ing an external population [3, 26]. In each generation, the new solutions belonging 
to the internal population are copied to the external population when they are not 
Pareto-dominated by any solution of this external population. If solutions for the 
external population are dominated by some of the new solutions, these solutions 
are deleted from the external population. The external elitist population is simulta-
neously maintained in order to preserve the best solutions found so far, and to in-
corporate part of the information in the main population by means of crossover. 
Elitism is also included in this recombination process, by selecting each of the 
parents through a fight (tournament) between two randomly-selected chromo-
somes from the external Pareto set (according to a density criterion), or from the 
population set (according to their ranking determined through a dominance crite-
rion). The stopping criterion applies when no new non-dominant chromosomes 
appear in a significant number of generations 

2.6 The Water Quality Model 

Water Quality Models (WQM) aim at describing the spatial and temporal evolu-
tion of the contaminants and constituents characterizing a river flow. Many highly 
reliable simulation models are available today to evaluate the behaviour of physi-
cal systems, such as water bodies, with reasonable computational requirements 
[21]. In this work, we have used Qual2kw [16], as it represents the state of the art 
of the last two decades of advances in river water quality modelling and numerical 
computations. 
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A range of inputs is used in the water quality simulations, including topogra-
phy, climate and predicted pressures for 2015, when the objectives of the Water 
Framework Directives will be effective. Specifically, the main inputs of the WQM 
are: the head water in all tributaries, point sources (urban, industrial, WWTP; etc), 
water extractions, diffuse sources of pollution, as well as physicochemical and bi-
ological parameters for waste, hydraulics (morphological elements, Manning’s 
roughness coefficient, flow curve, flow). The inflows for the proposed WWTPs 
are the urban and industrials effluents; based on the information from their dis-
charges in the last 10 years, see [24] for more details. 

2.7 Application of the MC-SS  

Although our methodology has been actually applied to all Catalan internal water-
sheds, the results presented in this work correspond to its application in the Muga 
basin. The Muga River has its source in the Eastern Pyrenees, at an approximate 
height of 1200 meters, flowing towards the Mediterranean Sea, laying its basin en-
tirely within the region of Catalonia, Spain. The Muga River has its headwaters 
located in mountainous areas, whereas the middle and lower parts of the wa-
tershed are subject to Mediterranean climate, implying higher hydrological varia-
bility in these last sections. Its main channel has a total length of 64.7 km, draining 
a watershed of 759 km2 (2.3% of the total area of Catalonia). It receives an annual 
average of 177 Hm3 and its runoff coefficient is 0.285.  

In order to apply the Qual2kw model to a river network, the river system must 
be divided into river elements, having roughly the same hydraulic characteristics. 
In each cell, the model computes the major interactions between up to 16 state va-
riables and their values for static and dynamic conditions. In this case, the total 
length of the main channel of the Muga River, and its 12 tributaries is 227 km, 
which were divided into 54 elements of approximately 5 km length. 

For this problem, the ACA considered 41 WWTP locations, each with 7 se-
wage treatment levels. Each gene uses 3 bits to encode these 7 possible alterna-
tives for the decision variables. Therefore, in the Muga watershed, the number of 
possible WWTP locations are 41, with a chromosome length of 41 ൈ 3 ൌ 123 
bits. Then, there are 7ସଵ ൎ 4.4 ൈ 10ଷସ different possible PoM combinations (strat-
egies). The management solution involves finding which of these PoM combina-
tions is efficient according to the ACA estimated conditions for the 2015 scenario, 
and the goal is to find out which is the most efficient one, according to all the  
criteria.  

The integrated tool (MC-SS) was executed considering simultaneously from 2 
to 4 objectives (cost-ammonium-nitrates-phosphates). Runs of the algorithm were 
performed with different MOEA parameter configuration, using the three quality 
metrics described above, obtaining, in this way, different Pareto fronts for each 
one. In order to analyse the convergence process, we consider a MOEA stopping 
criterion corresponding to a maximum number of WQM evaluations, in this case 10000 
evaluations. The number of points obtained for each Pareto front depends on the 
metric and objectives used. 
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3 Results 

In order to make the proposed methodology useful in the decisions making 
process, ensuring the achievement of the objectives of the WFD, it is required to 
work in an efficient manner. In other words, the algorithm must converge close 
enough to the Pareto solutions in a reasonable number of evaluations of the objec-
tive function, making the problem amenable to being solved by low-cost comput-
ers. This is especially important in this kind of problems, where the objective 
function evaluation has a significant computational cost (for some large sized ba-
sins, each evaluation may take up to 15 minutes). 

The success of our approach was achieved thanks to several improvements on 
the “standard” multi objective evolutionary techniques, which speeded up the 
convergence. Specifically, the main improvements in the performance of the algo-
rithm are: (1) the steady state evolution (small population size); and (2) the elitism 
that allows to reach a good convergence for the Muga basin in less than 6000 
evaluations of the WQM, considering simultaneously two objectives. In this re-
gard, a significant increase in the size of the optimization problem only produced a 
slight increase in the number of evaluations required for our MOEA to reach con-
vergence. On the other hand, an increase in the number of criteria (e.g., from two 
to four) required more than 10.000 evaluations to achieve convergence. Further 
improvement on the convergence speed of the MOEA (up to 50%) was achieved 
by choosing adequate initial strategies from the Pareto fronts obtained in previous 
executions (e.g., carried out with different metrics or less objectives), rather than 
generating them in a random way. More details about the convergence process and 
the configuration of the MOEA parameters can be found on [24]. 

The use of either water quality metric had little influence on the algorithm con-
vergence. In this regard, we should mention that the egalitarian metric converged 
slightly faster, because it encompassed a lower number of efficient strategies than 
the two others, the reason being that only the WWTP located close to those 
stretches with the worst river quality had influence on the value taken by the egali-
tarian metric. On the contrary, changes in most of the WWTP had influence in the 
value taken by the other two metrics (utilitarian and separate utilities). This fact 
suggests us that one of the main drawbacks of the egalitarian metric is that, by us-
ing it, it is difficult to know the general status of the river, because it only informs 
us about the state of the worst quality stretch.  

Once the Pareto frontier is delineated, it must be analyzed. However, special 
techniques should be used when there are more than two criteria. To accomplish 
that, we have used Interactive Decision Maps (IDM), see [14], to simultaneously 
study tradeoffs for up to 7 criteria. The number of efficient strategies provided by 
the MOEAhen 4 criteria are simultaneously taken into account is quite high, easily 
exceeding several hundreds. However, by using the IDM, this difficult shape anal-
ysis and comparison of simultaneous tradeoffs becomes quite simple. Specifically, 
the stakeholders performed a preliminary strategy selection, with the IDM visuali-
zation tools, and then translated it into the 2D representation. In the 2D diagram, 
see Figure 1, the Y axis represents the cost of the strategies, whereas the X axis 
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represents the water quality for each indicator according to (5), (6) or (7). When 
using separate utilities or egalitarian metrics, the value 0X =  corresponds exactly 
to meeting the WFD objective. The points falling on the left side of the graphs are 
strategies that do not satisfy WFD goals, and the points on the right side of the 
graphs do meet them. A positive value indicates good quality in the defined objec-
tive. However, applying the utilitarian metric has the inconvenient that it is diffi-
cult to know, from the examination of the Pareto frontier, if one specific strategy 
meets the limits of the WFD, because the value of the stretches of poor quality 
may be compensated for the value of the stretches of good quality and vice versa.  

 

 

Fig. 1 Pareto fronts based on an optimization using only two objectives (cost and ammonia) 
for the tree quality metrics (separate utilities, utilitarian, and egalitarian) 

The Pareto set is the basic knowledge resource from which the stakeholder will 
base the decision process, so special care should be taken in order to represent it in 
an intelligible, yet rigorous, manner. Exploration of the Pareto frontier helps the 
decision makers to understand the criteria tradeoffs, and to identify, in a direct 
way, a preferred criterion point.  

Additional information can be obtained from the slope of these criteria quality 
curves (the Pareto front curves). They indicate the sensitivity of the water quality 
to the water treatment actions, i.e., they provide the cost increase required to 
achieve a unitary increase on the water quality for each strategy. Figure 1 shows 
the three Pareto fronts obtained for the same problem with each of the metrics dis-
cussed in this paper, considering only the cost and ammonium objectives. As we 
can observe, the use of one or another metric to calculate the overall river quality 
has a great influence on the Pareto front shape.  
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If we analyze Figure 1 in more detail, we see that, for the egalitarian metric, 
when we increase the budget in most intensive sewage PoMs by 40%, this reduces 
the WFD ammonium breach in the worst stretch of the river from -700% to -30%. 
Regarding the separate utilities Pareto metric, a similar increase on the depuration 
budget of around 50% lead to a drastic improvement on the average quality of 
those stretches not fulfilling the WFD limits by more than 100%. After such in-
vestment, the average river quality was very close to the WFD acceptance limits, 
and, probably, many of the river sections that, separately, did not satisfy the WFD, 
now they do. We can also observe that, even for the most intensive sewage PoM, 
it is impossible to achieve the WFD’s objective satisfactorily for the ammonium 
criteria in this catchment. So, in this case, it would be more reasonable to select a 
strategy with an associated budget close to 270,000 €/month, because spending 

more money does not lead to a significant improvement on the water quality re-
sults. Finally, if we examine the curve corresponding to the utilitarian metric, we 
see that positive values are obtained for investments higher than 220,000 €/month. 

Nevertheless, we must keep in mind that the utilitarian metric only indicates 
whether the average quality of the river is good or not, but, given a positive over-
all value, it does not ensure a fulfilment of the WFD in all the stretches. 

We have just discussed, the benefits and drawbacks of each metric used, with 
respect to the visual analysis of the Pareto front. But it is important to note that we 
must also take into account that the MOEA finds different strategies to be Pareto 
optimal depending on the metric considered. The utilitarian solution tends to save 
costs on those WWTP related to river stretches in which depurating is very expen-
sive and vice versa, and, then, it weights both contributions. On the contrary, the 
egalitarian metric will tend to invest almost all the budget on those WWTP highly 
related to the most contaminated stretches, leaving the rest of the river unaffected. 
The separate utilities metric partially solves this problem, thanks to the fact that, if 
there are several stretches violating the WFD’s objectives, this metric takes all of 
them into account (and not only the worst one). Otherwise, when all the stretches 
fulfill the requirements, this metric is equivalent to the utilitarian one.  

In this regard, we must conclude that there is not a perfect metric to help us in 
the decision making process. Rather, each one can be consider better or worse 
than the others depending on the (subjective) point of view or the interests of each 
stakeholder. The main advantage of providing decision makers with different re-
sults obtained using various metrics is to reduce, as much as possible, the inherent 
subjectivity of the decision process. This is achieved by providing the stakeholder 
with efficient solutions, attained using different metrics to assess the overall quali-
ty of river waters and regarding the concentration of each pollutant considered. 

By performing a deeper analysis of the decision variables (WWTP) correspond-
ing to all the Pareto optimal solutions obtained for each metric, we can reduce fur-
ther the subjectivity of the decision process. Specifically, for the basin analyzed in 
this work, we observe that for 14 of the 41 WWTPs implemented, the treatment 
level is the same for all the strategies and for any of the fronts obtained. This al-
lows us to fix these 14 values prior to make the final decision, facilitating, in this 
way, the stakeholders’ decision process.  
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Summarizing, when a final decision is to be found, each stakeholder partici-
pates in a decision process that begins by pointing out which regions of the Pareto 
frontier he or she has specific preferences on. Then, the decision process is fol-
lowed by the negotiation phase, in which all the stakeholders reach an agreement 
on some strategies or regions of common interest. Before making the final deci-
sion, each of these strategies or regions must be examined in detail.  

In this regard, for one selected strategy and pollutant indicator, the use of geo-
graphical information systems (GIS) to display, or summarize the information that 
is automatically generated by our tool might be also of great help.  

For a single criterion, it is easier (and more interesting from a stakeholder’s 
point of view) to simultaneously compare results between different strategies, for 
all months and stretches. In our case, from all the solutions of the Pareto front, we 
have preselected three strategies (PoM). The first one corresponds to low-
intensive and cheap treatments, the second one is related to very intensive  
treatments (actually, the most expensive ones), and the third one is an intermediate 
solution between the first two ones. In Figure 2 we have analyzed the monthly re-
sults for the three strategies corresponding to the ammonium level at each stretch 
through a box plot. We can observe how the quality improves as time varies in all 
stretches but one, fulfilling, in this way, the WFD requirements.  

 

 

Fig. 2 Box plot for the levels of ammonium in the stretches, depending on the month and 
the applied purification treatment (Min, Opt, Max) (Ter basin) 
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4 Summary and Conclusions 

A new integrative evolutionary Multi Criteria Strategies Selection (MC-SS) me-
thodology is proposed to help in the selection of the most efficient PoMs for water 
resources conflicting objectives. It has been applied in the context of the imple-
mentation of the WFD in Catalonia. Based on this methodology, a hydroinformat-
ic tool has been developed to assist in the management of water quality at a cat-
chment scale. 

The tool is an effective combination of a WQM, which estimates monthly ru-
noff and pollutant loads in the catchments, and the MC-SS algorithm, whose main 
component is a multicriteria genetic algorithm especially designed and configured 
to find the Pareto optimal set of PoM (strategies). It is able to incorporate conflict-
ing elements into the analysis, such as environmental objectives and economical 
issues. Thanks to several improvements on “standard” techniques, which have 
speeded up the convergence of the MOEA, the approach enables the delineation of 
non-dominated Pareto optimal solutions in a number of WQM executions that are 
small enough to be performed on a standard PC, in a timescale that meets the re-
quirements of the Catalan Water Agency (ACA).  

We have carried out a case study, taking waste water systems into account, re-
sulting in seven different cleaning technology alternatives, which were also mod-
elled in terms of cost and treatment for each pollutant. Therefore, and in addition 
to the cost criteria (operating and investment cost), three quality criteria were con-
sidered simultaneously: ammonium, nitrate and phosphate. The inherent nonli-
nearity of the WQM, the integer character of the decision variables (WWTP) and 
the four criteria simultaneously considered, make MOEA methods more efficient 
than conventional optimization methods in identifying tradeoffs among multiple 
objectives. 

The selection process of PoMs through which accomplishing the WFD objec-
tives, is a participative process. Then, our methodology has an added value, as it 
gets suitably integrated within the negotiation and decision processes that the 
stakeholders must carry out. On the other hand, the stakeholders themselves can 
suggest new different metrics to assess the global quality of the river water, ob-
taining new Pareto fronts upon running of the MC-SS. This fact facilitates the 
stakeholders with a greater degree of intervention on the participation process. 
Nevertheless, we must keep in mind that there is no perfect metric to help us in the 
decision making process on the whole basin, although the availability of various 
fronts obtained from different metrics can be of great help in the decision-making 
process. 

The developed methodology has been shown to be an important tool to: (1) 
evaluate the effectiveness of the actions that are being currently undertaken to im-
prove water quality; and (2) to provide decision makers with the capacity to ex-
plore the multi-objective nature of problems, and to discover tradeoffs amongst 
objectives avoiding subjectivities as much as possible. We have found this feature 
to be very helpful, especially during the negotiation process prior to the achieve-
ment of the final decision. The main factors intended to guarantee the success on 
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the implementation of the system have been: (1) users’ involvement; (2) develop-
ment of several evolutionary prototypes; and (3) design of a specific user-friendly 
interface adopted for multicriteria applications and a variety of implemented mod-
els and decision support tools. 

This tool has been a key factor in the design of part of the PoMs which shall be 
implemented to achieve the WFD objectives by 2015 in Catalonia. For the Catalan 
catchments, the model and tools developed have successfully identified the prob-
lems in each watershed, for all the WFD criteria considered in this study. Indeed, 
application of the model has required a reasonably small number of Qual2k execu-
tions, keeping the computational time requirements within reasonable limits. 
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