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Abstract

Bisphosphonates are nonhydrolysable pyrophosphate analogues that prevent bone loss in several types of cancer. However, the mechanisms of
anticancer action of bisphosphonates are not completely known. We have previously shown that nitrogen-containing bisphosphonates directly
inhibit alkaline phosphatase of UMR106 rat osteosarcoma cells. In this study, we evaluated the effects of alendronate on the migration of UMR106
osteosarcoma using a model of multicellular cell spheroids, as well as the alendronate effect on neutral phosphatases. Alendronate significantly
inhibited the migration of osteoblasts in a dose-dependent manner (10~ °~10"* M). This effect was also dependent on calcium availability. The
spheroid morphology and distribution of actin fibers were also affected by alendronate treatment. Alendronate dose-dependently inhibited neutral
phosphatase activity in cell-free osteoblastic extracts as well as in osteoblasts in culture. Our results show that alendronate inhibits cell migration
through mechanisms dependent on calcium, and that seem to involve inhibition of phosphotyrosine-neutral-phosphatases and disassembly of actin

stress fibers.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Breast and prostate cancer are diseases frequently charac-
terized by widespread metastasis in the skeleton, inducing
enhanced bone resorption by osteoclast activation (Roodman,
2004; Virtanen et al., 2002; Yin et al., 2005). Bisphosphonates
are nonhydrolysable pyrophosphate analogues that strongly
bind to hydroxyapatite (Green, 2005). This property explains
their specific pharmacological action on mineralized tissues
(Rodan and Fleisch, 1996). In particular, in bone tissue,
bisphosphonates prevent bone loss by inhibiting osteoclast
function as well as by stimulating osteoblast activation in vitro
(Green, 2005; Rodan and Fleisch, 1996). Bisphosphonates are
used in the treatment of osteoporosis, bone metastasis and
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multiple myeloma (Lipton, 2004). More recently, it has been
shown that bisphosphonates can exert direct cytostatic and
antiproliferative effects against a variety of tumor cells
including osteosarcoma (Green, 2003; Kubista et al., 2006;
Lipton, 2003; Virtanen et al., 2002). However, the mechanisms
of anticancer action of bisphosphonates are not completely
known and are a matter of intense investigation. Nitrogen-
containing bisphosphonates have been demonstrated to inhibit
mevalonate pathway, in particular through the farnesylation of
small GTP-binding proteins (Fisher et al., 2000; Green, 2005;
Luckman et al., 1998), thus affecting several basal cell functions
and cell survival. We have previously shown that N-containing
bisphosphonates (alendronate, pamidronate and zoledronate)
directly inhibit the specific activity of bone—alkaline phospha-
tase (ALP) obtained from an extract of UMRI06 rat
osteosarcoma cells (Vaisman et al., 2005). This effect was
observed in a concentration range to which this exoenzyme is
probably exposed in vivo. Thus, bisphosphonates may affect the
activity of various enzymes, in particular phosphatases involved
in different transduction pathways.
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It has been previously demonstrated that bisphosphonates
have direct effects on the invasion, adhesion and migration of
cancer cells in monolayers (Boissier et al., 2000; Cheng et al.,
2004). Alendronate, a nitrogen-containing biphosphonate, is a
potent inhibitor of bone resorption used for the treatment of
bone disorders such as osteoporosis, Paget’s disease and
hypercalcemia of malignancy (Chapurlat and Delmas, 20006).
However, questions remain regarding the mechanisms by which
alendronate inhibits invasion and migration of cancer cells.

Multicellular cell spheroids (MCS) are spherical symmetric
aggregates of cells analogous to tissue with no artificial sub-
strate for cell attachment. The advantage of this system is that
it resemble more closely an in vivo situation, since it is a model
of study with an intermediate complexity between monolayer
cultures in vitro and tumors in vivo (Hamilton et al., 2001;
Mueller-Klieser, 1997). In recent years MCS have become an
adequate model to study tumor biology and to evaluate new
antineoplastic therapies.

In this study we evaluated the effects of alendronate on the
migration of UMR106 MCS. We also investigated the relation
between neutral phosphatases and cell migration. Our results
show that alendronate inhibits cell migration through a mecha-
nism that seems to involve inhibition of phosphotyrosine-
neutral-phosphatases and disassembly of actin stress fibers.

2. Materials and methods
2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), trypsin-
EDTA and fetal bovine serum (FBS) were from Gibco, (Life
Technology, Buenos Aires, Argentina) and tissue culture dis-
posable material was from Nunc (Buenos Aires, Argentina).
Fluorogenic small substrate 6,8-difluoro-4-methylumbelliferyl
phosphate (DiFMUP) was obtained from Molecular Probes
(Buenos Aires, Argentina). All other chemicals and reagents were
obtained from commercial sources and were of analytical grade.

2.2. Cell culture and spheroid preparation

UMRI106 rat osteosarcoma cells were grown in DMEM
containing 10% FBS, 100 U/ml penicillin and 100 pg/ml
streptomycin at 37 °C in 5% CO, atmosphere (Cortizo and
Etcheverry, 1995). Cells were seeded on 75 cm? flasks and sub-
cultured using trypsin-EDTA. For experiments, osteoblast-like
cells were placed on multi-well plates and incubated in 10%
FBS media. MCS were initiated by plating 10* cell/well in 10%
FBS-DMEM on 24-well culture plates coated with 1% agar in
DMEM/10% FBS (Ballangrud et al., 1999). One half of cell
growth media was replaced every other day. After 5 days of
culture, MCS with a size between 100—150 um were selected to
perform migration and immunofluorescence assays.

2.3. Assay of cell migration from the spheroid

MCS were plated on a multiwell cell culture plate and
incubated during 24 h in DMEM plus 10% FBS, with or without

different doses of alendronate. After this incubation period
spheroids were fixed with absolute methanol and stained with
Giemsa. Migration distance from the spheroid was measured
using an ocular micrometer. To diminish errors in estimation of
the migration distance two measures were assessed in each
spheroid (Fig. 1) and at least 14 spheroids were evaluated per
condition.

2.4. Inmunofluorescence assay of actin fibers

MCS were cultured in DMEM-10% FBS on coverslips in the
presence or absence of different doses of alendronate, and allowed
to migrate for 24 h at 37 °C in 5% CO, atmosphere. After this
incubation period, MCS were fixed with 4% p-formaldehyde in
PBS for 15 min, permeabilized with cold methanol for 4 min, and
stained with fluorescein-labelled phalloidin (1:100) for 1 h at
room temperature. Coverslips were mounted in a Vectastain
mounting liquid and images were recorded and analyzed using a
Nikon-5000 fluorescence microscope and a digital camera, in
order to determine the actin structure of spheroid (Tzanakakis
et al., 2001).

2.5. Fluorogenic phosphatase assay

In order to evaluate the activity of neutral phosphatases, a
fluorogenic assay was carried out. A kinetic assay was performed
using a 0.1% Triton-X100 osteoblast extract and the fluorogenic
substrate DIFMUP as previously described (Cortizo et al., 2006;
Welte et al., 2005). Different concentrations of Alendronate were
pre-incubated with the osteoblastic extract (corresponding to
50 pg of protein) for 10 min. Then, the cell extract was incubated
with 10 pM DiFMUP in phosphate buffer, pH 7.4, for 10 min. The
resulting product was measured at 360/450 nm (excitation/
emission wavelengths) using an Aminco-Bowman SPF100
spectrofluorometer. We also tested the effect of increasing doses
of alendronate on UMRI106 cell monolayer. This assay was
carried out incubating confluent UMR106 monolayers with
alendronate for 24 h. After that, an aliquot of cell lysates (50 pg of
protein) were incubated with DiIFUMP for 10 min and the
fluorescence was determined as above.

Fig. 1. UMR106 multicellular spheroids. Distance of migration was assessed
using an ocular micrometer (d mig).
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Fig. 2. Effect of alendronate on cell migration (A) and effect of different calcium
inhibitors (B). MCS were incubated with different doses of alendronate with
or without different agents for 24 h. The distance of migration was estimated
with a graduated ocular. Results are expressed as % Basal and represents the
media+=S.E.M (n=14). Differences versus basal are: *p<0.001.

2.6. Statistical analysis

Three independent experiments were run for each experi-
mental condition. Results are expressed as the mean+S.E.M.
Statistical analysis of the data was performed by Student’s ¢ test.
Values of P less than 0.05 were considered to be significant.

3. Results
3.1. Cell migration from spheroids
The effect of 24 h-alendronate treatment on the migration

of UMRI106 osteoblasts was assessed using a three-
dimensional model of spheroids. Alendronate significantly

Table 1
Effect of vanadate doses on cell migration

Vanadate [uM]
0 2.5 5 10
100+4 72+4 a

Migration distance (% Basal) 65+3 a 48+2 a

Data represents the media+S.E.M., n=14. a P<0.001.

inhibited (p<0.001) the migration of osteoblasts in a dose-
dependent manner (Fig. 2A). In order to evaluate the role of
calcium on the inhibitory effect of alendronate on cell migration,
spheroids were treated with 1 pM nifedipine (a L-type calcium
channel blocker), 0.1 nM 1, 2-bis (2-aminophenoxy) ethane-N, N,
N', N'-tetraacetic acid-acetoxymethyl ester (BAPTA) (an intra-
cellular calcium chelator) or 1 pM EGTA (an extracellular
calcium chelator). Neither nifedipin, BAPTA nor EGTA modified
cell migration (data not shown). However, the inhibitory effect of
1073 M alendronate on migration was completely prevented by
the addition of each agent (Fig. 2B). We also investigated the
effect of vanadate, a well known tyrosine phosphatase inhibitor,
on the UMR106 MCS migration. We found that vanadate
inhibited cell migration in a dose dependent fashion (Table 1).
This effect was neither potentiated nor enhanced by the co-
incubation with 10°* M alendronate (data not shown). All
together these results suggest that alendronate decreases
cell migration by controlling the availability of calcium, with a
degree of migration inhibition similar to that induced by vanadate.

105 M Alendronate

Alendronate + Nifedipine

Fig. 3. Effect of alendronate on actin stress fibers. MCS were incubated with (B)
or without (A) alendronate plus 1 uM nifedipine (C) for 24 h. Actin stress fibers
were evaluated by staining with phalloidin—FITC. Magnification: 10x (left
panels) and 100% (right panels).
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Fig. 4. Effect of alendronate on inhibition of protein tyrosine phosphatases
activity from osteosarcoma extract (A) and UMR106 cell culture (B). An aliquot
corresponding to 50 pg protein was incubated with the fluorescent substrate
DiFMUP in PBS plus different doses of alendronate for 10 min. The formation
of the fluorescent product was evaluated at 360/450 nm and expressed as
Arbitrary units.

3.2. Actin stress fibers

Actin cytoskeleton reorganization is a key event in cell
migration process (Burridge et al., 1988). Thus, we analyzed
the morphology of actin stress fibers by inmunofluorescence.
Spheroids were labeled with FITC-phalloidin to detect F-actin.
Untreated MCS cultures expressed very few and weakly stained
stress fibers, largely confined to the cell membrane and showing
a circumferential pattern of actin (Fig. 3A). Higher magnifica-
tion showed well developed actin fibers throughout the
cytoplasm, with cytoplasmic protrusions to the edge of
migration. After 107> M alendronate treatment for 24 h, an
intense actin staining in the MCS was observed (Fig. 3B). Cells
protruding from the alendronate-treated MCS showed a diffuse
pattern of FITC-phalloidin and a more intense fluorescence in
the cell—cell contacts without a directional migration (Fig. 3B,
100x). Co-treatment of MCS with nifedipine and alendronate
(Fig. 3C) expressed a pattern and staining of actin stress
fibers similar to that observed in the basal conditions for both
migrating cells and those in the body of the MCS. These

M.S. Molinuevo et al. / European Journal of Pharmacology xx (2007) xxx—xxx

observations suggest that nifedipine prevents the alendronate-
induced disassembly of actin fibers.

3.3. Effect of alendronate on neutral phosphatases activity of
UMRI106 cells

First we investigated the protein tyrosine phosphatases using
a fluorogenic kinetic assay in a Triton-X100 cell extract of
UMRI106 osteoblasts. Aliquots of cell extracts were pre-
incubated with different doses of alendronate in PBS buffer
for 10 min, followed by the addition of the fluorogenic
DiFMUP substrate and the activity of total neutral protein
tyrosine phosphatases evaluated during the next 10 min. Control
untreated (basal) extracts showed a linear response during this
incubation period (Fig. 4A). Treatment with alendronate
significantly inhibited protein tyrosine phosphatases activity
in a dose-dependent fashion, with a maximal inhibition obtained
at 107> M (47% inhibition) (Fig. 4A). Similarly, 100 pM
vanadate also significantly inhibited protein tyrosine phospha-
tases activity (45% inhibition) (data not shown). Alendronate
inhibition of protein tyrosine phosphatases activity was not
modified by the co-incubation with 100 pM vanadate. Thus,
alendronate seems to inhibit tyrosine-phosphatases in the
UMRI106 cell extracts.

We also investigated the direct effect of alendronate on protein
tyrosine phosphatases in the intact cell. UMR106 osteoblasts
were cultured in the presence of different doses of alendronate for
24 h, after which the protein tyrosine phosphatases activity was
assessed as before. In the basal culture, protein tyrosine phos-
phatases exhibited a linear response (Fig. 4B). In treated cells,
alendronate inhibited protein tyrosine phosphatases in a dose-
response manner with a maximal inhibitory effect observed at a
concentration of 10~* M (57% of basal, p<0.01). These results
suggest that alendronate is affecting phosphorylation/dephos-
phorylation pathways in parallel with its inhibition of migration.

4. Discussion

Diverse pathologies such as osteolytic metastasis, Paget’s
disease and osteoporosis cause a loss in bone mass, and as a result
there is skeletal pain and pathologic fracture increasing the
morbidity for the patient (Hamdy et al., 1993; Manolagas and
Jilka, 1995; Rodan and Martin, 2000). As evidenced for bone
metastasis, a vicious cycle between osteoclasts, stromal cells/
osteoblasts, and cancer cells has been hypothesized during the
progression of primary bone tumors (Chirgwin and Guise, 2000).
Bisphosphonates are currently used in the treatment as well as in
co-adjuvant therapy for these pathologies (Horie et al., 2006;
Jagdev et al., 2001; Matsumoto et al., 2005) because they have a
high affinity for the hydroxyapatite mineral in bone and are taken
up selectively and adsorbed to mineral surfaces at sites of
increased bone turnover where they inhibit osteoclast activity
(Kellinsalmi et al., 2005; Rodan and Fleisch, 1996). Moreover,
bisphosphonates can inhibit the development and viability of
mature osteoclasts and in addition, they may exert their actions
indirectly by affecting neoplastic cells (Evdokiou et al., 2003;
Heymann et al., 2005). Using a model of three-dimensional
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osteosarcoma UMRI106 culture, we found that alendronate, a
nitrogen-containing bisphosphonate, diminishes cell migration in
a dose-dependent manner. Our results are in agreement with
previous reports demonstrating that bisphosphonates inhibit cell
migration in other cellular systems (Boissier et al., 2000; Cheng
et al., 2004; Virtanen et al., 2002). In these reports, the authors
carried out assays in monolayer cultures of different cancer cells.
Although the molecular mechanism involved in the antimigratory
activity of bisphosphonates are still not clear, several signalling
pathways may be involved, such as extracellular signal-regulated
kinases and calcium channels (Mathov et al., 2001). For instance,
it has been shown that different bisphosphonates rapidly modulate
cytosolic calcium levels (Colucci et al., 1998, Vazquez et al.,
2003). In the present study, we attempted to determine the role of
calcium and the mechanisms by which alendronate inhibits cell
migration. Our results suggest that the inhibition of cell migration
could be mediated by an increase in intracellular calcium levels,
since nifedipine, a blocker of L-type calcium channels, EGTA, an
extracellular calcium chelator, and BAPTA, an intracellular
calcium chelator, all reversed the inhibition of cell migration
caused by alendronate. These observations agree well with the
previous report of Vazquez demonstrating that nifedipine and
verapamil reduced cystosolic calcium levels in the ROS 17/2.8
osteosarcoma line induced by bisphosphonates (Vazquez et al.,
2003). Thus, our results seem to indicate that the alendronate-
inhibited cell migration is mediated by the availability of
intracellular calcium. However, further experiments with electro-
physiology and calcium-sensitive fluorochromes would be
needed to prove our hypothesis.

Cell migration is a complex event that involves multiple
simultaneous processes such as focal adhesion formation, actin
cytoskeletal reorganization and activation of many intracellular
signaling pathways (Howe, 2004; Li et al., 2005; Watanabe et al.,
2005; Wehrle-Haller and Imhof, 2003). Calcium, as well as the
Rho small GTP binding family of phosphatases, play an important
role in cell motility (Chaudhuri et al., 2003; Wheeler and Ridley,
2004). Calcium flux plays a critical role in cell migration and it is a
very well regulated process. A highly regulated [Ca”?]; transient
influx must occur for normal migration, while a sustained increase
in [Ca™?]; inhibits cell migration (Chaudhuri et al., 2003). We
found that alendronate causes a reorganization of actin cytoskel-
eton and this effect was reversed by co-treatment with nifedipine.
On the other hand, we also found that incubation of intact
osteosarcoma cells or cell extracts with alendronate causes a
decrease in neutral phosphatases activity as determined using the
fluorogenic substrate DiIFMUP. Our results further suggest that
this effect was mainly mediated by tyrosine phosphatases since
vanadate showed a similar and non-additive effect to alendronate.
These results are in agreement with previous observations
demonstrating that alendronate inhibits protein tyrosine phos-
phatases (Endo et al., 1996; Opas et al., 1997; Schmidt et al.,
1996; Skorey et al., 1997). Previous data suggest that the Rho
family of GTPases activate kinases that are important in
cytoskeletal-mediated changes affecting motility (Mackesky
and Hall, 1997; Schmitz et al., 2000). The Rho family of
GTPases are post-transcriptionally modified by prenylation. The
prenyl-group anchors GTPases onto membranes and constitutes

an essential modification for cell growth, transformation and
cytoskeletal reorganization (Wheeler and Ridley, 2004). It
has previously been demonstrated that alendronate inhibits
the mevalonate pathway and in consequence inhibits protein
prenylation (Fisher et al., 1999). In particular, alendronate
prevents geranylgeranylation of Rho, thus inhibiting cancer cell
invasion (Sawada et al., 2002; Virtanen et al., 2002).

In conclusion, our results demonstrate that alendronate inhibits
MCS cell migration by mechanisms that involve calcium mobi-
lization, actin-cytoskeleton reorganization as well as inhibition of
neutral phosphatases. These studies contribute to a better under-
standing of the mechanisms by which alendronate can reduce
osteosarcoma invasion.
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