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Abstract. In this work an efficient parallel implementation of the Chirp
Scaling Algorithm (CSA) for Synthetic Aperture Radar (SAR) proce-
ssing is presented. The architecture selected for the implementation is
General Purpose Graphic Processing Unit (GPGPU), as it is well suited
for scientific applications and real time implementation of algorithms.
The analysis of a first implementation led to several improvements which
resulted in an important final speedup. Details of the issues found are ex-
plained, and the performance improvement of their correction explicitly
shown.

1 Introduction

Synthetic Aperture Radar [3] [22] [19] [21] is a mature technology that combines
radar and signal processing to enable high resolution imaging of the earth surface.
The principle of operation is based on the coherency of the different radar images
obtained during a known trajectory -usually linear and constant speed- and the
fact that the same point captured at different spatial points contains different and
predictable doppler shifts. This doppler information is embedded in the phase,
which has to be properly processed in order to obtain a higher quality image,
which turns out to be independent of the antenna aperture and the range. The
measurements are usually arranged in two dimensional arrays, matrices, that
contain the sampled echoes of the signals emitted at a fixed point in space in
columns while rows correspond to sampled echoes taken at another point in space
[7] [3]- Due to the time constants involved, range echoes are sampled at a rate of
millions per second (MHz) while spatial -or azimuth- samples are taken in the
order of seconds, its common to refer them as fast and slow time dimensions.
The obtained data matrix, usually deemed raw data, contains in the order
of millions of elements. Processing this data to obtain a focused image takes
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a considerable amount of processor load and consequently may not be suited
for real time operation under the usual paradigm of sequential programming.
Due to the nature of the problem it is well suited for parallel implementation.
In this regard, General Purpose Graphic Processing Unit (GPGPU) [9] [5] [13]
is a powerful platform that allows the implementation of complex processing
algorithms and is very well suited for this application [8] [5].

There are several known algorithms for SAR image focusing, RDA (Range
Doppler Algorithm), CSA (Chirp Scaling Algorithm), w-K algorithm, Back-
Projection algorithm and others [3] [22] [7] [10]. Most of them work both on
frequency and spatial coordinates, so the use of Discrete Fourier Transform is
required, which itselfs has very efficient parallel implementations.

In this work an implementation of CSA is carried out based on [12], analyzing
its behaviour and proposing several improvements in order to take advantage of
parallelization. The remainder of the paper is organized as follows. Section 2
introduces the GPGPU architecture and the C-CUDA programming tool. In
section 3 the CSA is reviewed and the main operations required are presented.
Section 4 shows the experimental results and the analysis of the algorithm im-
plementation, showing the performance improvement obtained after correcting
the detected issues. Finally section 5 presents the conclusions and the future
work on this topic.

2 GPGPU and C-CUDA

Originally GPUs were developed for the video game industry. These cards were
designed to achieve high performance in video game applications, where many
similar simple computations had to be done in parallel, thus several basic ALUs
were used in an independent graphics chip (deemed graphics processing unit,
GPU) in order to alleviate the main CPU load. As their computational power
grew up while keeping prices low, GPU became an atractive architecture for
High Performance Computing. Simple and dedicated cores became complex and
general purpose cores. First generation GPU cores could perform some specific
operations suited for graphical pipeline. Current GPUs cores have grown in com-
plexity and can perform a wide set of operations. This revamped architecture is
called GPGPU (General Purpose GPU) [18] [9] [2].

The broader use of GPGPU architectures was motivated by the creation and
definition of several tools for developing and programming GPGPU applications.
Perhaps the most extended of such applications is CUDA (Compute Unified
Device Architecture), which is a language (extensions of other languajes such us
C, C++, phyton, etc), a compiler and a programming model [20] [9] [5] [16] [2].

Graphic cards are used in conjunction with a CPU, which governs GPU exe-
cution. GPU applications are hybrid programs combining sequential and parallel
code. Sequential code is executed on CPU and parallel code is executed on the
graphic card. Figure 1 (a) shows the structure of such a hybrid CUDA program.

GPU arquitectures have a memory hierarchy composed of different memory
kinds. Each kind of GPU memory has its own access velocity, latency, bandwidth,
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Fig. 1. (a) Hybrid program CUDA model [16]. (b) Kernel arrange example [16].

access pattern, cost, etc. It is necessary to take this hierarchy into account in
order to achieve high performance.

Parallel CUDA code is executed in kernels. A kernel is a function that is
executed by several threads. These threads are arranged in arrays of 1, 2 or 3
dimentions. A kernel launch implies the creation of large amount of threads.
Thread layout is another important design key for achieving high performance.

CUDA applications are suited for applications with the following characteris-
tics: high computational requirements (quadratic or higher), high workload for
each thread, small data dependencies, low CPU-GPU data communication, no
critical sections. Almost all of these features compensate the cost of data com-
munication between CPU and GPU, which is a resource consuming operation.
Critical sections deserve to be executed in sequential order. This fact attempts
against applications throughput and performance [18] [5].

Ideally, CUDA model implies a data initialization in CPU, data transfer from
CPU to GPU, parallel GPU execution and finally, communication of results from
GPU to CPU.

In the following sections we will show how these steps apply to a particular
application, namely the Chirp Scaling Algorithm for SAR image formation. Se-
veral SAR signal processing algorithms share these characteristics as they make
heavy use of discrete Fourier tansform.

3 Parallel Chirp Scaling Algorithm

SAR can be viewed as the combination of a coherent Radar system and the
posterior application of signal processing techniques. This posterior processing
allows for the improvement of the azimuth resolution, making it independent
of range. A moving platform with a radar mounted on it sends succesive pulses



towards an area of interest -defined by the antenna lobe-, different sets of pulses
are transmitted at different positions in space given by the ship trajectory and
the spatial sampling rate. Consecutive echoes, deemed raw data, are collected
and stored in matrix form. In this matrix the azimuth dimension correspon-
ding to the different trajectory samples are stored in rows, while the consecutive
pulses/echoes from a single point in space that represent range are stored in
columns. Processing raw SAR data consists in coherntly combining the informa-
tion of all received signals in order to form (focus) the image.

Chirp Scaling Algorithm (CSA) is based on properties of chirp (linear FM)
signals [3] which appears naturally in the azimuth direction, and also in the
range direction as usually chirp waveforms are used by the Radar system. Chirp
signals achieve high resolution using short pulses with large bandwidth.

CSA performs the signal compression and correction of range cell migration
(RCM) using matched filters and focuses the data over range and azimuth dimen-
tions. These matched filters are implemented using so called Phase Functions,
that are pre calculated based on the scenario parameters and making use of the
aforementioned chirp signal properties. In this algorithm, total RCM is divided
in two parts: a “bulk RCM” and a “differential RCM”. The bulk RCM is the
same for all targets and it is range invariant. Differential RCM is the remaining
part, it is range dependent and is smaller than bulk RCM. Each part is then
corrected using different types of operations [3] [12].

Image 2 shows the main steps of Chirp Scaling Algorithm.
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Fig. 2. Block diagram of Chirp Scaling Algorithm.

In this algorithm appropriate matched filters are used in different domains.
FFTs and IFFTs are used in order to change to range-doppler domain, frequency
domain or time domain. For solving these operations, we used the CUFFT CUDA
library. Next subsection introduces the main features of this library.

CUFFT library: this library solves the Fast Fourier Tranforms using C CUDA
[17]. FFT and inverse FFT are divide and conquer algorithms for efficiently
computing discrete Fourier transforms of complex or real data sets. CUFFT is
based on FFTW3 [6] [11] routines which are efficient secuencial implementations
of the FFT. To use it, the user creates a plan with the main features of the
FFT (tranform dimensions, array sizes, data types and layout, direction for



executing FFT or IFFT, etc). Then the CUFFT library creates the best threads
configuration for the FFT operation. Furthermore, each plan can be reused for
several transforms. In this way the best FFT configuration is transparent to the
user and it is performed each time.

Once the CUFFT library has been introduced, we are ready to present the
parallel implementation of the CSA algorithm. Next sections present main cha-
racteristics of CSA steps seen in Figure 2. Some operators are used more than
once, so their presentation is detailed.

Azimuth FFT: Raw data is transformed to Range-Doppler domain applying
and FFT in the azimuth dimension, i.e. a FFT is performed over each of the
columns of the raw data. Due to FFT characteristics data may be shifted before
and after FFT operator, a fftshift routine was implemented in parallel for our
application to compensate this shifting. Furthermore, taking into account that
CUFFT routine for Fourier Tranform operates along the rows of a matrix, a
transpose matrix operation is performed before and after the FFT. When the
FFT plan is created, the batch parameters allow to specify how many FFT must
be calculated. Each column will be transformed independently and stored back
to its location.

First phase function this phase correction is applied in order to correct the
differencial range cell migration. After creation it is applied to the data as a
pointwise product. The proposed solution is to perform this product invoking a
CUDA kernel that launches a thread for each matrix element. Then, thread; ;
calculates the element corresponding to row ¢ and column j, resulting in (¢; ; <
a; ;*b; ;). In this way, the secuencial pointwise product is O(n?) while the parallel
version is O(1) because of all cells are calculated in parallel in a single call.

Range FFT: Range FFT solution is straightforward, each matrix row is trans-
formed invoking the CUFFT library. A 1D transform plan is created, indicating
row size and in this case, the number of rows in order to perform all this FFT
independently by CUFFT library. After this operation data is in frequency-
frequency domain. As well as with Azimuth FFT, a fftshift operation is applied
after and before FF'T routine.

Second phase function: this phase correction is applied to perform range
compression, secondary range compression (SRC), and bulk RCM correction in
the same operation. Similar to first phase function, after creation this phase
function is multiplied pointwise with the data.

Range IFFT: is performed in the rows of the data matrix, in order to transform
data back to range-Doppler domain, invoking CUFFT routine for executing FFT
in the inverse direction, setting the appropriate parameter.



Third phase function: an extra phase correction is required as a result of the
chirp scaling applied in step 2. Once again, the same procedure is applied as
with previous phase functions.

Fourth phase function: a phase multiply is performed to apply azimuth com-
pression with a range varying matched filter.

Azimuth IFFT: an azimuth IFFT is applied in order to transform the com-
pressed data back to the two dimensional time domain. Data is, again, trasposed
in order to execute FFT over the rows (columns) of the matrix. Once IFFT is
executed, a new traspose operation is needed.

In brief, this algorithm is based in the parallelization of phase funcion gen-
eration, simple matrix operations and fourier transformations. This is a first
implementation of the algorithm which will serve as a basis to finding the bot-
tlenecks and propose improvements, in order to achieve the highest performance
possible.

The next section shows the results of this first implementation.

4 Experimental Results

Sequential and parallel versions of the Chirp Scaling Algorithm will be analized.
There are four different implementations for which CSA runtimes are shown: C
sequential algorithm, C-CUDA parallel algorithm and two improvements of the
parallel algorithm.

Sinthetic raw data was used for these tests. Raw data was obtained from a
SAR simulator developed in [1] and corresponds to a pointwise objective. We
hope to use real raw data in the near future.

Hardware platform used for testing has the following characteristics:

CPU Intel Core i5-2500K @ 3.30GHz

Memory 7.8GiB

GPU NVIDIA GeForce GTX 570. 480
CUDA Cores.

Memory 1280GiB

(O} Ubuntu 12.04LTS / LINUX

CUDA Version 5.5

Sequential and parallel codes were instrumented in order to obtain executions
times. Each test was performed five times and the average of these executions is
presented. The number of repetitions is low given that these times were always
very similar, sometimes they were equal through different executions.

The radar parameters used for the simulations are: exposure time of 3.4
seconds (the objetive was in the illuminated area for 3.4 seconds), 600Hz Pulse



Repetition Frequency (PRF), sampling rate of 120MHz. Raw data is stored in
matrices of 2000 rows (range echoes) x 4000 columns (spatial samples).

Total runtime of Chirp Scaling Algorithm is showed in figure 3, where all
steps of the algorithm (figure 2) are included. Three cases are shown: sequential
algorithm and 2 versions of parallel algorithm: a straightforward implementa-
tion and an optimized version based on detected penalties or bottle necks. The
following paragraphs describe implementation details and detail the proposed
improvements.

Time reduction of the sequential and the first (non optimized) parallel algo-
rithm is close to 31%. This improvement is definitely insufficient as a much larger
speedup is expected for such an a -priori parallelizable algorithm as CSA. This
fact lead us to analyze in more detail the initial implementation, decomposing
de problem in subproblems for which runtimes were analyzed.

Chirp Scaling Algorithm Execution Time

5000
4500
4000
3500

3000
2500
2000
1500
1000
: -
0 |

Sequential CSA Parallel CSA V1 Parallel C5A V2 Parallel CSA V3

Runtime (miliseconds)

Fig. 3. Execution time for sequential and parallel algorithms.

Figure 4 shows execution times for the central operations of CSA: FFTs
and IFFTs applied through all columns or rows of matrices, fftshift operation,
tranpose and pointwise product. In order to improve figure understanding, run
times (in miliseconds) are included for each experimentation.

This figure shows that each of the parallelized operation achieve an important
reduction of runtime. Taking secuencial time as reference, a reduction of 99.26%
for matrix IFFT is achieved, reduction of 98.89% for matrix FFT, 96.11% for
matrix pointwise product, 96.6% for matrix transpose, and finally the 84.23%
reduction time for matrix fftshift.

Although an important speedup has been achived, we note that both matrix
transpose and fftshift operation last more time than expected. Both routines
are simply value swaps, without no operation performed on the data. It can be
seen that in the sequential implementation matrix fftshift is 10 times faster than
IFFT, while it is two times slower in the parallel counterpart.
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In an attemp to improve matrix transpose operation performance, 3 versions
of that operation were developed and tested: C sequential algorithm, CUDA
parallel algorithm and lastly, a CUBLAS library [15] function for matrix trans-
position was used. Figure 5 shows runtimes using these options.

CUBLAS is a CUDA library that implements BLAS (Basic Linear Algebra
Subprograms) operations, for each of its three levels of operations (vector-vector,
vector-matrix and matrix-matrix operations). Our algorithm uses cublas_X_geamn
routine for solving transpose operator. Option cublasCgeam was used for complex
data matrix.

Function cublasCgeamn is based on a static method of jcublas class (a JAVA
class). Transpose operation requires only data movement and is not considered
a computation operation. Figure 5 shows the low performance achieved when
CUBLAS is used.

In [4] an evaluation of JAVA operation in GPU is analysed with three repre-
sentative operations (matrix product, stencil2D and FFT). This work shows that
CUDA kernels achieves the best performance (GFLOPS and runtime). JAVA
routines (jeuda or arapi) have an overhead of data movements between JAVA
and GPU.

Moreover, when CUBLAS library is used, it requires the use of cublasCre-
ate() and cublasDestroy() operations, in order to allocate or release hardware
resources on the host and device. These functions implicitly call cublasDeviceSyn-
chronize(). This overhead is an important source of performance penalization
[14].

With respect to matrix fftshift, this is a necessary operation due to the cur-
rent implementation of phase function matrices arrangement: matrix data is
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organized in a way that fftshift operation is needed for data consistency through
the data processing chain. This operation could be avoided if phase function
matrices are modified accordingly, a point to be addressed in the near future.

As mentioned above, our first parallel version of CSA (Parallel CSA V1 in
figure 3) shows low performance.

The reason for such performance loss can be multifactorial. The first issue
identified was related to the unexpectedly high runtimes of phase functions. Fi-
gure 6 shows phase function application times. These times include phase func-
tion initialization and pointwise product (this operation takes almost 3 milisec-
onds as we can see in figure 4). The slowdown cause boiled down to the phase
function (a constant matrix once the scenario parameters are fixed) initialization
being performed in CPU. This issue was addressed in the next version of the
parallel algorithm (V2) where phase functions are initialized on GPU to exploit
the parallel nature of this calculation. Each phase function was allocated on a
matrix and one thread per cell was launched to initialize its value.

Times of this second version are showed in figure 6 as Parallel V2. An im-
portant runtime reduction was achieved, which can be enhanced if we take into
account data structures.

Due to the phase corrections being the same for each row, these matrices can
be reduced to 1 dimentional arrays. This was implemented in version 3 of the
parallel algorithm (Parallel V3 in the figure) which deals with 1D arrays. Then,
each kernel works with arrays and each of them can access its columns or rows
through arrays.

Figure 6 shows an important reduction of time for this optimized initialization
scheme. Now an important runtime reduction is observed for the phase function
filter implementation.

It should be noted that both second and fourth phase functions take longer
than the first and third phase functions. The analysis of the slower phase function
initialization showed that the slowdown had to do with the use of a division
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operation. Given there is no hardware support for floating point divisions (or
integer divisions) on the GPU these operations are implemented as software
subroutines that require additional registers for temporary storage [13]. This
lack of resources can be avoided if we reduce the number of threads in the kernel
launch.

To alleviate this, both second and fourth phase function initializations were
executed by grids of threads of different sizes. First executions launched 32x32
threads blocks. This kernel was not able to execute because of lack of registers.
Then, blocks of 16x16 threads were used showing good performance. The latter
configuration was used for Parallel V3.

5 Conclusions and further work

This work presents the first steps for the parallelization of CSA algorithm for
C-CUDA. Our goal is to develop a high performance CSA algorithm thinking
on real time requirements.

CSA algorithm is a highly parallelizable problem, and GPUs are very con-
venient hardware architecture for this algorithm. CSA satisfies most of the re-
quirements for an application to be suitable for executing on GPUs: there is no
data dependency, no communication is needed, it operates with a great amount
of data, performing complex operations over the data.

As CUDA programation model requires, there exists 2 data transfer: at the
beginning, when raw data is read from disk and then tranferred from CPU to
GPU. Afterwards, all calculations are performed in GPU, focusing raw data
to obtain the final image. This final image is transmitted back from GPU to
CPU. Data communication between CPU and GPU (and viceversa) penalise



applications througput and efficiency (due to memory latencies, bandwidth of
pci express, etc.).

As a main contribution of this work, a parallel version of the CSA was imple-
mented and analized, comparing its performance to a sequential implementation.
An important speedup has been achieved after analysis and improvement of the
first parallel implementation. There are still points to improve, in particular the
extensive use of fftshift and transpose operations that should be avoided, also
memory data transfers could be avoided if some data is allocated into GPU global
memory for performing phase function multiply. Block size is another important
issue to address, for optimizing workload and augmenting throughput.

This work covers the first steps of our challenge of achieving a high per-
formance application for SAR data processing. Next steps include the use of
different GPU memories, the implementation of better phase function initializa-
tions and the removal of -at least- the fftshift operation as well as the use of
field SAR raw data allowing for comparison of different problem sizes and the
optimizations required for each of them.

The speedup (sequential runtime/parallel runtime) using our last parallel
algorithm is close to 17. This is an important improvement and we hope to
further reduce it by implementing the optimizations mentioned above.
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