
Description of an Architecture for Critical Distributed
and Real-Time Data Collection Applied to MVEDR

Fernando Consigli1, Enrique Gallego1, Hugo Ramón1, Horacio Villagarcía Wanza1, 2

III LIDI – Facultad de Informática – UNLP1

Calle 50 y 120 – 2do piso – (1900) La Plata, Argentina

CIC – Comisión de Investigaciones Científicas Pcia. Bs As.2

526 entre 10 y 11 – (1900) La Plata, Argentina

consigli@argentina.com, kike.unlp@gmail.com
{hramon, hvw}@info.unlp.edu.ar

Abstract. Nowadays, motor vehicle safety has gained a widespread interest.
Technological breakthroughs have allowed more efficient system
implementations as regards life protection elements for both passengers and
pedestrians. Among them, event data recorders (EDRs) can be found.
In this paper, we introduce an architecture and hardware simulator to satisfy the
Institute of Electrical and Electronics Engineers (IEEE) 1616 standard as well
as the Argentinean traffic laws (law 24.449 art. 29 and law 26.363). In order to
accomplish this, we built an architecture using Transaction Level Modeling
(TLM) methodology, accompanied by a hardware description language called
SystemC, proving the vantages of using a high level approach for modeling real
time embedded systems.

Keywords: data collection, distributed real-time, TLM, MVEDR, co-design,
SystemC

1 Introduction

In order to obtain crash event data, it is necessary to have a mechanism that registers
car variables in real time as the accident takes place. This goal is achieved by using a
Motor Vehicle Event Data Recorder (MVEDR), referred as black box. This device is
in charge of storing information that can be employed to identify accident causes and
rebuilt to analyze it [1].

In the United States of America, approximately 80% of all passenger vehicles since
2004 are equipped with MVEDRs.

The Argentinean automobile safety law states that all cars sold in Argentina must
include a safety device capable of recording moments surrounding the event. By
doing so, it ought to enable technicians to analyze the actual causes of accidents and
take preventive actions to improve road safety.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Centro de Servicios en Gestión de Información

https://core.ac.uk/display/153565061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In 2004, IEEE published an international standardization of motor vehicle event
data recorders entitled "Standard for Motor Vehicle Event Data Recorders
(MVEDR)" [2]. This document specifies a protocol for MVEDR output data
compatibility and export protocols of MVEDR data elements.

It would be useful to adopt, from now on, techniques that allow the development of
devices that complies with the aforementioned regulations.

Simulations are a powerful tool during development because they help designers
and engineers to make high-costs design decisions as they are able to foresee how the
system will react to certain situations.

Despite the fact that simulating a system is not the same as producing a real model,
it is a notable enhancement in development processes.

In this particular case, simulations may let us find out which would be the optimum
architectural design that leads to a real implementation observing the IEEE standard
without the need of actually implementing it.

Nevertheless, if we aim to employ simulation techniques, we need to utilize the
appropriate methodology.

We organize the paper as follows, in section 2 we despite architecture design
technology used, section 3 highlights modeling constraints defined by IEEE 1616 std
and domain application, section 4 shows proposed architecture, section 5 describe the
results and section 6 provides some concluding remarks.

2 MVEDR architecture design

In the past, software and hardware designers lacked a standardized mechanism to
communicate requirements between tasks in the development process. System
specifications and functionality were defined through a System Architectural Model
(SAM) [3], which did not permit to have an early executable model. Consequently, it
makes it difficult to introduce changes in requirements, either functional or non-
functional.

In order to overcome this obstacle, Transaction Level Modeling [4] was presented
thus enabling a new methodology.

2.1 TLM

TLM is based on the concept of modeling only the level of detail that is needed by the
teams developing the system components and subsystem for a particular task.

Using TLM along with a hardware description language, like SystemC [5], permits
the use of an early executable system model, improving design tasks and easing
testing jobs with the utilization of simulations, without the need of a physical
hardware implementation.

One of the main characteristics of TLM is the disaggregation between functional
components and communication, which allows independent refinement of
components.

Basically, we can distinguish three levels of refinement. Un-timed: only
functionality is represented. A model with un-timed communication and functionality
is usually referred to as system architectural model. Approximately-timed: some basic
timing information is included. The real time duration is approximated. Cycle-timed:
the details of implementation enable a cycle-accurate simulation.

Starting from a SAM, considering that is un-timed both in communication as in
functionality, it can be derived into a TLM with un-timed communication and
approximately-timed functionality. Subsequently, components are refined separately
until they reach a cycle-timed level (extremely precise hardware approach).

A model that is cycle-timed shows accuracy of communication and of functionality
as well. It is usually referred to as Register-Transfer Level (RTL) model [6]. This type
of model often requires large amounts of time to simulate.

Communication in TLM is modeled by means of channels. Functional components
communicate between them with transactions, which are carried out using interface
functions implemented by channels.

This methodology allows a larger reuse of design components, not only within a
certain project, but also on future projects, hiding finer implementation details.

2.2 SystemC

SystemC [7][8][9] is a system description language whose aim is to provide, both to
designers and architects, with a standard based on C++ for development of software
and hardware hybrid systems.

SystemC is a library that provides the necessary constructors for hardware
modeling that enable concepts of time, hardware data types, hierarchy and structure,
communications and concurrency.

The different elements that make up a system are: Sc_module: it is the smaller
container of functionality with state, behavior and structure for hierarchical
connectivity. It may represent software, hardware or any physical entity. It is
represented with rectangles. Sc_channel: it is the mechanism that models
communication. It can represent either simple medium like a wire or a first-in-first-
out (FIFO) data structure, or a complex scheme like a Controller Area Network
(CAN) bus. It implements the methods required to model the behavior of the channel.
It can be represented with a hexagonal shape. Sc_port: It is the element within a
module that is bound to a channel, so as to realize the connection between them. It is
represented by a square with directional arrows that indicate the primary flow of
information. Sc_interface: it provides the virtual declaration of methods implemented
by Sc_ports and Sc_channels. Sc_thread and Sc_method: these are the basic execution
units. They are contained inside a module. Sc_threads are started only once, and they
can be suspended through “wait” sentences. On the contrary, Sc_methods are
executed multiple times and cannot be suspended (as a matter of fact, time does not
pass between a call and its return). They are represented with circles. Sc_time: it is
used to measure time and is expressed in two parts: a numeric magnitude and a time
unit. Sc_event: it represents an event, which is defined as something that happens at a
specific point in time. Sc_methods and Sc_threads flow of execution may be

determined by the occurrence of a specific Sc_event. It is represented with an arrow.
SystemC predefined data types: a set of arithmetic, boolean and fixed-point data types
that are provided in order to support different hardware representations.

Lastly, SystemC provides a simulation kernel that controls the flow of simulations
so that the model behaves as it was described. This kernel is in charge of advancing
time and scheduling the execution of simulation processes.

3 Architecture modeling constraints

System-on-chip devices have numerous constraints regarding physical and logical
limitations. These constraints are related to IEEE 1616 std and domain application.

3.1 IEEE 1616 Constraints

IEEE standard does not determine specific technology to make a MVEDR. Yet, it
mentions the following likely primary components: Processor: for managing or
assisting data organization, retrieval, retention, or delivery of collected data. Non-
volatile Memory: for retaining key data that occurred immediately before and after an
event. It should not require a power source to retain its contents. Memory Buffer: for
collecting data just prior to an event which can be refreshed, and to dump its content
into a non-volatile memory shortly after an “event” or “crash”. Internal or External
Clock: for keeping relative or real time when an event occurs. Furthermore, it
determines when each data element happened in relation with the event.

3.2 Memory constraints

Different memory sizes, read/write speed and organizations are to be considered
depending on the amount and data types of information received by the device.

IEEE standard 1616 defines for each data element: its range, unit of measure,
resolution, accuracy, sampling rate, sampling timing and data format. Although this
standard does not prescribe which specific data elements shall be recorded, it
introduces the reader a list of recommended data elements to be stored.

Depending on the elements selected to be recorded, a minimum memory size will
be required.

Given that motor vehicles operate for extensive periods of time, several writing
operations are carried out. Consequently, it is imperative that memory modules
support virtually unlimited data writings. Therefore, it is not convenient to use
electronically erasable memory, such as Electronically Erasable Programmable Read
Only Memory (EEPROM) or Flash, because of its limited write endurance. Hence, it
is desirable to employ Random Access Memory (RAM) modules instead.

3.3 Communication constraints

Depending on the amount of data to be collected, bandwidth turns into an important
decision factor, since network traffic can differ. Thus, potential bottlenecks can be
detected early in the development process.

Additionally, the network is to be installed in a hostile environment, so it has to be
sufficiently robust and resilient to electromagnetic interference (EMI).

3.4 Processing constraints

A real-time system implies certain time constraints. In this case, each package
received by the device may require an amount of processing. Subsequently, the
system should have enough Central Processing Unit (CPU) power to process
packages and to avoid overflowing its receive buffer.

In addition, the CPU must have an address bus width large enough to be able to
address the entire memory locations available to be read or written by the application.

3.5 Domain-specific constraints

The new Argentinean law 24.449 establishes that every particular passenger vehicle
must include an event data recorder to be used for accident reconstruction and
investigation purposes. However, as this law is rather vague regarding requirements
for light motor vehicle EDRs, IEEE regulations are employed as a complement.

4 Proposal of a MVEDR architecture

We introduce a basic architecture for a data acquisition device with SystemC syntax
as shown in Figure 1. In the literature we found generic models for distributed data
acquisition as show in [10].

4.1 Design

This device contains a CPU, a volatile RAM, a non-volatile memory, an
accelerometer and a real time clock. It is connected to a CAN bus and it also provides
an interface to retrieve the acquired data.

Figure 1: MVEDR Architecture

There is a CAN bus that is described as a Sc_channel where the data acquisition
device and sensors are connected to through Sc_ports.

Each Sc_module is assumed to send digital data over the network, i.e., they have
built-in analog-to-digital converters that are not described in this model.

The CPU is modeled as a module that contains a data RAM, a network controller
and a number of Input/output (I/O) ports to make connections with other components
of the architecture. The CPU module behavior is implemented by the Sc_threads and
Sc_methods that it comprises, which are responsible for the reception, analysis,
selection, processing, storage of the incoming data elements (from the sensors through
the network or the I/O ports into the memory), and subsequent retrieval.

The real time clock feeds the system with the current date and time when required
by the application. Data elements are time-stamped in order to determine when each
one occurred.

Each memory provides read/write access through its Sc_port.
The network controller is embedded within the CPU module to reduce the

arithmetic-logic unit load by performing most of the functions related to the
networking protocol.

The non-volatile memory is placed in the data acquisition device and is only
accessible via the retrieval interface, so that the data stored cannot be manipulated by
external agents.

IEEE Standard states that vehicle acceleration can be determined by either air bag
accelerometer or other accelerometer. In our design, MVEDR has its own
accelerometer because airbag related components are not being modeled.

It is also mandatory to have the exact date and time of the occurrence of each
event. The IEEE standard proposes to derive them either from a GPS receiver or from
a real time clock. The second option is adopted for simplicity matters.

Besides, the CPU has an internal timer that is used to insert into each data element
a timestamp relative to the real time of the event.

4.2 Operation

MVEDR operates as the engine runs. Every sensor in the car samples information and
send it through the CAN Bus channel. These packages are received by the Can
Controller of the MVEDR and pushed into the CAN FIFO. From there, they are read
by the Sc_thread main, which checks whether the sampling rate of the received data
element is in conformance with the IEEE Standard or not.

Were to be received more than the expected packages, some of them would be
dropped out. The rest is stored in a circular buffer in RAM memory. Each type of
element has its own buffer whose size is determined by the equation (1).

sampling rate * sampling timing * data format . (1)

Sampling rate is the number of samples per second to be recorded, sampling timing

is the data recording time and data format is the number of bytes used for representing
the element.

In addition, the Sc_thread main analyzes the information coming from the
accelerometer in order to identify the exact moment when an accident occurs. In that
case, after the information corresponding to post-crash data is acquired, the Sc_event
crash is triggered and the Sc_thread dumper dumps the content of RAM memory into
the EEPROM.

Finally, the Sc_thread retriever is awaked whenever the MVEDR is accessed
through the retrieval interface. This method accesses the EEPROM thus allowing the
download of crash data stored in it.

5 Results

Having the already mentioned model as a reference, we built an implementation in the
TLM design language C++/SystemC. As a result, we were able to test, by means of
simulations, the feasibility of a device that is compliant with IEEE regulations.

Simulations comprised a car equipped with a MVDER running normally, until an
accident was triggered.

After that, the data dumped by the MVEDR to non-volatile memory at the time of
the event was retrieved (through the corresponding interface) to verify its
conformance with the protocol defined by the IEEE standard.

Simulations provide a great deal of flexibility, thus several instances were run with
different configurations with parameterized aspects, such as CPU speed, memory

latencies, CAN network priorities, etc. Naturally, not every instance completed the
tests successfully, but this led us to determine the approximate minimum hardware
requirements to accomplish the aforementioned standard.

The model presented above has gone through various changes until it reached its
final state. Initially, it was a SAM, i.e. untimed. Memory writes were done without
any latencies, as well as CPU instructions. In this way, it could be verified, for
example, the correct management by the Sc_thread main of the circular buffer
assigned for each data type. In the same way, we could check that the dump from
RAM into EEPROM was correctly done by the Sc_thread dumper.

Furthermore, the CAN bus we implemented was able to handle priorities but did
not represent the time required to transmit a message.

In the subsequent stages, functional and communicational components were
refined so as to make the model behave in a more realistic way regarding an actual
hardware implementation. Wait statements were added to the code in order to
represent the passage of time. The duration of wait sentences were parameterized so
as to be able to instantiate hardware with different properties, such as memory
read/write speed.

Our simulations ran with the recommended data elements by the IEEE standard.
Given those constraints, the MVEDR had to be capable of processing 3136 data units
per second. With this numbers, there are many microcontrollers in the market that can
be used as the core of a MVEDR.

6 Conclusions

The adoption of TLM, using a hardware description language like SystemC, provides
a highly flexible methodology for development of real time embedded systems. The
early executable model, joint with an adequate level of abstraction, allows designers
to perform functional verification before hardware implementation is made.

The main advantage acquired in this project from simulations is that they provided
early feedback on the performance of the system and allowed to test its functionality
under different and diverse conditions.

The results obtained from this project allowed us to foretell a very approximate
specification of requirements about hardware components. Besides, the implemented
functionality was proven to be in conformance with the IEEE standard.

In a possible next stage, this model can be further refined into a RTL model to be
finally deployed into a real hardware implementation.

This development demonstrated the feasibility of an IEEE 1616 compliant
MVEDR. Furthermore, it can be the starting point for the development of cost-
effective devices to supply the automotive industry with standardized MVEDRs.

7 References

1. Ching-Yao Chan: Trends in Crash Detection and Occupant Restraint Technology.
Proceedings of the IEEE, vol. 95, no. 2, pp 388-396 (2007)

2. IEEE: IEEE Standard 1616 – 2004: Standard for Motor Vehicle Event Data Recorders

(MVEDRs).

3. C. Shelton, C. Martin: Using Models to Improve the Availability of Automotive Software

Architectures. Proceedings of Software Engineering for Automotive Systems. ICSE
Workshop, SEAS’07, 20-26 May 2007, pp 9-15 (2007).

4. Cai, L., Gajski, D.: Transaction-level Modeling: an Overview. Proc. of the Int. Conf. on

Hardware/Software Codesign and System Synthesis, pp. 19–24. ACM Press, New York
(2003)

5. F. Ghenassia: Transaction-level modeling with SystemC. Springer (2005)

6. Shuqing Zhao, D. D. Gajski: Defining an enhanced RTL semantics. Proceedings of Design,

Automation and Test in Europe, pp 548-552 (2005).

7. IEEE: IEEE Std. 1666 – 2005: SystemC Language Reference Manual.

8. Open SystemC Initiative, http://www.systemc.org

9. David C. Black, Jack Donovan: SystemC: From the Ground Up. Kluwer Academic

Publishers, Boston (2004)

10. J. Ehrlichl, A. Zerroukill, N. Demassieux: Distributed architecture for data acquisition: a

generic model. Proc. of the IEEE Instrumentation and Measurement Technology
Conference, pp 1180-1185 (1997)

