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The growth of polypyrrole (Ppy) layers on gold electrodes in nearly neutral pH solutions is analysed using “in situ” voltametric and
ellipsometric techniques. Different film structures are obtained depending on the potentiodynamic programme and the com-
position of the electrolyte. More compact dodecylsulphate-(DS) doped Ppy layers were grown at 1.2 V versus RHE than those
obtained by applying a higher potential. The more compact layers correspond to the growth of an oxidised Ppy/DS layer that
shows low pseudo capacity behaviour. After dipping, the doped Ppy/DS film in KCl solution-significant variations in optical indices
and thickness are detected as a function of the applied potential. Higher electrochromism as well as decrease in film thickness after
cathodisation is achieved. The optical indices and the thickness of the Ppy layer formed under different applied potential/time pro-

grammes are estimated.

1. Introduction

Conducting polymers and particularly polypyrrole, Ppy, is
extensively used in sensors, oxygen sensing, microelectronic
mechanical systems MEMS, metal-insulator-semiconductor
field effect transistors, drug release, actuators, water treat-
ment, protective coatings against corrosion, and analytical
displays [1-13].

Polypyrrole (Ppy) shows high permeability and selec-
tivity for the detection of catecholamines in different elec-
trolytes owing to anionic species exclusion by the interaction
with negative charges into the film [14-18].

The kinetics of growth and the final structure of the Ppy
layers depend on the potential programme, the anodic limit,
and on the cycling time [19-22]. On the other hand, the
presence of different ions in the electrolyte modifies the layer
growth rate, the voltametric response, and the interfacial
capacity. These effects are related to variations in pyrrole
absorption, concentration of radicals, structure of the oli-
gomers initially formed during anodisation, and partial
water exchange taking place together with ion’s uptake
processes into the membrane [23-25].

Oxidation of Ppy yields positive fixed charges on the
polymer networks. Commonly prepared Ppy layers exhibit
anion exchange during the oxidation cycle. The Ppy matrix
in the reduced state is electroneutral and a poor ionic and
electronic conductor.

The properties of these membranes can be modified by
doping the Ppy with large and bulky shaped anions such as
dodecylsulphate, dodecylsulphonate, paratoluensulphonate,
and so forth. This has been achieved by electrooxidation
in solutions containing the large anions, which are thereby
incorporated into the film as fixed charges. In electroanalysis,
these membranes offer good selectivity and high stability
during prolonged switching conditions.

Cation exchange takes place on these PPy modified layers
due to the high immobility of these ions through the PPy
chain [26, 27].

Ppy + X® — e — Ppy") X, (1)

Ppy/ROSO; Na* — e — Ppy"//ROSO; + Na* ®,  (2)

the superscript “S” indicates that the species is in the elec-
trolyte.
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FIGURE 1: Potential/time programmes used in polypyrrole layer growth. Potential sweep in 0.1 M SDS, 0.1 M Py solution from Ec = 0.04 V
to Ea followed by a holding time 7 at Ea and consecutive cathodic scan to Ec. Scan rate 100 mV/s. The different curves show the evolution of
current/potential/time profiles for successive cycling using either (a) Ea = 1.4V with 7 = 15s or (b) Ea = 1.2V with 7 = 20s.

Ellipsometry can be applied “in situ” to characterise the
layer structure seeing that the optical signal is very sensitive
to the modifications produced by the polarisation of the
electrode. Recent work has investigated the characteristics of
electrodeposited Ppy on gold in buffer phosphate solution
[15].

In this work, cyclic voltammetry and ellipsometry were
used to investigate the effect of the potential on the growth
of doped Ppy/DS layers.

2. Experimental

Experimental conditions were similar to those described
in previous work [28, 29]. The gold electrode was made
by axially fitting a polycrystalline gold plaque (99.99%
purity, 1.5 mm thick) into a Teflon sheath. It was polished to
a mirror finish with 1.0, 0.3 and 0.05 ym alumina powders.
The electrode, horizontally placed in the cell, had a total area
of 0.55cm? and an area sampled by ellipsometry of about
2mm?. All experiments were performed under nitrogen
bubbling. The potentials were referred to the reversible hy-
drogen electrode (RHE) in the same solution.

The freshly polished metal was pretreated by scanning
five cycles in the potential region 0.1V < E < 1.70 V.

For the ellipsometric measurements, the light wavelength
was selected by interposing adequate filters in the range 405 <
A < 580 nm. The on manual ellipsometer, Rudolph Research
Fairfield, NJ, USA, type 43702-200E, Serial No 4210, takes
about 1 min to measure the A/Y parameters. The electrode
was illuminated through optically polished glass lateral
windows 20 mm in diameter using an incident angle of 69°.
The optical indices of the substrate were obtained at open
circuit in the aqueous electrolyte, from the ellipsometric
parameters of the polished gold electrode. The resulting

values were in good agreement with previously reported data
(15, 28, 29].

The Ppy films were anodically grown in the cell con-
taining 0.1 M Pyrrole, Py, Sigma Aldrich (SAFC: W338605),
0.1 M sodium dodecylsulphate, SDS, Riedel-de Haén, and
aqueous solution. After polymerisation, the electrolyte of the
cell was replaced by a new SDS solution free of pyrrole.

The changes in the ellipsometric parameters A and ¥
after successive deposition cycles of Ppy were measured using
the following potential/time programme: the potential was
scanned at 100 mV/s between the cathodic potential limit Ec
=0.1V and the anodic limit Ea followed by a holding time, 7,
at Ea. Next, a cathodic scan at 100 mV/s was applied between
Ea and Ec, and then successively measured values of A and ¥
were taken at Ec with intervals of 2 min.

3. Calculations

The simplest model assumes a single homogeneous film. The
real part of the refraction index of the film, #, the imaginary
part of the refraction index or absorption coefficient, k, and
the thickness, d, are calculated using the gradient technique
(28, 29].

In the case of inhomogeneous layers, the high num-
ber of parameters makes the determination of the struc-
ture very cumbersome. However, the single homogeneous
film model is a good first approximation in the description
of the interface, and these indices correspond to effective
optical indices for the composite fibre/occluded electrolyte
layer [28, 29]. In the case of composite materials, the effective
medium theory using either Maxwell Garnett or Bruggeman
formalisms relates the optical constant of the polymeric fibre
phase and that of the electrolyte with the volume fraction of
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FiGure 2: Current/potential voltammograms obtained scanning at 100 mV/s between Ec = 0.04V and either Ea = 0.9V or Ea = 1.1 V.
Pseudocapacitive response observed after five anodic cycles using (a) Ea = 1.2V with 7 = 205, and (b) Ea = 1.4V with 7 = 15s. (a) and (b) in
SDS solution free of Py, (c) the same electrode shown in Figure 2(a) and after immersion in 0.1 M KCIL.

the components providing the effective optical constants for
the composite polymer/electrolyte.
The fitting procedure minimises the function G:

G= Z (Aexij _ Atheij)z + (\{/exij _ \Pthei]_)z, (3)
where the subindex i corresponds to the optical data mea-
sured at different 1;, and the sub index j corresponds to
different cycling deposits or thicknesses d;.

In the simplest process, the layer grows in thickness with
constant compactness and composition bearing stable # and
k values. In many cases, the fitting of the n, k, and d values for
a sequential set of thicknesses allows to evaluate variations
in the compactness of the film as a function of the distance
to the electrode. In this procedure, it is very important to
use accurate initial values in the fitting, which can usually
be found fitting the complete set of thicknesses. Another
possibility is to increase the amount of optical data for a given
layer measuring the A and ¥ data at different A;. This allows

increasing the amount of experimental data to find univocal
values of thicknesses and optical constants.

The optimisation method converges after m iterations, to
theoretical Athe;, Wthe; values. The convergence is fulfilled
after m iterations when (a) the Euclidean norm of the
arrangement p,, — Pm+1 tends to 0, (b) G(pm) > G(Pps1) >
G(pm+2), and (c) 9G,,/dp tends to 0.

4. Results and Discussion

Several electrochemical perturbations are customarily em-
ployed for the deposition process of Ppy layers. Potentiody-
namic polymerisation (cyclic voltammetry) probably favours
the formation of disordered chains [30] just because the
continuous change between its neutral (insulating) and its
doped (conducting) state usually involves compaction and
opening of the polymeric network. On the other hand,
galvanostatic pulses applied during relatively long periods of
polarisation produce thick and porous deposits due to the
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FI1GURE 3: () Evolution of the experimental parameters A and ¥ after successive cycles in the condition of Figure 1, namely, (a) Ea = 1.2V
and 7 = 20s, (b) Ea = 1.4V and 7 = 15s. The figures correspond to number of cycles. Evolution of the thicker film changing the potentials
in both (OJ): SDS and ({): after immersion in KCL (O): Theoretical values corresponding to a layer of optical index # and increasing the
thickness, d, every 8 nm. The film obtained at Ea = 1.2V fits n = 1.343 — 70.101 and that obtained at Ea = 1.4V fits n = 1.3476 — i0.0723.
Owing of the change in the A/¥ plot scale, both fitted curves are plotted in (b) for comparison.
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FIGURE 4: Calculated refractive index n and absorption index k for illuminating light beam in the region 450 < A < 580, for the film obtained
after five cycles with Ea = 1.2V and 7 = 20 s after immersion in KCI.

deflection of the monomer concentration near the vicinity of
the electrode.

Figure 1 shows the current potential profile obtained
after applying successive anodic cycles at 1.2V and 1.4V in
0.1 M Pyrrole, 0.1 M SDS solution. For Ea = 1.2V, a contin-
uous decrease on the current during the anodising time 7 is

observed. Moreover, the anodic scans show a peak at 0.45V
that increases with the successive cycles. This evidences the
electrooxidation of the Ppy deposited in the previous cycles,
and the increasing cathodic peak currents highlights its
reduction. Figure 1(b) shows similar current/time profiles.
However, a current increase occurs at Ea = 1.4V after about
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FiGure 5: Evolution of the experimental parameters A and ¥ as
a function of the applied potential for Ppy film grown in SDS, after
applying both four or five successive cycles and using Ea = 1.2V, t
=20s. () in SDS and (OJ) after immersion in KCI.

7 = 5s. This effect probably stems from the anodic oxidation
of the Py dissolved in the SDS micelles, which can solvate
part of the reaction intermediates (free radicals) as well as
the resulting Ppy oligomers. DS has a charged, polar end
and a hydrophobic end. The charged end facing out into
the solution can be maintained during polymerisation, even
though the negative group is being incorporated into the
polymer as a counter ion. Alternatively, the polymer, which
is deposited subsequently, could also develop polar surface
properties [31].

Figures 2(a) and 2(b) shows voltametric scans at
100 mV/s obtained from Ppy electrodeposited either at 1.2 or
at 1.4 V. The plot of Figure 2(a) shows a small anodic peak
at 0.68 V and another cathodic one at 0.48 V. On the other
side, Figure 2(b) shows very well-defined peaks at 0.45 V and
0.38 V. The cathodic charge that involves in the cathodic
scan is Qu; = 0.58 mC and Q, = 0.70 mC. Nevertheless,
the current jump at potentials near the sweep inversion
shows that the double layer capacity for the film grown
at 1.2V is higher than that grown at 1.4V, Figures 2(a)
and 2(b). After immersion in 0.1 M KCI solution, the film
grown in the experiment of Figure 2(a) has a remarkably
high pseudocapacitive charge (Qzc = 0.73 mC).

Voltammograms with a relatively high double layer
capacity have being previously reported in the case of Ppy
films doped with PSS [32]. Three forms of Ppy has been
reported, Ppy(I) the regular polymer, contains longer chains,
(with length up to 64 units), Ppy(II) containing short oligo
pyrrole units (with length between 12 and 16 units), while
a cross-linked material referred to as Py-1II is generated
at high potentials. The oxidation peak at more negative
potentials may indicate the presence of Ppy(II) [30, 33].
However, other factors may influence the polymerisation
processes and the redox capacity, such as different solvents,

additives, and electrolytes. The concentration of SDS trapped
in the network may regulate the redox properties of the
layer. In the case of Ppy/SDS films subjected to a very thin
polystyrene coverage, used to increase the hydrophobicity of
the polymer/electrolyte interface, the voltammogram shows
a cathodic shift of about 0.5V of the redox couple, related
to the Ppy layer free of SDS, for the electrode switching in
0.1 MKCI [34].

Figure 3 shows the evolution of the ellipsometric param-
eters A/Y¥ during the layer growth. After each potential cycle,
three successive measures at 0.1V are taken with intervals
of 2min. Figure 3(a) shows for both the 3rd and the 4th
cycle a small increase in the A values during the holding
time at 0.1 V. After 2min at 0.1V, the data of the third
measure practically reproduces the second one. In the case
of the 5th cycle, the opposite tendency occurs and the A/Y
values show some instability. According to the calculation
procedure mentioned above, the whole set of experimental
A/Y values corresponding to the five cycles were fitted
for common n and k parameters and different d. For the
obtained fitted n and k values, the theoretical A/'¥ curve was
plotted. A maximum thickness d of about 122 nm, and n =
1.343 — 70.101 was obtained. Using the same procedure, the
fitting corresponding to the deposit obtained at 1.4 V values
of n = 1.376 — i0.0723 and a maximum d = 254nm was
obtained.

Likewise, Figure 3(b) shows the potential dependence of
the experimental A/¥ values in 0.1 M SDS solution, free of
pyrrole, corresponding to the film grown at 1.4 V.

In the experiment of the Figure 3(a), the A/'Y measure-
ments in SDS shows low dependence with the potential and
some instability during the holding time and the successive
cycles. Otherwise, a very large and reproducible change in
A/VY occurs, after dipping in KCI.

On the other side, Figure 3(b) shows that, for the film
grown at 1.4V after oxidation at 0.7V, the A/Y values fit
the theoretical curve n = 1.343 — 70.101. Then, a thickness
of 164 nm is obtained. This theoretical curve is shown in
Figure 3(a), and it is transferred to the plot scale of
Figure 3(b) for comparison.

Figure 4 shows the calculated optical indices at 0.1 and
0.9V for the film grown at 1.2V and dipped in KCI solution.
In this fitting, the optical data taken at 450, 492, 546,
and 580 nm are fitted independently at both potentials and
thickness dox and dieq corresponding to the oxidised and
the reduced state are obtained. This way, values of do =
165 and dieq = 120 nm, which show a swelling of the film
after reduction, are obtained. The k increase observed for
A = 400nm agrees with reported spectroelectrochemical
measurements [22]. The optical indices of the film in SDS
solution corresponding to the anodic and the cathodic
potential limit are very similar to that corresponding to the
oxidised state in KCI [35].

Moreover, the Ppy/SDS electrode recently dipped in KCl
solution adjusts spontaneously to an open circuit potential of
about 0.88 V. These results show that even polarised at 0.1V
the Ppy/SDS layer grown at 1.2V remains highly oxidized,
and the cycling in Figure 2(a) corresponds to a switching
between highly oxidized states with a scarce Ppy network
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FIGURE 6: Calculated thickness, d, and optical indices, #, k, for the Ppy layers already described in Figure 5 and for an illuminating light beam

of A =546 nm. () in SDS and ([J) after immersion in KCI.

reduction. The higher values of n at 0.1 V correspond to the
shrinking of the layer with exchange of cations and expulsion
of solvent.

The A/ values that correspond to two Ppy/SDS-inde-
pendent experiments obtained at 1.2 V applying four and five
cycles are plotted in Figure 5. The optical data in the SDS
solution free of pyrrole show a potential evolution, in the
region of 0.1 < E < 0.9V stepping every 0.2 V. They display
a small clockwise arch. After changing the electrolyte with
new KCI solution, the switching shows a counterclockwise
and higher potential dependence. Assuming common optical
indices at each fixed potential for both deposited films,
univocal values of n, k, and d are obtained. The n, k, and
d fitted values are plotted as a function of the potential in
Figure 6. In the case of SDS solution, very small n, k, and d
dependencies on E are noticed. However, a shrinking in the
thickness results during the progressive cathodisation in KCI
solution, which is the maximum for about 0.4 V. The k versus
E plot shows a maximum value in k for about 0.5V.

The shrinking of the membrane may partially increase
the values of the optical constants. For a pure substance,
nand k are independent of the thickness but Maxwell Garnett
and Bruggeman predict an increase of the effective n and k
indices for a composite due to the extraction of water [36].
However, the increase in k is so significant that it shows
a structural change in the Ppy phase.

The chain structure, compactness of both the bulk and
the surface of the composite Ppy/electrolyte, as well as the
concentration and mobility of counter anions become crit-
ical factors in the behaviour of the membrane. Bipolarons
are equivalent to di ionic states of a system generated after
oxidation of the neutral state initiated through the polaron
state monocation. In the oxidation process, the structural
relaxation causes a local distortion of the chain in the vicinity
of the charge, and the twisted benzoid-like network turns
into a quinoid-like structure. The extraction of the second
electron produces the bipolaron instead of two polarons, to
which structural relaxations larger than those corresponding
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to the polarons occur. Several 7r-7* transitions and polarons
band are reported for different Ppy/doped layers [37, 38].
A band at 584 nm may be surmised as an antipolaron to
a bipolaron band transition.

The experiment in Figure 5 shows a probable maximum
polaron effect at the equilibrium potential Eeq corresponding
to 50% oxidation of the chains. On the other side, these
kinds of experiments show that Ecq which is associated with
the voltametric peak potentials and the amenable maximal
reduction state depends on the structure, compactness, and
electronic conductivity of the network and the characteristic
of the counterions than spreads through the membrane.

Moreover during Ppy reduction, the penetration of the
cation into the membrane may flatten the smaller indenta-
tions [39]. Furthermore, overoxidation produces a decrease
in conductance and probably in the concentration of the
polaron after effect of the disruption of the conjugated dou-
bled bond structure [40].

Figures 7 and 8 correspond to the plot of the fitted #,
k, and d values taking either the complete or smaller sets
of successive thicknesses. Common values for n and k are
assumed as a boundary condition. A linear increase of d is
observed starting from the second cycle together with a small
increase in the values of n and k. The initial thickness of the
oligomers attached to the surface in the first and the second
cycle can be estimated of about 40 nm. After an initial deposit
of 40 nm, the second cycle produces the compactness of the

first deposited layer with practically no change in thickness.
In these calculations, n and k are considered as independent
parameters. However they become related parameters using
a more exhaustive analysis of Kramers-Kronig. In this case
the optical data should be measured in a wide range of wave-
lengths. On the other side, the Maxwell Garnett and Brugge-
man formalisms predict that both # and k must increase for
a more compacted composite material, in the conditions of
decreasing the volume fraction corresponding to the elec-
trolyte [36]. In Figure 7, a small decrease in thickness during
the successive optical measures taken at 0.1 V with intervals
of 1 min that corresponds to the aging or the so-called first
cycle or memory effect in the Ppy layer also can be noticed
after each cycle.

In the case of the experiment using Ea = 1.4V, Figure 8,
the scheme corresponding to a film increasing in compact-
ness at constant thickness prevails up to the third cycle with
a thickness of about 100 nm. After the third cycle, the layer
starts to thicken with practically fixed n and k values.

Figure 9 shows the A/¥ evolution during the first deposi-
tion cycles. In the graphics, theoretical curves corresponding
to the film increasing in thickness each 8 nm with constant n
and k values, namely, n = 1.343 — i0.100, 1.291 — i0.047, and
1.376 — i0.0723, corresponding of the fitted values obtained
taking the complete set of cycles are also plotted. Likewise,
the theoretical A/Y corresponding to films of either 130, 100,
70, or 40 nm whose optical indices decrease progressively
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FiGure 8: Calculated thickness, d, and optical indices, n, k, for the Ppy layers already described in Figure 3(b). Ea = 1.4V, 7 = 15s. SDS
solution, A = 546 nm. The different values # and k correspond to the resulting fitted values for different set of thicknesses.

according to the Bruggeman relationship starting from the
mentioned n — ik values to the values of n=1.332 and k=0
corresponding to the electrolyte are plotted. Figure 9 shows
similar calculations to that described in Figures 7 and 8. It
states as for films of low thickness very similar evolution in
A/VY results for both (I) d increasing with constant n and k
indices or (II) n and k increasing at constant d values.

In the case of the films formed using 5 cycles at 1.4V
and 1.2V and assuming average values for the oxidised and
the reduced state, the calculated d versus Q rate is equal to
1 ym for 7.3 mC/cm? and 1 ym for 11.6 mC/cm? of cathodic
charge, respectively. This charge is similar to the reported
for other thin films and about twenty times lower than the
anodic charge used in the deposition process [8, 28]. The
deposited layer at 1.4V is obtained with a higher water
contains. The currents of the peaks corresponding to the
oxidation and the reduction of the deposited Ppy, Figure 1,
indicate higher swelling and shrinking in the case of the film
formed at 1.4 V than in the case of that formed at 1.2 V.

Divers articles had reported the swelling and shrinking
process in several systems.

The mechanism of swelling can be originated by (1)
insertion and extraction of bulky ions, (2) conformation
change of a structure due to the delocalisation of 7-electrons

and formation of polarons and bipolarons, (3) electrostatic
repulsion between charges of the same sign [41]. Classical
molecular dynamic simulation of Ppy/water interface holds
that Ppy/Ppy interaction prevail over Ppy/water interactions
in the reduced state, while the oxidised state induces more
favourable Ppy/water interactions. The high hydrophobicity
of the reduced Ppy expels the water from the bulk polymer. A
density of 70 atoms/nm? was estimated for the reduced state
[42].

Nevertheless, different mechanisms can prevail, and di-
verse effects have been reported

PPy/PPS network expands due to the insertion of anions
in the oxidation and shrinks (extraction of anions) in the
reduction [41]. Ppy/PTS swells on reduction and shrinks on
oxidation. Charge compensation is probably accomplished
by the cation transport rather than anion expulsion from the
polymer matrix [43].

In Ppy/ClOy is reported 30% decrease in thickness dur-
ing oxidation. This seems strange with the expansion due
to anion incorporation and electrostriction is considered as
the controlling mechanism. Ppy/DBS expands about 61% by
reduction [23, 25].

In the case of Ppy/SDS film, the deposition at 1.2V
forms compact layers where SDS stabilise the Ppy in the
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Ficure 9: Enlarged plots of Ppy layers showing A/¥ values corresponding to the first cycles shown in Figure 3. (e) experimental points,
(a) Ea =1.2V, (b) Ea = 1.4 V. The figures correspond to number of cycles. Open points corresponds to different growing models: (®, O)
increasing d holding n and k fixed; (OJ, ¢, A, V) decreasing both # and k for different d fixed values, namely d = 130, 100, 70 and 40 nm,

respectively.

high oxidised state. In KCl solution, Ppy shrinks showing
an increasing polaronic effect for middle oxidation charge,
water expulsion, and cation insertion. The high sensibility
and reproducibility of the process may indicate the presence
of a composite gel/electrolyte [30, 44, 45].

The Ppy/PO;” electrodeposited at Ea = 1.2V and 1.4V
in phosphate buffer show higher optical indices, n = 1.50 —
i0.07, and an increase of d for the successive cycles starting
from the second one, holding # and k quasi constants. On the
other side, at a relatively very low potential, Ea = 0.9V, a thick
Ppy layer grows. Its thickness is about 80 nm and an initial
very low optical density similar to that of the electrolyte
increases with the number of cycles [15]. In the case of
Ppy/SDS, the initial cycles show a very low optical density
at Ea = 1.2V, and the mean thickness of the initial dispersed
attached oligomer increases for increasing Ea = 1.4 V. In this
electrolyte, the monomer is extensively dissolved into the
SDS micelles, and the electro polymerisation leads towards
an initially more dispersed film than in PO, solution. The
surfactant may also modify the growing process, induce the
formation of ion pairing, and promote the Py polymerisation
(46, 47].

5. Conclusions

The Ppy/SDS layer grown by successive potential pulses
shows an initially low optical index n — ik, and thickness d; of
about 100 nm. The density and optical indices n — ik of the
layer increase after the successive pulses up to a maximum

value n — ik, holding constant d, after which the film grows
in thickness holding constant density and n — ik indices.

The fitted d depends on the anodic limit Ea, increasing
with Ea, and d; = 40 nm and d; = 100 nm result from anodic
polarisation at Ea = 1.2V and Ea = 1.4V, respectively.

The film grown at Ea = 1.2V is more compact, shows
low pseudocapacity, and stays in a high oxidation state, even
under cathodic polarisation. After dipping in KCI solution,
significant increases in pseudocapacity and electrochromism
come out.

The Ppy/SDS layer grown at Ea = 1.4V shows swelling
under cathodic polarisation in SDS and KCI solutions. The
Ppy/SDS layer grown at Ea = 1.2V is very inert under switch-
ing in SDS solution. However, it shows significant shrinking
under cathodic polarisation in KCI solution.
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