
Parallel Linear Algebra on Clusters
Fernando G. Tinetti

Investigador Asistente Comisión de Investigaciones Científicas Prov. Bs. As.1

III-LIDI, Facultad de Informática, UNLP

50 y 115, 1er. Piso, 1900 La Plata

Argentina

fernando@info.unlp.edu.ar

Abstract

Parallel performance optimization is being applied and further improvements are studied for
parallel linear algebra on clusters. Several parallelization guidelines have been defined and
are being used on single clusters and local area networks used for parallel computing. In this
context, some linear algebra parallel algorithms have been implemented following the
parallelization guidelines, and experimentation has shown very good performance. Also, the
parallel algorithms outperform the corresponding parallel algorithms implemented on
ScaLAPACK (Scalable LAPACK), which is considered to have highly optimized parallel
algorithms for distributed memory parallel computers. Also, using more than a single cluster
or local area network for parallel linear algebra computing seems to be a natural approach,
taking into account the high availability of such computing platforms in academic/research
environments. In this context of multiple clusters, there are many interesting challenges, and
many of them are still to be exactly defined and/or characterized. Intercluster communication
performance characterization seems to be the first factor to be precisely quantified and it is
expected that communication performance quantification will give a starting point from
which analyze current and future approaches for parallel performance using more than one
cluster or local area network for parallel cooperating processing.

1.- Introduction

Cluster computing is already established as a low-cost high-performance way for parallel
computing. Computation intensive applications take advantage of the growing processing power of
standard desktop computers‚ along with their low cost and the relatively easy way in which they can
be available for parallel processing. Usually, computation intensive areas have been referred to as
scientific processing, such as linear algebra applications, where a great effort has been made in
order to optimize solution methods for serial as well as parallel computing [1] [2]. 

In the context of parallel computing hardware, installed local area networks that can be used for
parallel processing provide a “hardware zero cost parallel computer”. Hardware installation as well
as maintenance cost is “zero”, because LANs are already installed and each computer has its own
application programs, user/s, etc., independently of parallel computing. However, parallel
computing on these platforms is not “zero cost”. Even if the minimum installation of libraries for
developing and running parallel programs -such as implementations of MPI (Message Passing
Interface) [3]- are discarded, there are other costs involved, such as applications parallelization and
computers availability. 

Since some years ago, an algorithmic base for parallel linear algebra computing on clusters has been

1 Director: Armando A. De Giusti

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Centro de Servicios en Gestión de Información

https://core.ac.uk/display/153563387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


developed [4] [5] [6] [7] [8]. Algorithms for specific linear algebra methods/problems have been
implemented following a few guidelines, resulting in simple algorithms with optimized
performance on Ethernet-based clusters. Also, heterogeneity has been taken into account on these
algorithms for balance computing workload and a low-performance, local area oriented
interconnection network is always used. Using more than one cluster could lead to experiment with
algorithms (e.g. to verify their quality on a greater number of hardware platforms) as well as define
specific guidelines for parallel computing on more than one interconnected cluster. Also, it would
be necessary to modify the already defined guidelines if they lead to performance penalties or if they
are not useful on this new parallel computing platforms. 

Given the complexity of heterogeneous hardware for parallel computing as well as an
interconnection network with strong contention and/or high latencies make necessary having at least
a quantification mechanism or tool to identify bottlenecks and parallel performance penalties. From
the interconnection of computers point of view, this leads to aid the parallel programmer to face
varying message performance depending on external and unknown factors. 

2.- Current Research

Parallelization guidelines on clusters have been defined taking into account clusters characteristics
from the point of view of parallel computing and, more specifically, the differences of clusters and
traditional parallel computers. The underlying objective is performance optimization; parallelization
guidelines are basic but really important since they are specifically defined in the context of the
clusters interconnected by Ethernet networks. Summarizing, parallel applications to be run over
Ethernet-interconnected clusters should:
• Follow the message-passing programming model. A priori, the message-passing library with the

highest performance should be used.
• Follow the SPMD (Single Program, Multiple Data) execution model. This simple execution

model is favored in the context of linear algebra, where most operations have predictable
computing and communication patterns. 

• Use (if possible) only broadcast messages. Broadcast messages can directly make use of Ethernet
networks (physical) broadcast. Also, whenever a single type of messages is used, there are more
possibilities of optimization (a single type of message is optimized, instead of every MPI routine,
for instance).

• Arrange computing and communication phases in the algorithm so that computers can take
advantage of communication overlapped with local (numerical) processing, where facilities are
available to do so.

• Have one-dimensional processors interconnection and data distribution, thus making easier the
use of broadcast messages as well as the workload balance in clusters with heterogeneous
computers. With one-dimensional data distribution, all processors are assumed to be connected
to a single bus, such as in the definition of the Ethernet logical bus. 

Parallel programming following the message passing model is complex and complexities such as
those derived from intercluster communication should be avoided. These interconnections are
exposed to potential problems not found on the classical message passing context, with dedicated
interconnection networks. Some of problems to be solved in this context are: channel failures,
channel recovery, and communication time-outs depending on channel contention. Intercluster
communication complexities should be hidden as much as possible to the application programmer. 

Given the great number of factors affecting Internet traffic and Internet performance, it is necessary



to define at least a characterization of Internet network performance available for inter-cluster
communication. Parallel applications at least should be aware of performance penalties of
intercluster communication performance. It is expected to provide a tool and/or a methodology for
automatic identification of communication performance profile for intercluster communications. 

Computers processing performance and heterogeneity quantification are strongly needed for parallel
computing in general and for intercluster parallel computing. Important issues such as parallel
performance and computing workload are not possible to quantify without characterization of
sequential performance and processing heterogeneity of computers used on clusters. Even when
optimized parallel performance algorithms are already available for a single cluster it is expected
these algorithms are not optimal for intercluster parallel computing. Thus, it is possible new
algorithms and/or specific modifications to the existing algorithms should be defined. This task
could be made easier taking into account specific clusters for experimentation, which can be used
for identifying specific bottlenecks difficult to estimate and/or derive from other source/s. 

3.- Obtained and Expected Results

Three parallel algorithms have been already implemented following the parallelization guidelines
explained above: matrix multiplication and LU and QR matrix factorizations. Raw performance of
the three algorithms has been evaluated via experimentation on several clusters. Table 1 shows the
summary of the best cluster used in terms of processing power of each computer as well as number

CPU Clock Memory Mflop/s Ethernet Network
Intel P4 2.4 GHz 1 GB ≅ 3000 switched 100 Mb/s

Table 1: Cluster Characteristics.

of computers in the cluster: 20. The computers sequential performance measured as Mflop/s has
been obtained by using DGEMM. Table 2 shows the performance of the three algorithms (MM:
matrix multiplication, LU: LU matrix factorization, and QR: QR matrix factorization ) measured as
efficiency in the cluster using different number of computers. The minimum efficiency value is

Computers MM LU QR
2 0.89 0.92 0.95
4 0.86 0.92 0.95
8 0.86 0.93 0.96
16 0.81 0.90 0.94
20 0.80 0.86 0.93

Table 2: Parallel Algorithms Efficiency.

obtained by the parallel matrix multiplication using 20 computing: 0.8, which means that in the
worst case, the parallel algorithms obtain 80% of the available peak performance. In fact, for LU
and QR factorizations, the obtained performance is over 0.85 in efficiency values, which means that
the parallel algorithms obtain more than 85% of the available peak performance. This is more than
satisfactory taking into account that current clusters are installed with much better interconnection



networks than Ethernet 100 Mb/s, such as Ethernet 1 and 10 Gb/s, Myrinet, Infiniband, Quadrics,
etc. However, ScaLAPACK was used as to compare performance and finally confirm the quality of
the previous results. Table 3 summarizes the performance comparison with ScaLAPACK in terms
of percentage gain of the proposed parallel algorithms for matrix and the algorithms implemented in
ScaLAPACK, which are accepted as highly optimized for distributed memory parallel computers.

Computers MM LU QR
2 +31% +61% +6% 
4 +35% +56% +13% 
8 +57% +92% +21% 
16 +55% +99% +28% 
20 +53% +95% +27% 

Table 3: Performance Comparison with ScaLAPACK.

Each column shows the percentage gain of the proposed parallel algorithms compared to the
ScaLAPACK ones. The better values correspond, as expected, to LU factorization given that this
factorization is highly penalized in ScaLAPACK by the bidimensional matrix distribution and the
pivoting needed by numerical stability. 

There are many problems to be further approached, some of them are relatively simple and short-
term (sub)projects. Most of the ideas explained in the previous section related to intercluster
computing are still in an analysis stage and others depend on hardware not available by the time of
this writing. Summarizing expected results:
• Parallel algorithms for other computational problems included in LAPACK (Linear Algebra

Package) and ScaLAPACK, using the parallelization guidelines explained above.
• Intercluster communication tool-method, hiding details of physical communication to the

application programmer.
• Characterization of intercluster communication performance, which is very necessary to

characterize parallel performance when the interconnection network is shared with Internet
traffic, for example.

References

[1] Anderson E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S.
Hammarling, A. McKenney, D. Sorensen, LAPACK: A Portable Linear Algebra Library for High-
Performance Computers, Proceedings of Supercomputing '90, pages 1-10, IEEE Press, 1990.

[2] Bilmes J., K. Asanovic, C. Chin, J. Demmel, “Optimizing matrix multiply using phipac: a
portable, high-performance, ansi c coding methodology”, Proc. Int. Conf. on Supercomputing,
Vienna, Austria, July 1997, ACM SIGARC. 

[3] Message Passing Interface Forum, MPI: A Message Passing Interface standard, International
Journal of Supercomputer Applications, Volume 8 (3/4), 1994.

[4] Fernando G. Tinetti, Walter J. Aróztegui, Antonio A. Quijano, “Solución de Sistemas de
Ecuaciones Ralas en Clusters de Computadoras”, X Congreso Argentino de Ciencias de la



Computación (CACIC 2004), Universidad Nacional de La Matanza, La Matanza, Argentina, 4 al 8
de Octubre de 2004.

[5] Fernando G. Tinetti, Mónica Denham, Andrés Barbieri, “Algebra Lineal en Clusters Basados en
Redes Ethernet”, V Workshop de Investigadores en Ciencias de la Computación (WICC 2003),
Tandil, Argentina, 22 y 23 de Mayo de 2003, pp. 575-579.

[6] Fernando G. Tinetti, Mónica Denham, “Algebra Lineal en Paralelo: Factorizaciones en Clusters
Heterogéneos”, X Congreso Argentino de Ciencias de la Computación (CACIC 2004), Universidad
Nacional de La Matanza, La Matanza, Argentina, 4 al 8 de Octubre de 2004.

[7] Fernando G. Tinetti, Armando De Giusti, “Parallel Linear Algebra on Clusters”, 3rd
International workshop on Parallel Matrix Algorithms and Applications (PMAA'04), 20-22
October, CIRM, Marseille, France, 2004. 

[8] Fernando G. Tinetti, Antonio A. Quijano, “Costos del Cómputo Paralelo en Clusters
Heterogéneos”, V Workshop de Investigadores en Ciencias de la Computación (WICC 2003), Red
de Universidades Nacionales, Tandil, Argentina, 22 y 23 de Mayo de 2003, pp. 580-584.


