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Quality parameters analysis of optical imaging 
systems with enhanced focal depth 

using the Wigner distribution function

Dobryna Zalvidea, Cecilia Colautti, and Enrique E. Sicre

Centro de Investigaciones Opticas, P.O. Box 124, 1900 La Plata, Argentina

Received July 12, 1999; revised manuscript received January 10, 2000; accepted January 21, 2000

An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical ele­
ments with enhanced focal length is carried out by employing the Wigner distribution function. To this end, 
we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase
plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test 
images formed by these pupil functions at different defocus distances. ©  2000 Optical Society of America 
[S0740-3232(00)00605-0]
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1. INTRODUCTION
In recent years several types of optical elements that give 
rise to well-focused energy distributions along three­
dimensional paths have been extensively reported in the 
literature (see, e.g., Ref. 1). Annular-type apertures act­
ing as apodizers to improve the quality of the point- 
spread function (PSF) and to increase the focad depth 
have been studied.2- 8 However, the main drawback of 
all these methods arises from the fact that both the spa­
tial resolution and the optical power decrease at the im­
age plane. An alternative way to achieve an extended 
depth of field without using apodizers was reported by 
Hàusler9 for the case in which focusing can be varied 
through the im age-foxin g process. In this way, the im­
age field is adequately scanned to produce a well-focused 
PSF at each image point. Another type of optical system 
that allows the concentration of energy in a segment of 
the optical axis is the so-called axilens; such lenses have 
an associated focal length that varies with the radial co­
ordinate, so their phase retardation functions differ from

-
nential.10,11 Therefore, if these phase masks are em­
ployed as pupil functions of an imaging optical system, al­
though there is no decrease in the image intensity the re­
sulting PSF becomes relatively broad.

To evaluate the image quality originated by an optical 
system with a required focal depth, it seems adequate to 
use different parameters: for example, the Strehl ratio12 
(SR), which gives information about the energy concen­
tration along the optical axis, and the optical transfer 
function (OTF), which shows the behavior of the optical 
system for varying spatial frequencies.13 There are sev­
eral criteria for specifying the tolerance of an optical sys-

's
criterion,14 and Marechal's treatment of tolerances.15 In 
all these criteria the on- -
evant quantity. Hopkins16,17 has shown that it is pos­
sible to extend Marechal's treatment by employing OTF
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theory to give a tolerance criterion. This method is quite 
suitable as a merit function in automatic optical design.

The relationships between these image quality criteria 
and the phase-
distribution function18,19 (WDF) and the ambiguity 
function,20 (AF) were employed in several studies to ana­
lyze the performance of an optical system with respect to

:26
In a previous paper27 we proposed a method for obtain­

ing phase retardation functions that give rise to an in­
crease in the image focal depth. To this end, the W DF of 
a certain aperture with small depth of focus in the image 
space is sheared in the phase-space domain to originate a 
new W DF from which its related phase pupil gives rise to 
a more uniform on-axis image irradiance. In this way, a 
new phase pupil function with a good performance with 
respect to defocus, is obtained. A  lens axicon with a simi­
lar phase function was also proposed by Jaroszewicz and 
Morales,28 with use of geometrical optics.

In the present paper we first briefly describe the phase- 
space formalism and its relationships to different image- 
quality parameters. In particular, an expression of the 
SR as a function of the W D F of a bidimensional radially 
symmetric aperture is obtained for any out-of-focus plane. 
Then we extend the approach to analyze the relationship 
between the OTF of this kind of pupil function and the re­
lated WDF. We apply this analysis to study the behavior 
of different phase and amplitude pupil functions7,11 at 
various defocus distances.

2. WIGNER DISTRIBUTION FUNCTION: 
DEFINITIONS AND BASIC RELATIONSHIPS
For a two-dimensional complex-valued function g(x,  y ), 
its associated WDF phase-space representation can be al­
ternatively defined from the function itself or from its 
spectrum G(v, p)  as
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Wg(x, y ; v, 11)

—  y  — —
2 2

X g * I  —

X exp[—2m (x 'v  +  y '  p)~\dx' dy'

count the W D F definition as given by Eq. (1) and replac­
ing pix, y) ,  as given by Eq. (5), we find the W D F at the 
image plane to be

Wi(x,y ;  v, p)  =  (X /‘ )2W (|ac -  \fv, y  -  \fp;  — j ,

(6)

where Wtix, y ; v, p)  is the W D F of the pupil function 
i(£ , 77). Accordingly, with Eqs. (2) and (3), the intensity 
at a defocused plane (z = 0 ) can be found as

V ¡JL’
X G*\ v -------- , fJL---------

1 2 2

X exp[27ri(xi/ +  y  p')]dv' dp ' ,

( 1) ■/£=  (X/- )2 dvdfiWt X -  \{f  +  z ) v ,  y  -  \ ( f

respectively. From Eq. (1) it can be deduced that this for­
malism emphasizes equally the role of the spatial and the 
spatial-frequency coordinates. This feature makes these 
distributions especially suitable for describing the behav­
ior of optical imaging systems. Among several properties 
of these distributions, those that are relevant for analyz­
ing image-quality parameters are the following:

7(x, y;  z) Wz(x, y ; v, p)dvdp, (3)

¿* (0 , 0)

X exp[27r¿(wc +  /¿y)]drd/z. (4)

Equation (2) states that, under free-space propagation in 
the Fresnel diffraction region, the W D F associated with 
the light field is sheared in the phase space only along the 
spatial coordinates. In Eq. (3) the intensity distribution 
at a certain plane is found by projecting the W D F onto the 
spatial-ffequency plane. The Fourier transform in Eq. 
(4) allows recovery of the signal from the WDF.

3. IMAGE-QUALITY PARAMETERS AND 
THE WIGNER DISTRIBUTION 
FUNCTION: BASIC THEORY
Let us consider an optical imaging system that can be de­
scribed by the amplitude PSF. At the image plane (z 
=  0), the PSF is given through a Fourier transform re­
lationship

p(x,  y ; z =  0 ) =  — exp 
X/

i - A x 2 + y 2)
x /

X d£dj7, (5)

where A  is the constant incident amplitude, f  is the focal 
length, and i(£ , 77) is the complex^mplitude transmit­
tance associated with the exit pupil. By taking into ac-

x z y  z
+  z ) w ;------- —v , --------- —a

*  \f  f  \ f  f
(7)

From Eq. (7), the Strehl ratio versus defocus S (z ) can be 
easily derived as

S(z)
7(0, 0; z) 

7(0, 0; 0) - i f .
x  Wt(x -  \{f  + z)Ci, y  -  \{f +  z)£z ; Ci , £2),

(8)

where =  ( 1  ! f ) v, £2 =
frequencies, and K  =  (\f 2/za)2, a being the pupil area. 
Thus, the behavior of the optical imaging system can be 
visualized through the spatial variation of the function 
S (z ) , which in turn is obtained from the summation of 
the values of W z(x, y ; v, p.) along different lines in the 
phase space. However, although Eq. (8) provides a com­
plete description of the SR for any plane z +  0, it involves 
the manipulation of a function defined in a four­
dimensional phase space. If we restrict the analysis to

=  t(p), where
p =  (£2 +  7}2)V2, then the information content of the 
phase space (x, y ; Ci, £2) [from which the SR, S (z ) , is 
obtained] can be displayed in a modified two-dimensional 
phase space (x, £). To this end, we rewrite the intensity 
in the neighborhood of the image plane as

I(x, y ;  z) = \p{x, y ; z|2. (9)

Then, since the analysis is restricted to radially symmet­
ric apertures, the on-axis intensity is

I Ç2n r=O I ¿TTZ \

7(0, 0; z) =  i(p)exp^ ^ 2  p2 Ipdpd^ (10)

W e now employ the change of variable p =  pi£), previ­
ously introduced in Ref. 7, which transforms any two­
dimensional radially symmetric aperture tip), defined for
0 =s p =  po, into a modified one-&mensional pupil func­
tion qiC) that is different from zero only in the interval
1  = =

Then the on-axis intensity becomes

(11)
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7(0, 0; 2 ) =  J J r
q \ i +  ~  <7 * U -

í'\

zpo ,
X exp| 2 7tí ^ 2  C  j d£d£'. ( 12)

By means of the W DF defined for one^imensional func­
tions, the SR can be rewritten as

(13)

Therefore the SR for radially symmetric apertures can be 
obtained, for any out-of-focus plane, from a proper 
spatial- frequency projection of the WDF defined in the 
two-dimensional phase space that is associated with the 
transformed pupil function q(£)-

As presented by us in Ref. 27, it is possible to obtain 
phase retardation functions that give rise to an increase 
in the image focal depth. To this end, the W DF of a cer­
tain aperture f 0(p), which has an associated small depth 
of focus in the image space, is transformed through the 
change of variables in Eq. (11) into a one-& m e^ional ap­
erture qo(0  that is conveniently sheared by an amount a 
in the phase-space domain as follows:

/ zpo2 \ I zpo2 \
H -  (14)

In this way, high-value portions of the original W DF  
translate toward previously low-value regions, thus pro­
ducing a compensation effect that smooths the variation 
of the i  slices of the W DF from which the axial intensity is 
achieved. Therefore when this new WDF is introduced 
into the expression of the SR [Eq. (13)], a more uniform 
on-axis image irradiance can be accomplished. In Ref. 27 
we apply this method to a uniform aperture: f0(p)
=  circ(p/p0), which was selected because of its simplicity 
and energy considerations. The enhanced deptl-of-focus 
pupil function that we obtained was

(15)

Through the change of variables introduced by Eq. (11), 
the original pupil function t0(p) can be expressed as 
q0(£) =  rect(£). Then, when we take into account Eq. 
(14), the W DF of the transformed pupil function q (f) , 
which originates high focal depth, becomes

(16)

In order to characterize a certain amount of defocus Az 
where the optical imaging system produces a rather uni­
form Siz),  we restrict the W DF as given by Eq. (16) to 
take the phase-space values that satisfy

zpo
— a£ =  0 .

2 Xf2

Inside this domain the W D F takes the form

9
ZPO

9\2\f2
ZP o 

2 \ a f2

(17)

—2£ + 1  i  5* 0

2 f  +  1 C 0
(18)

=  -
=  - 1/2 the maximum value of the 

depth of focus is obtained, i.e. Az =  2z max, where

\ f 2a
^max o ’ (19)

Po

In this way, if a pupil function with a certain depth of fo­
cus is required for a given optical system, it is possible to 
achieve it by a proper shear in the phase-space domain 
[by applying Eq. (19)]. It is important to note that this 
procedure is more general than the scheme expressed by 
Eqs. (14)|19), as one can apply it to any other pupil func­
tion that has a symmetric WDF, in order to derive a new 
pupil function that takes into account the original pupil 
characteristics but with enhanced depth of focus.

Up to now, we have analyzed the behavior of the pupil 
function by taking into account the energy spread along 
the optical axis. For this reason, the SR provides an ad­
equate criterion for evaluating the performance of the op­
tical system. However, if  we are interested in taking into 
account the degradation of the image resolution for in­
creasing amounts of defocus, the OTF becomes a more rel­
evant quality parameter. The OTF would allow a better 
understanding of the spatiahfrequency performance of a 
given pupil function for different defocus values. In the 
following, we are interested in linking the OTF with the 
W DF that is associated with the pupil function, in a way 
that is similar to what we did with the SR. Therefore the 
OTF of a radially symmetric pupil with a transmittance 
tip) can be expressed as

where p(r' ;  z ) is the PSF of the pupil with transmittance 
tip), J 0 is the Bessel function of zero order and the first 
kind, and v means the modulus of the normalized spatial 
frequencies. To link this OTF with the W DF of i(p), we 
first rewrite the squared modulus of the PSF as
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I P{r'-z)\‘ “ IfI Jo

Jo Jo

7n z \ ¡2  Trpr'
¿(p)exp| —  P2 l̂ ~o( ...~^ -| p d p

t(p)t*(p')exp\ —  -  ( p ' ) 2]

i 2iTpr'\ l2Trp'r']
X J0[ - ^ r - p 0[^ r-| p 'p d p d p '. (21)

Then, by employing the change of coordinates introduced 
in Eq. (11) and replacing Eq. (21) in the expression of the 
OTF, we obtain

( 2  7rp0 / 1

, v i + r '

/ 2 ttpo 
X  c/ q I -------

\ V

x  c/ q i
\ I f

( 2irp0 I 1
Vf, + õ r

x  exp
771 Po z
— 2 -( £ -  n
X /•

X  e70(2 7 7 i/ r ') r 'd r ',

d id r

(22)

where q(£) is the transformed one-dimensional pupil 
function. To link this expression with the W D F of the 
transformed pupil we rewrite Eq. (22) as

\f

( 2 ttPo I r  -  i  \ 

r |

771 pQ Z
x  exp| Y y r t '  ld£d£' J0(2irvr')r' dr',

(23)

=  ’ ' ’ =  i  . From the definition
of the W D F, we found that

H{v, z)

J0(27rvr')r' dr'

(24)
r 'd r '

where

Fig. 1. Normalized intensity of the hyper-Gaussian pupil aper­
ture, the logarithmic phase mask, the circular pupil function, 
and the quartic pupil function for extended depth of focus, Az 
=

Fig. 2. Optical transfer function of (a) circular pupil function, 
(b) logarithmic pupil function, (c) quartic pupil function, (d) 
hyper-Gaussian pupil function for extended depth of focus, Az 
=

qU; r') = q(£)Jo (25)

Every W DF display corresponds to a different q(£, r' ), as 
is expressed in Eq. (25), where J q(£; r') acts as a window 
function for the transformed pupil function q ( 0 ,  which is 
related to the original two-dimensional pupil function 
t(p). Each W D F display shows the behavior of q(£,v') 
for every z value and for each value of v' , so it would be 
necessary to evaluate an infinite number of WDF^s, one
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for each value of v ' . On the other hand, i f  we analyze the  
behavior o f the transformed pupil function g (£ , v'), we 
see that the zeros o f the window function </0(£ ; v') are 
fixed, so as v' increases, Ç decreases; this m eans that for 
large v ' , q(£, v') can be approximated by q(£, v') 
~  q (0 )J Q(2TTp0\!Çv'), and tiie contribution o f the differ- 

*s
v' is large enough. In this way, the calculation o f  
H (v; z) is greatly simplified.

It can be seen from Eq. (24) that, in a w ay sim ilar to 
w hat was previously done for the case of the SR, the W D F  
associated with a one-dimensional modified pupil function 
provides information about the behavior o f the O TF ver­
sus defocus. For diverse pupil functions i(p ) , we obtain 
different q(£, r'0), where r¿ is a fixed value o f the variable 
r ' that is selected according to the spatial-frequency band

*s
the two-dim ensional phase space [x =  (p02z ) / ( 2 f 2\),  £] 
are obtained. In this way, the performances o f the differ­
ent pupil functions can be compared through the rate o f  
variation of these displays along the x coordinate. The  
tolerance to defocus of the considered pupil functions is 
determined in a w ay sim ilar to that for the analysis of  
S(z) ,  since there is a close resemblance between the p ex­
pressions in parentheses in Eqs. (13) and (24), which  
gives the SR.

4. RESULTS
To illustrate the present approach we analyze the SR and  
the O TF o f different pupil functions. W e compare the 
performance of four apertures: two phase pupil func­
tions, the quartic phase plate introduced in Eq. (15), and  
the logarithmic phase m ask,11 given by

t(p) =  circ| —  exp 
,Po!

í7rpo“ I Szp¿
M  fo +\Sz P o

(26)

where Sz is the focal depth; and two am plitude pupil func-
-Castañeda

et al. ,7

t{p) =  circj— |expj — 27ry 
\Po

(27)

and the full circular pupil function. The normalized in­
tensities for the four considered cases are shown in Fig. 1. 
The parameters o f the pupil functions have been chosen 
to give sim ilar depth of focus, and the lower tolerance to 
defocus o f the full aperture can be seen. The correspond­
ing OTF*s for different values of z are shown in Fig. 2. 
For the circular and the logarithmic pupil functions, the 
O T F ‘s dramatically decrease for out-of-focus planes, thus 
producing a serious degradation of their im aging capabili-

Fig. 3. Cross sections of the OTF of Fig. 2 for z =  0 mm and z = 24.119 mm. (a) Circular pupil function; some departure from the
=

function, (c) Quartic pupil function, (d) Hyper-Gaussian pupil function.
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(a)

(c) (d)
Fig. 4. Images of a test chart with (a) quartic pupil function for z = 10 mm, (b) hyper-Gaussian pupil function for z i  0 mm, (c) quartic 
pupil function for 2 = 24.119 mm, (d) hyper-Gaussian pupil function for z = 24.119 mm.

ties. The OTF associated with the hyper-Gaussian pupil 
function shows a smoother decrease them the correspond­
ing quartic aperture, but both of them produce better im­
age quality than the circular and the logarithmic pupil 
functions. This fact can also be appreciated from Fig. 3. 
The OTF*s associated with the quartic and hyper­
Gaussian apertures for z =  0 mm and z —  24.199 mm  
show a better performance than for the other two pupils. 
For the quartic pupil function it can be seen that the cross 
section of the OTF presents spatial-frequency zones with 
better image resolution.

In Fig. 4 we compare the performance of the quartic 
and the hyper-gaussi^ pupil functions through the simu­
lated images of a test chart for the best in-focus plane (z 
=  10 mm for the quartic pupil and z =  0 mm for the 
hyper- Gaussian pupil function), and for extreme defocus 
z =  24.119 mm. While for in-focus value the quartic and 
the hyper- Gaussian pupils present similar resolutions, for 
extreme depth of focus the quartic pupil has a better be­
havior than the hyper-Gaussian.

5. CONCLUSIONS
In the present paper we studied the SR and the OTF of 
different phase and amplitude pupil functions for varying 
defocus. W e have linked these quality parameters with 
the W DF of these pupils. In this way, the SR could be 
visualized in a single phase-space representation of a one­
dimensional modified pupil function. In another proce­
dure, the OTF was analyzed by examination of the differ­
ent W D F at various defocus distances. From these 
displays we obtained information directly about the be­
havior of the OTF criterion and the SR to analyze the im­
age quality produced by four pupil functions with good 
tolerance to defocus. These relations between the quality 
parameters and the W DF have important implications in 
the design of optical imaging systems. Although the ex­
pression obtained for the OTF is more difficult to analyze 
than the equivalent expression for the SR, the present ap­
proach reduces calculation time.

Address correspondence to D. Zalvidea at the address
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on the title page or by telephone, 54-221-4840280; fax, 
54-221-4712771; or e-mail, dobr3maz@odin.ciop.unlp. 
edu.ar.
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