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Abstract 
Sharing of behavior is one of the most important features in the Object-Oriented paradigm.  The two 
classical organisations of sharing are classes and prototypes, raising two different models and two 
families of object oriented languages.  It has been largely discussed which of these two models is the 
most basic, giving the essence of the Object-Oriented paradigm.   
We claim that sharing schemes can be constructed in a more basic model with just objects and 
messages.  We analysed the features this model must express, specially the ability to share 
behavior.  Abadi and Cardelli have defined a calculus of objects which represents the basic elements.  
They describe how to build the concepts of class based languages in their formalism. 
In this work we show how to express delegation between concrete objects in the calculus.  The key 
advantage of our contribution is that by providing per object delegation we can represent every 
sharing scheme possible in a prototype environment, thus completing the conviction that all the usual 
constructs found in OO can be built using only objects and messages.   
We have defined sharing constructs for an object based (prototypes) high level language, and their 
translation into the formal calculus.  This shows how constructs similar to those appearing in usual 
programming languages can be written in the formal calculus, and allows writing programs in the 
formalism without requiring understanding details about it.  There are primitives to express the 
sharing relationship in object creation, to change that relationship and to reference the donor of an 
object. 
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Introduction 
One of the most important features in the Object-Oriented paradigm is sharing.  Sharing is what 
allows objects to have a common behavior.  By sharing, an object exhibits behavior it does not define 
by itself, but is rather defined by some other object.  There are two main ways of organising the 
sharing mechanism, thus raising two different models and two different families of Object-Oriented 
languages. 
One of these models is based on the class concept.  In this model,  classes are objects that define 
behavior for a collection of other objects created by them. The objects created by a class are called 
instances of that class.  Every object belongs to a class and borrows from it the methods needed to 
answer the messages it receives.   
The other model is based on the prototype concept.  In this model an object can be created by any 
other object (the prototype), being the new one a clone of the creator,  and can borrow behavior from 
any object too. 
It has been largely discussed which of these two models is better suited for development and which 
one is the most basic, giving the essence of the Object-Oriented paradigm. Lieberman [Lieberman86] 
showed how to implement sharing mechanisms between groups of objects using prototypes.  Lynn 
Andrea Stein [Stein87] showed how to simulate prototypes with classes.  
The discussion about suitability for development is quite solved since the “Treaty of Orlando” 
[Stein88]: each model is more appropriate for different domains and development stages.  Prototypes 
are very flexible, and so allow rapid prototyping and exploratory programming.  They are useful for 
domains under investigation.  Classes allow good structuring of  the system, and are useful when the 
domain is well understood, and to build reusable components. 
Nevertheless, the question about which model is the most basic remains open and leads us to the 
question: Is there a minimal set of concepts that serves as the basis to build both, classes and 
prototypes?  Considering that in the Object-Oriented world everything must be modelled as an object, 
it is reasonable to think that these concepts are objects and object communication, i.e. messages.  
We have selected and defined the basic concepts we consider indispensable in a model of Object-
Orientation.  One of these is sharing, a complex notion that must be specially analysed. 

This model should fulfil some requirements as, for example:  
° being formal,  
° being expressive enough, so that the concepts in the Object-Oriented paradigm can be 

specified,  
° being adequate with relation to the Object-Oriented paradigm, 
° being simple enough so that the amount of mathematical or logical knowledge necessary 

to understand or express the basic concepts about objects is minimal, 
° and being wide enough so that not only the basic concepts can be specified, but also 

design and programming techniques. 

Over the last years there has been important effort to develop formal theories about the basic 
concepts in Object-Oriented programming. Most existing models of Object-Oriented languages fall 
into one of three categories: 
Models in the first category, such as the ones defined in [Breu89, Ehrich90, Goguen94, Lu93 ], rest 
on the appealing simile between the programming concept of object and the mathematical notion of 
algebra.  
Models of the second kind [Abadi96, America90, Bruce91, Castagna92, Cook90, Steyaert95 ] 
describe object-oriented languages using some formal notation, such as lambda calculus. 
Models in the third category [Bahsoun93, Fiadeiro96, Meseguer91, Wieringa94] give formal 
semantics of an object as a logic theory. 
Most of these models define the concept of class as a basic construction of object-oriented 
languages and make emphasis on the semantics of class-based inheritance. There has been less 
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effort to develop foundations for prototype-based languages or to define a more general model, 
which at the same time represents both class-based and prototype-based languages. 
Martin Abadi & Luca Cardelli have defined a formal calculus of objects, the impς-calculus,  which 
consists just of objects, object communication and object update [Abadi96].  It belongs to the second 
category described above.  It appropriately expresses the basic notions about objects and neither 
classes nor prototypes are primitive in the calculus.  Abadi & Cardelli describe how to build the 
concepts of class based languages in their formalism, but they don't represent the ability to share 
behavior by delegation among concrete objects present in prototype based languages. 
We have built per object delegation using the calculus.  The key advantage of our contribution is that 
by providing per object delegation we can represent every sharing scheme possible in a prototype 
environment, thus completing the conviction that all the usual constructs found in Object-Oriented 
languages can be built using only objects and messages.   
We have defined sharing constructs for an object based (prototypes) high level language, and their 
translation into the formal calculus.  This shows how constructs similar to those appearing in usual 
programming languages can be written in the formal calculus, and allows writing programs in the 
formalism without requiring understanding details about it.  There are primitives to express the 
sharing relationship in object creation, to change that relationship and to reference the donor of an 
object. 
The structure of the paper is as follows.  Section 1 describes the Object-Oriented paradigm 
essentials.  Section 2 discusses the notion of sharing, the different aspects it involves and the usual 
sharing mechanisms.  Section 3 briefly describes Abadi & Cardelli imperative calculus and how it 
represents the essential Object-Oriented constructs.  Section 4 shows the representation of per 
object delegation in the calculus and Section 5 gives the high level constructs for per object sharing 
and their translation into the calculus.  Section 6 exemplifies the use of the proposed language, giving 
solutions to known problems.  We conclude by stating some final remarks and future work. 

1. Essentials 
In this section we describe what we consider the essential features of the Object-Oriented paradigm.  
The basic elements in the model are objects.  The basic mechanisms, indispensable to work with 
objects are object creation, object communication and object modification.  The use of the basic 
elements and mechanisms must exhibit the essential characteristics of polymorphism, encapsulation 
and ability to share.  We next describe each feature. 
Objects are abstractions of entities from the real world, this counts for concrete as well as for abstract 
entities.  The fundamental capability of objects is communication.  Communicating means receiving a 
message, and acting in response to it.  Every object has a set of messages it understands, known as 
the object’s protocol.  The object knows what to do in response to each message it understands.  
Besides, there are messages the object does not understand.  The object also knows what to do 
when it receives a message it does not understand. 
For each message an object understands it knows another object, which gives the response to the 
message and is called method.  The method object may describe interactions with other objects, 
necessary to fulfil the task commended by the message.  
The set of messages an object understands and the responses to those messages are the object’s 
behavior. 
This notion of messages and associated responses make needless the usual notions of instance 
variables and state: an instance variable is a message whose response is the object which would be 
referenced by the variable.  In this frame, we do not distinguish between state and behavior. 
Objects have identity.  The object’s identity won’t change, even if the object changes.  Different 
objects are distinguishable upon their identity, no matter any other similarity between them. 
Object creation is a mechanism for introducing new objects into the world.  In its basic form, it is a 
way of generating objects from scratch: an object is defined by describing its behavior.  
Object communication is achieved by messages.  A message is a request to perform an action, or a 



Proceedings                                                                                                                                                      CACIC '97 
Ingeniería de Software. Bases de Datos.                                                                                                                 UNLP 
 

Departamento de Informática - Facultad de Ciencias Exactas                                                                                   4 

notification of an event.  It produces a reaction on the object that receives it.  A message may carry 
one or more objects with which the receiver can interact to response to the message. 
We have stated that objects are entities that can receive messages and answer them.  Then, 
modifying an object means changing the response it gives to some message.  An object modification 
mechanism must allow to replace an object‘s response to a message.  
The manipulation of objects with the basic mechanisms must conform certain characteristics: 
polymorphism, encapsulation and ability to share. 
Polymorphism means that different objects may be able to answer the same message, and the 
reaction to that message will depend on the object that receives the message. 
Encapsulation is respected if an object can be modified just by itself, in response to a message.  
Besides, an object can restrict the set of messages it can receive from other objects to a subset of its 
messages.  This is, the set of messages is divided in private and public messages, and only the 
object itself can send it a private message. 
Objects must be able to share their behavior with other objects:  being created in terms of existing 
objects, borrowing behavior from other objects.  Sharing is further analysed in the following section. 
The basic elements and mechanisms just defined are the essential building blocks in the Object-
Oriented paradigm.  Legal constructs from this blocks must respect encapsulation and behave 
polimorphycally.  Sharing can be accomplished by appropriate constructs from the basic elements. 

2. Sharing 
One of the most important features in Object-Oriented programming languages is the facilities they 
provide for different objects to have common behavior.   
Sharing of behavior can be implicit or explicit, it can be defined per objects or per groups of objects, it 
can be dynamic or static and it can be implemented using delegation or embedding [Stein88, 
Abadi96].  These choices are orthogonal, in the sense that any combination of them is legal, and 
determines a different kind of sharing. 
When two objects share behavior one of them must know to behave upon the reception of a 
message, called donor, and the other object borrows that behavior. 
Sharing is explicit if an object can explicitly designate a donor for each message.  In this case, an 
object can have many donors, one for each message for which it borrows the behavior.  Sometimes 
this flexibility gives raise to complex and confusing sharing relationships.   
Sharing is implicit if an object has a parent object from which it borrows the behavior.  In this case, 
the parent is the default donor for each message for which the object doesn't define its own behavior.  
Some languages allow the definition of more than one parent object (resulting, for example, in 
multiple inheritance). 
When sharing is dynamic an object has the ability to change its donors, to decide not to borrow 
behavior for a message any more and implement its own behavior, or to start borrowing it. 
With static sharing the donor objects cannot be changed, and the sharing relationship is fixed from 
the creation.   
Sharing of behavior can be accomplished with delegation or embedding. 
With embedding, the borrowed behavior becomes part of the borrower object (usually the behavior is 
copied in the object at the time the object is created).  In this case, when the borrower object receives 
a message for which it borrows the behavior it can give an answer by itself, and no interaction with 
the donor is needed. 
With delegation, each time the borrower object receives a message for which it doesn’t define its own 
behavior, it asks the donor to handle the message for it.  The donor must be able to  respond to the 
message on behalf of the receiver. 
A main feature to deal with when providing implicit sharing with delegation is the routing of messages 
following the donor relationship.  One choice is that the borrower object knows just those messages 
for which it implements the behavior.  When an object receives a message it can not understand, the 
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message is forwarded to its donors.  The donors would do the same if they don't understand the 
message.  The message follows the chain until reaching an object that understands it (and responds 
to it), or an object that does not understand  it and has no donors.   
Another choice is that every object knows which are the messages for which it borrows behavior.  So 
when it receives a message it can decide whether to forward it to a donor or just discard it.  In this 
case the shared protocol is embedded in the borrower object. 
In class based languages sharing is expressed for groups of objects (when you define behavior for a 
class all the objects belonging  to that class borrow it ) and it is implicit (each object has a parent: its 
own class).  But some class-based Object-Oriented languages use embedding and others use 
delegation, in some of them sharing is dynamic, in others it is static. 
Smalltalk, for example, uses a combination of embedding and delegation.  Instance variables in 
Smalltalk are embedded (so that each object can keep its own state) but the other messages are 
delegated to the class [Goldberg83].   
Hybrid's inheritance is dynamic [Stein88].  In C++, on the other hand, the sharing relationship is 
static.  In Smalltalk sharing is intended to be static, even though there are messages to change an 
object's class, their use is discouraged.   
Prototype based systems use per object sharing.  But different languages choose differently whether 
to use embedding or delegation (or both), explicit or implicit, static or dynamic sharing.  For example, 
some languages provide cloning, which is implicit embedding, as a mechanism for creating objects, 
and also provide delegation.  Self implements implicit sharing through the parent link, and in 
Delegation language sharing can be either implicit or explicit [Stein88].  

3. Presentation of impς-calculus. 
In this section we describe an imperative, untyped calculus of objects, created by Abadi & Cardelli 
[Abadi96],  and the relation to the essential notions described in Section 1.  Then we explain 
functions and pre-methods, which are used to construct sharing of behavior in the calculus. 
We choose this calculus because it provides the basis for the model we wanted.  Every term in the 
calculus is a directly described object, the response to a message or the result of an update.   
An object is a collection of messages the object understands; for each message there is a method or 
response to the message. 
An object understanding messages m1, m2, ..,mn with associated methods b1, b2, ..,bn

 [ m

 is represented 
by the term 

1 =ς(x1) b1, m2 =ς(x2) b2, .., mn =ς(xn) bn 

b
] 

1 , b2 , ..,bn   are themselves objects.  The construct ς(x1) b1  means that in the body b1 , the variable 
x1   will represent the receiver of the message m1   

Sending the message m
 (the usual notion of self) 

1   

 o.m
 to the object o, is represented by the term 

The update of object o, setting the method for m
1 

1  to object b1 

 o.m
, is represented by 

1   ⇐ς(x1 )b
The creation of an object is achieved by the construction of the term representing the object. 

1 

The calculus also includes terms for a cloning operation: clone (a), which creates a new object as a 
copy of object a (but with its own identity);  and a let construction: let x=a in b,  (here a and b are 
objects and x is a variable) representing the evaluation of a, followed by the evaluation of b, with x 
standing for the result of the evaluation of a.    
Polymorphism is inherent to the calculus, because there is no restriction about two objects having the 
same message in their protocol, and the method for the message is always taken from the receiving 
object. 
Sharing is achieved by the use of pre-methods.  Pre-methods are objects representing functions that 
take an object (the receiver of the message, “self”) and return a method.  Pre-methods are methods 
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in some other object (e.g. a class object) and they are obtained by message passing. 
To achieve sharing in the calculus, the receiver must understand the message (i.e. the message 
must belong to its protocol), and in its associated method it must borrow the proper method sending a 
message to the object that has the required pre-method.  We call this mechanism “protocol 
embedding”. 
Encapsulation is not directly expressed in the calculus.  This characteristic is not covered in this work 
and will be subject of further work. 

Operational Semantics 
The operational semantics describes term reduction.  It is based on a global store.  Objects reduce to 
sequences of store locations, one for each of its messages.  The definition uses stacks, which bind 
names to object results.  Each store location contains a method closure, which is composed of a 
method and a stack used to evaluate the method. 
The operational semantics relates a store σ, a stack S, a term b, a result v and another store σ’ 

σ . S ├ b   ~>  v . σ’ 
This means that with the store σ and the stack S, the term b evaluates to the result v, producing an 
updated store σ‘. 
The rules defining the operational semantics are depicted in Figure 1. 
Rules (Store ∅),  (Store ι),  (Stack ∅) and (Stack x) describe the formation of stacks and stores. 
Rule (Red x) says that a variable reduces to the result it denotes in the current stack.  Rule (Red 
Object) states that an object reduces to a result consisting of a fresh collection of locations; extending 
the store with the new locations.  Rule (Red Select) says that when a message is sent to an object, 
the object is reduced to a result, and then the corresponding method is evaluated.  An object update, 
(Red Update), reduces its object to a result and updates the appropriate store location with a new 
method closure.  A cloning operation, (Red Clone), reduces its object to a result and then allocates a 
fresh collection of locations that are associated to the existing method closures from the object.  A let 
construct is evaluated by first reducing the term associated to the bound variable to a result, and then 
evaluating the body in a stack extended with the variable denoting this result (Red Let). 

Functions 
Functions are represented in the calculus by objects.  They are important because they are is used to 
represent messages that carry arguments, and to represent pre-methods.  Pre-methods are used for 
sharing of behavior. 
The representation of a function is an object with two messages: one for the argument and another 
for the body.  Within the body, the argument is referenced by sending to self the message that 
returns the parameter. 
The evaluation of the function involves modifying the object by setting the argument’s message to 
return the real parameter, and then sending the message associated with the body. 
For example, let’s represent a function with parameter x, which calculates x+2.  Assume that the 
parameter object understands the message succ, which returns the object x+1.  This function is 
represented by the object  

[ arg= ς(x1 ) [ ], val= ς(x2 ) ((x2

Here, the value of the parameter is initially set to the empty object.  The evaluation of the above 
function on an object o, is represented by the term 

. arg). succ). succ ] 

( [arg= ς(x1 ) [ ], val= ς(x2 ) ((x2 . arg). succ). succ ]. arg ⇐ ς(x1 ):o ). Val 
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ι Store location(e.g. an integer value) 
v ::= [li  = ι i i∈1..n  result ]    
σ::= ι i → <ς(xi)bi  , Si  > store  i  ∈1..n 
S:: xi →vi

 i  ∈1..n stack   
σ├ <> well-formed store judgment 
σ . S ├ <> well-formed stack judgment 
σ . S ├ a ~> v . σ’ term reduction judgment 
 
 
(Store ∅) 
 
 
∅ ├ <> 
 
(Stack ∅) 
   σ├ <> 
 
σ . ∅ ├ <> 
 
 
(Red x) 
σ . (S’, x → v, S’’) ├ <> 
 
σ . (S’, x → v, S’’) ├ x ~> v . σ 
 
(Red Object)      (li   ,   ι i

σ . S ├ <>    ι
 distinct) 

i 

 
 ∉ dom(σ)  ∀i∈1..n 

σ . S├ [li  =ς(xi   )bi  ] ~> [li  = ι i  i ∈ 1..n  ] . (σ,ι i  →  <ς(xi  )bi , S>  i∈1..n 

 
) 

(Red Select) 
σ . S├ a ~> [li  = ι i i ∈ 1..n   ] . σ’      σ’(ι j) = <ς(xj  ) bj   , S’>     xj  

σ . (S’, x
 ∉ dom(S’)   j∈1..n 

j → [ li = ι i i ∈ 1..n  ] ) ├ bj

 
  ~> v . σ’’  

                                             σ . S ├ a.lj
 

  ~> v . σ’’  

(Red Update) 
σ . S├ a ~> [li = ι i i ∈ 1..n  ] . σ’       j∈1..n   ι j 

 
∈dom(σ’) 

σ . S ├ a.lj  ⇐ ς(x)b ~>  [li  = ι i i ∈ 1..n  ] . (σ’. ι j  ← <ς(x)b 
 

, S> 

(Red Clone)      ι i

σ . S├ a ~> [l
’ distinct 

i  = ι i i ∈ 1..n  ] . σ’    ι i  ∈dom(σ’)   ι i

 
’ ∉dom(σ’)  ∀ i∈1..n 

          σ . S ├ clone(a) ~>  [li  = ι i’ i ∈ 1..n  ] . (σ’, ι i’  → σ’(ι i  ) i ∈ 1..n  

 
) 

(Red Let) 
σ . S ├ a ~> v’ . σ’     σ’. (S, x → v’) ├   b ~> v’’ . σ’’ 
 
                               σ . S ├ let x=a in b ~> v’’ . σ’’ 

 
 
 
 Figure 1 

(Store ι) 
σ . S├ <>    ι ∉ dom(σ) 
 
σ,  ι  → <ς(x)b 

(Stack x)       (l

, S> ├ <> 

i, ι i

σ . S ├ <>    ι
 distinct) 

i

 
 ∈dom(σ)    x ∉ dom(S)   ∀i∈ 1..n 

                 σ . (S, x → [li   = ι i i∈ 1..n]) ├ <> 
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For writing convenience, functions are included in the syntax of the calculus, and translated as 
described above.  A function with argument x and body b is written λ(x) b. The application of a 
function f to an argument a is written f(a). 

Pre-Methods 
Pre-methods are objects used to share behavior.  Pre-methods are the basis for constructing classes 
[Abadi96] and delegation, as we will describe in the following section. A pre-method is an object 
representing a function where the intended meaning of the parameter is the receiver of the message.  
The body refers to the parameter everywhere it would refer to self. The pre-method is a method in 
some object, which will be the donor in the sharing relationship.  The object that wants to 
inherit/reuse the behavior defined in the donor, sends the donor the message for the pre-method with 
itself as parameter. 
Suppose we have an object representing a bank account: 

[balance= ς(self) b , 
 deposit= ς(self) λ(amount) let x= self. balance. add (amount) in ( self. balance ⇐ ς(self) x ), 
 withdraw= ς(self) λ(amount) let x= self. balance. sub (amount) in ( self. balance ⇐ ς(self) x ) ] 

Now we want to share the behavior for depositing and withdrawing between several bank account 
objects.  We will create a new object that abstracts this behavior in a way it can be borrowed by the 
particular accounts.  Let's call abs-account this new object.  

abs-account ≡ 
[deposit=ς(self) λ(receiver) λ(amount)  

let x=recevier.balance.add (amount) in (recevier.balance ⇐ ς(self) x ), 
 withdraw:ς(self) λ(receiver) λ(amount)  

let x=recevier.balance.sub (amount) in (recevier.balance ⇐ ς(self) x )] 

Now a particular account will be represented by 

[balance= ς(self) b, 
deposit= ς(self) abs-account.deposit(self), 
withdraw= ς(self) abs-account.withdraw(self)] 

4. Implementing implicit delegation in impς-calculus 
In an Object-Oriented environment with implicit delegation every object has a donor.  
The imperative impς-calculus of Abadi & Cardelli does not provide implicit delegation as a primitive 
mechanism. The main problem to simulate implicit delegation arises because objects only perform 
actions when they receive known messages; the reception of unknown messages produces a stuck 
state in the reduction. In this representation objects can only receive messages for which they have a 
response. 
Although implicit delegation is not the implementation of sharing chosen by Abadi & Cardelli, it can be 
simulated at a user level language with impς-calculus as its kernel. 
Implicit donor is easily implemented with the more general concept of explicitness provided by the 
calculus. If we have a way to specify the donor for a whole object, we can make explicit references to 
the same donor in the object’s methods, in order to get the effect of implicit donor. 
To give delegation semantics we have to analyse and simulate the two defining characteristics, 
mentioned in Section 2. 
The first of them is the capability of a donor to respond to messages as if it were the receiver.  
We have to simulate the handling of self in shared methods. The idea of pre-methods is the key. 
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Recall that pre-methods are methods whose self variable is abstracted. If we want to implement an 
environment where every object can be a donor for others (any object can be taken as a prototype, 
and prototypes are ordinary objects) we have to implement methods in objects with a pre-method 
style. 
The other defining characteristic of implicit delegation is the routing of messages following the donor 
relation. Due to the restricted capability of objects in the impς-calculus to receive only known 
messages, this routing cannot be emulated. Instead, its effect can be achieved through embedding of 
protocol. When an object is created it is prepared to delegate in a specified parent object: its protocol 
is extended with a copy of the donor’s protocol. In this way it is capable of responding to any of the 
shared methods. Messages are represented with a specification part and an implementation part. 
The former is a message whose method is an invocation to the implementation part. The latter is 
another message whose method is the pre-method. The specification part invokes the corresponding 
pre-method with the receiver object as argument. The implementation part contains the body of the 
method for the messages defined by the object, or an invocation to the parent’s corresponding pre-
method for borrowed messages. 
So, we could have the following construct in a high level language: 

object obj  is 
parent  donor  
messagei(argi,1,..,argi,pi) : methodi 

end 

i ε 1..n 

to specify that obj is a new objet being created. Object donor is set as obj’s parent. Messages 
message1 to messagen are the new original messages of obj, with argi,j

If we suppose that donor is capable of receiving messages message
 their arguments. 

n+1 to messagen+m disjoint with 
message1,..,messagen

let obj = [ parent : ς(self) donor, 

, (note that the variation to allow overriding of messages is straightforward), the 
translation of the previous constructs into impς-calculus could be: 

messagei : ς(self) self. *messagei(self)  iε1..n+m

*message
, 

i : ς(self) λ(rec) λ(argi,1). . .λ(arg i,pi) method i{arg i,j 
j ε 1..pi } iε1..n

*message
, 

i : ς(self) λ(rec) self.parent.*messagei(rec) i ε n+1..n+m      

The special symbol ‘*’ is used to denote messages containing pre-methods. Messages without ‘*’ 
correspond to the specification parts, observe that obj contains all the messages borrowed from 
donor among them. These messages without ‘*’ invoke the corresponding pre-method. The 
responses for obj’s proper messages (message

] 

1 to messagen), method1 to methodn, are contained in 
the corresponding obj’s pre-methods (*message1 to *messagen). The implementation for borrowed 
messages (messagen+1 to messagen+m), is an invocation to pre-methods *messagen+1 to *message 

n+m

Any object responding to the same protocol as donor could be set as obj’s parent at run-time, 
replacing donor through a high level sentence such as: 

 in donor. 

 obj setParent: donor2 
which could be translated into impς-calculus as 

 obj.parent ⇐ ς(self) donor2 
In this way we get a clean implementation of implicit delegation constructed over a calculus that does 
not provide it as primitive. The user level language could be extended in order to provide multiple 
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parent and some form of explicit delegation (delegating particular messages to the donor within an 
original or overridden method, in a taste to super).  

5. An object based language providing sharing 
In this section we present Asterix, a simple object based user level language that provides several 
ways of expressing sharing. Fixing a per object model, it has constructs for both delegation and 
embedding, and these can be used in an implicit or explicit form. The translation of Asterix objects to 
impς-calculus terms shows how the different sharing schemes can be built upon the calculus. As we 
use a formalism -the impς-calculus- to give the semantics of our high level language, we obtain a 
rigorously defined user language. 
Objects in Asterix are prototypes: they can be cloned to create new objects, and other objects can 
delegate behavior in them.  
The attributes of objects are treated homogeneously. There is no distinction between fields and 
methods. 
There are two main ways of creating objects in the language: defining and cloning. Object definition 
generates a new object specifying the messages it receives and optionally a parent object. The 
sharing schemes for an object’s messages are determined at creation time, and can be later 
modified. The new object delegates in its parent all the messages it does not define. Messages 
defined for the new object may override parent’s or may be new proper messages. The method for a 
message may be defined from scratch (optionally with arguments), or may be borrowed in three 
different ways: delegating in an existing object, embedding it from its parent, or from any other object. 

object  
[parent: o1] 
 message m1 (  (arg1,.., argn) x1,..,xm

delegate in o2 | 
 b end | 

embed from o3 | 
embed from parent )  
message m2 . . .  

:  
end 

When defining a method, variable identifiers (x1 to xm

The cloning construct creates a new object embedding the whole behavior of an existing one.  

, in the example above) may be specified to be 
used in the body of the method. 

clone(obj) 

When an object is cloned, all the responses to its messages are copied to generate a new object. 
Embedding is thus done implicitly, because there is no specification of particular methods to embed, 
the whole object is copied.  
At object creation time we have the possibility to use four different patterns of sharing. If the new 
object specifies a donor object with parent:, then every message it does not define (when received) 
will be forwarded to that object; in this way we have implicit delegation. 
For a method defined with delegate in o1, when the corresponding message is received it is forwarded 
to o1, which acts as the donor for that specific method. So it’s an explicit delegation kind of sharing. 
When the response to a message is defined with embed from (parent|o1), a copy of the 
corresponding method in the parent or o1 is obtained and set as the new method. As a specific 
method is embedded, we classify it as explicit embedding. 
To provide object modification Asterix has an update construct to change the method for a message, 
and a special construct to change the donor of an object. Modification of an object can only be done 
by the same object in the body of its methods; this way encapsulation is not violated. Method update 
allows modifying the sharing relationship between objects. This can be done either defining a new 
method, or delegating the method in the parent or in any other object, or obtaining a copy of another 
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object’s method through embedding. 

self  m1 := (  (arg1,.., argn) x1,..,xm
 delegate in o2 | 

 b end | 

 delegate in parent | 
 embed from o3 | 
 embed from parent ) 

The parent of an object can be replaced by another object, and all the messages not defined for the 
receiver object will now be delegated in the new parent. That new donor should have the same 
protocol as the replaced one. 

self changeParent: o2 

There is also a form of delegating messages in the parent object inside the body of a proper method. 

super m1[(o2,..,on)] 

Besides the constructs for sharing there are other constructs that complete the language. These are: 
message sending, which can specify argument objects; sequence, which gives a way of structuring 
bodies of methods; and assignment, to bind variables to objects. 
The complete Asterix syntax is: 

o1, o2,.., on ::= 
clone(o1) | cloning 
object   direct object construction 
 [parent: o1]  parent object definition 
 message m1 (  (arg1,.., argn) x1,..,xm
  delegate in o1 | 

 b end | method definition 

  embed from o1 | 
  embed from parent ) 
 message m2 . . . 
 : 
     end  | 
o1 m1[(o2,..,on)]  message sending 
 

b ::=  method body object 
o1 | object 
xi, arg i
self  m1 := (arg

 | variable, argument identifier   
1,.., arg n) x1,..,xm

self  m1 :=  delegate in o1 | 
 b end | method update 

self  m1 :=  delegate in parent | 
self  m1 :=  embed from o1 | 
self  m1 :=  embed from parent | 
self changeParent: o2 | parent object update 
super m1[(o2,..,on)] |  
b m1[(o2,..,on)] | message sending 
x := o1 | variable assignment 
o1. o2   sequence 

Translation of Asterix constructs into impς-calculus : 
To explain the representation of Asterix constructs in impς-calculus we use a relation  trans, which 
maps Asterix constructs to impς-calculus terms.  
The translation uses the technique of pre-methods and implicit delegation introduced in Section 4. 
Every object has its methods implemented as pre-methods, so that any object can be used as a 
prototype. The only exception is the parent attribute, which keeps a reference to the parent object. 
The specification part of a message has the name of the message, and the implementation part is a 
pre-method whose name is the name of the corresponding message preceded by the special 
character ‘*’ (which is not allowed in message names). The pre-method contain the body of the 
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method if it is proper, or specify how it is borrowed otherwise. 
The impς-calculus translation of an object directly created with a proper message will have two 
messages, one representing the specification part of the message and the other representing the 
implementation. The latter contains the pre-method, which abstracts the receiver object and defines 
the body of the method. The body is represented as a λ-function that abstracts the arguments of the 
message. So the construct 

 object  
 message m (arg1,..,argn) x1,..,xm 

 end 
 b end 

is translated as 

 [ m= ς(self) self.*m(self) 
 *m= ς(self) λ(rec)  λ(arg1)...λ(argn) [ x1
  : 

 : ς(bself) [ ] 

 xm

  val : ς( bself) trans(b){x
 : ς( bself) [ ] 

i← bself.xi 
iε1..m

Where the variable identifiers (x
}    ]. val 

1,..,xm

The impς-calculus representation for an object with a parent and without definition of new messages, 
will have a message for the parent reference and will embed the parent protocol. That is, it will have a 
specification message for every message in its parent protocol, and a corresponding implementation 
message containing a pre-method which will invoke the matching pre-method in the parent, sending 
the receiver object (referenced by self) as the receiver argument. The translation for  

) defined for the method m are implemented as messages, and 
used within the object representing the body of the method.  

 object  
 parent: o1 
 end 

is thus 
 let par= trans(o1)  in 
  [ parent= ς(self)par, 
   mi= ς(self) self.*mi(self) 
   *mi= ς(self) self.parent.*mi 

iεPar 
iεPar

If the creation of an object defines a parent object and a new message its translation into impς-
calculus will include, besides the embedding of the parent’s protocol, two more messages 
representing the specification and implementation parts of the defined message. Thus, the object 
creation 

        ] 

 object  
 parent: o1 
 message mj (arg1,..,argn) x1,..,xm 

 end 
 b end 

is expressed in the calculus as 
 let par= trans(o1)  in 
 [parent= ς(self)par, 
 mj= ς(self) self.*mj(self) 
 mi= ς(self) self.*mi(self) 
 *mj= ς(self) λ(rec) λ(arg

iεPar 

1)...λ(argn) [xi : ς(bself) [ ] 
i ε 1..m

 val : ς(bself) trans(b){x
, 

i← bself.xi 
iε1..m

 *mi= ς(self) self.parent.*mi 
}   ]. val 

iεPar     

When an object is created specifying a parent and overriding one of its messages, the translation will 

] 
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embed all of the parent’s protocol except the redefined message. It will have the corresponding two 
messages containing the method and pre-method for the overridden message. An object creation 

 object  
 parent: o1 
 message m1 (arg1,.., argn) x1,., xm
 end 

 b end 

is thus translated into impς-calculus as 

 let par= trans(o1)  in 
 [parent= ς(self)par, 
 m1= ς(self) self.*m1(self) 
 mi= ς(self) self.*mi(self) 
 *m1= ς(self) λ(rec) λ( arg

iεPar-{1} 

1)...λ(argn) [xi : ς(bself) [ ]  
i ε 1..m

 val : ς(bself) trans(b){x
, 

i← bself.xi 
iε1..m

 *mi= ς(self) self.parent.*mi 
}]. val 

iεPar-{1}

The representation for the direct creation of an object that explicitly delegates a message in another 
object, will invoke the corresponding pre-method of that object. This invocation is made in the 
corresponding pre-method of the message. If the object also defines a parent, the embedding of its 
protocol remains as before. The translation for 

     ] 

 object  
 parent: o1 
 message mj delegate in o2 
 end 

in the calculus is 

 let par= trans(o1)  in 
  let aDonor= trans(o2)  in 
    [parent= ς(self)par, 
   mj= ς(self) self.*mj(self) 
   mi= ς(self) self.*mi(self) 
   *mj= ς(self) aDonor.*mj 

iεPar 

   *mi= ς(self) self.parent.*mi iεPar

If the new object defines a message embedding the response from another object, the translation will 
first evaluate the borrowed method in a let structure to get a new reference to it. The pre-method for 
the message will contain the method by using the reference obtained. So, the construct 

              ] 

 object  
 parent: o1 
 message mj embed from o2 
 end 

is translated as 

 let par= trans(o1)  in 
  let o2mj=trans(o2).*mj  in 
    [parent= ς(self)par, 
   mj= ς(self) self.*mj(self) 
   mi= ς(self) self.*mi(self) 
   *mj= ς(self) o2mj 

iεPar 

   *mi= ς(self) self.parent.*mi iεPar

If the object whose method is being embedded is the parent, the translation is similar but the let 
structure evaluates the pre-method of the object being set as the parent 

              ] 
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Asterix cloning construct is directly translated as a clone in the calculus. For example, the translation 
for 

 clone(o1)  

is  
 clone( trans(o1) ) 

The translation of the modification of an object’s response to a message modifies the implementation 
part of the message that is, the corresponding pre-method. In Asterix an update is allowed only inside 
the body of a method, so its translation will appear inside the pre-method corresponding to the 
method containing the update. Also, as an update in the language can only modify the self object, its 
representation in the calculus will always modify the receiver object in the pre-method.  
If inside the method for a message m1 of an object there is a modification that replaces the response 
of another message m2 of the same object for a new defined method, such as 

 object 
 : 
 message m1 . . .  
 : 
 self m2 := (arg1,.., argn ) x1,., xm
 : 

 b end  

 end 
 : 
 end 

the translation of the update will appear inside the pre-method corresponding to m1, which will have 
its receiver argument modified by the update on the pre-method of m2 : 
 [ . .  
 : 
 *m1 : ς(self) λ(rec). .     . . rec.*m2 ⇐ ς(self) λ(rec) λ(arg1)...λ(argn

  [ x
) 

i : ς(bself) [ ]  
i ε 1..m

  val : ς(bself) trans(b){x
, 

i← bself.xi 
iε1..m

 : 
}].val  . . 

 ] 

The new pre-method has the ς-binder and the receiver argument, as usual in pre-methods, and the 
translation of the new defined method, with its arguments and local variables. 
If the sharing scheme for a message is changed, delegating the new response in another object, 
such as 

 message m1 . . . 
 : 
 self m2 := delegate in o1 
 : 
 end 

the translation into the calculus is similar to the previously explained, but the replacing pre-method 
invokes the matching pre-method in the specified donor for the message: 
 *m1 : ς(self) λ(rec). .  . . let aDonor=trans(o1) in (rec.*m2 ⇐ ς(self) aDonor.*m2) . . . 

If the new method delegates in the parent of the object 
 message m1 . . .  
 : 
 self m2 := delegate in parent 
 : 
 end 
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a similar impς-calculus representation results: 
 *m1 : ς(self) λ(rec). .  . . rec.*m2 ⇐ ς(self) rec.parent.*m2 . . . 

When the sharing scheme for a message is set to embedding of another object’s method, such as  
 message m1 . . .  
 : 
 self m := embed from o1  
 : 
 end 

the translation into the calculus needs to first evaluate the embedded method in a let structure, and 
then put the new reference to it as the body of the pre-method corresponding to the updated 
message: 
 *m1 : ς(self) λ(rec). .  . . let o1m2=trans(o1).*m2  in  (rec.*m2 ⇐ ς(self) o1m2) . . . 

If the method is embedded from the parent of the modified object 
 message m1 . . .  
 : 
 self m := embed from parent 
 : 
 end 

a similar representation results: 
 *m1 : ς(self) λ(rec). .  . . let pm2=rec.parent.*m2  in  (rec.*m2 ⇐ ς(self) pm2) . . . 

The translation of parent modification is made in a similar way to the above modification translations. 
The parent object needs to be evaluated first, so as to have a proper reference to it in the parent 
attribute of the object.  
If a method replaces the parent 

 message m1 . . .  
 : 
 self changeParent: o1 
 : 
 end 

the corresponding representation in the calculus is 
 *m1 : ς(self) λ(rec). .  . . let par=trans(o1)  in (rec.parent ⇐ ς(self) par). . . 

A super construct is also allowed only in the body of methods. 
 message m1 . . .  
 : 
 super m2 
 : 
 end 

Thus, its translation will also appear in the pre-method of the method containing it. To give the 
semantics of super, the translation uses an invocation to the corresponding pre-method of the parent 
of the receiver, passing the same receiver object as the receiver argument to the pre-method.   

 *m1 : ς(self) λ(rec). .  . . rec.parent.*m2(rec). . . 

6. Examples 
We will now show examples of uses of Asterix and its delegation mechanisms. We consider two 
known modelization problems. The problems and their solutions in class based environments are 
described in [Gamma95] by Decorator and State patterns. For each of them we summarise the 
problem and propose an alternative solution using our object based language to the example 
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situation modelled in [Gamma95].  
The problem addressed by Decorator is adding responsibilities dynamically and transparently to 
individual objects, and being able to eliminate this properties.   
For example, in building interfaces, we may want to add widgets to a visual component.  Suppose we 
have a TextView object that displays text in a window.  The TextView doesn’t provide scroll bars by 
default.  But we could wish to add scroll bars to the TextView, as well as some other properties like a 
border or a rule. 
In Asterix, we solve this using delegation.  We create an object whose parent is the object to be 
enhanced.  It defines its own messages for the added responsibilities,  it implicitly delegates in its 
parent the messages to be managed by the original object, and it redefines the messages whose 
behavior is changed or expanded, using super to reference its parents behavior.  Multiple properties 
can be added repeating the procedure described.  Figure 2 depicts the solution 
 

aBorderedView

  parent

draw
  drawBorder
  borderWidth

aScrollableView

  parent

  draw
  drawScrollBars
  scrollTo(...)

aTextView

  draw
  showText(...)

 super draw
 self drawBorder

 super draw
 self draw ScrollBars

 
Figure 2 

 
The Asterix code for this example is 

object  
message body 

aTextView, aScrollableView, aBorderedView 
aTextView:= object 

message draw 
|code for drawing| 

end 
message showText 

|code for writing| 
end 

 end . 
aScrollableView:= object 

parent: aTextView 
message draw 

super draw 
self drawScrollBars 

end 
message drawScrollBars 

| code for drawing scrollBars| 
end 
message scrollTo 

 | code for scrolling | 
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end 
end . 

aBorderedView:=object 
parent: aScrollableView 
message draw 

super draw 
self drawBorder 

end 
message drawBorder 
 | code for drawing border | 
end 
message borderWidth 
 defaultBorderValue 
end 
message borderWidth (aWidth) 
 self borderWidth := aWidth 
end 

end . 
 . . . 
end   | of message body | 

end  |of program object| 

The problem concerning State is the modelling of an object whose behavior depends on its state, and 
it must dynamically modify the way it responds to messages if that state changes.  
Following [Gamma95] we will exemplify the problem with a TCPConnection that represents a network 
connection, which can be in one of several states: Established, Listening, Close. The TCPConnection 
is capable of receiving requests ActiveOpen, PassiveOpen, Close, Transmit, Send, and 
ProcessOctet, which open the connection, close  the connection, start a transmission and transmit 
data. The response to each of the requests depends on the current state of the connection. Some of 
the responses change the current state of the connection. 
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parent

init
processOctet:

self changeParent: TCPEstablished self changeParent: TCPClosed

TCPState

activeOpen
passiveOpen
transmit : 
send
close

parent

activeOpen
passiveOpen

TCPEstablished

parent

transmit:
close

TCPListen

parent

send

TCPClosed

TCPConnection

self changeParent:
TCPClosed

 
Figure 3 

 
The design solution proposed in [Gamma95] for a class based scheme is the State pattern. We will 
model an alternative solution with our object based language using the delegation mechanisms it 
provides. TCPConnection’s delegation of requests will be implemented in Asterix with the parent 
relation: the connection will have a state object as its parent and thus will implicitly forward all the 
received messages to it. 
We define a general connection state object, whose protocol contains the above connection 
messages, to represent the default behavior of states. We also define three state objects 
corresponding to Established, Listening and Close states. Each of them has the general connection 
state as parent and redefines messages corresponding to valid requests in the state, to give the 
state-specific behavior. We define an additional Init message for the connection, to start working with 
it. Figure 3 describes the solution. 
The code in Asterix is: 

object 
 message body  
  TCPState, TCPEstablished, TCPListen, TCPClosed, TCPConnection, . . . |variable declarations| 
  TCPState := object 

message activeOpen  
object end 

end  
message passiveOpen  

object end 
end 
message transmit (octetStream)  

object end 
end 
message send 

object end 
end 
message close 

object end 
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end 
end . 

 TCPEstablished :=object 
parent:  TCPState 
message transmit (octetStream)   

self processOctet (octetStream)  
end 
message close  

self changeParent: TCPClosed  
end 

end . 
 TCPListen :=object 

parent:  TCPState 
message send 

self changeParent: TCPEstablished 
end 

end . 
 TCPClose :=object 

parent:  TCPState 
message activeOpen  

self changeParent: TCPEstablished 
end 
message passiveOpen 

self changeParent: TCPListen 
end 

end . 
 TCPConnection :=object 

parent: TCPState 
message init  

self changeParent: TCPClosed 
end 
message processOctet (octetStream)  | implementation |  end 

end . 
 . . . 
 end     | of message body | 
end      | of program object | 
 
Observe that changes of state are performed by state objects on behalf of the connection in 
delegated messages (with changeParent:), there is no need for message exchange as there is in the 
class-based approach presented in [Gamma95], where the connection class must define a ‘protected’ 
operation and the state class must be defined as ‘friend’ to allow it access to the operation. 

7. Conclusions and future work 
Over the last years there has been important effort to develop formal theories about the basic 
concepts in object-oriented programming. However a more solid foundation is necessary, because 
there is no widespread agreement on a set of basic features that characterises Object–Oriented 
languages.  Most of the existing models define the concept of class as a basic construction of Object-
Oriented languages and make strong emphasis on semantics of class-based inheritance. There has 
been less effort to develop foundations for prototype-based languages or to define a more general 
model, which at the same time represents both class-based and prototype-based languages. 
We have described the basic features a model for the Object-Oriented paradigm must have, and the 
essential characteristics to be represented in it. We specially analysed sharing, distinguishing the 
different aspects that are combined to give raise to several sharing schemes. 
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We presented the Abadi & Cardelli impς-calculus which formally represents the above mentioned 
basic features and showed how to construct implicit delegation upon the calculus. Then we described 
a high level object based language with constructs to express every per object sharing scheme, and 
its translation into the calculus. 
Our proposal helps to clarify the seminal concepts of Object-Oriented languages (i.e. objects, 
messages), shows how to interpret existing mechanisms (i.e. implicit delegation) and how to create 
and understand new ones (i.e. mixing explicit and implicit delegation) in a single framework.The 
formal translation we define provides a way for reasoning about the language (i.e. soundness proofs). 
We conclude that the selected basic features are powerful enough to express the analysed sharing 
schemes. 
In this version the model does not allow adding or removing messages from objects.  The restriction 
is inherited from the calculus.  We will work on providing this facility in our model 
An essential characteristic we still don't cover completely is encapsulation.  The impς-calculus is not 
encapsulated and encapsulation must be described in a higher level.  Asterix provides encapsulation 
with respect to object modification, allowing it just inside the modified object.  The other topic 
concerning encapsulation is the ability to hide certain messages.  We shall work on this latter topic. 
An emerging concept in the area is the notion of subjectivity, which is the ability of an object to exhibit 
different behavior depending on forces such as internal state, sender of a message and context.  
Subjectivity is now solved by modelling and programming techniques.  We intend to define it in our 
model as a characteristic of objects, defining it rigorously in terms of the calculus. 
We are currently working on tools for supporting the model, allowing working with it in a friendly way.  
We will construct an interpreter for the calculus and a compiler of Asterix to the calculus.  Our 
intention is to manipulate the formal definitions as easily as we manipulate objects in usual Object-
Oriented environments. 
We are specially interested in the properties useful to express design quality.  One of them is the 
notion of object types, understood as object protocols.  Another is the characterization of standard 
collaboration relationships.  The final goal is to obtain a comprehensive model and a tool to be 
integrated in a development environment.  The tool should allow to formalise chosen parts of a 
design in order to reason rigorously about them.  It should also allow to define and analyse typing 
characteristics. The tool is aimed at helping in the analysis and improvement of software design. 
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