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Abstract. The free-propagation properties of the light field diffracted by an 
aperture, have been investigated by employing a formalism based on the 
orthogonal and complete set of Walsh functions. We found an interesting link 
with the well-known self-imaging phenomenon, which can be used to explain the 
spatial filtering properties of many optical devices. An experimental result is 
given in order to illustrate this approach.

1. In tro d u ctio n
'The diffraction properties of m ost optical imaging systems are properly 

described in terms of Fourier optics. T he input signal of such systems is analysed by 
considering a linear superposition of sinusoidal functions. After taking into account 
the effect of the system upon each sinusoidal component, the output signal is 
obtained by performing a suitable synthesis. However, while the analysis of optical 
systems is simplified by use of sinusoidal functions (i.e. under coherent illumination, 
the manipulation of the Fourier spectrum can be performed in a relatively easy way), 
the interaction between diffracted field and apertures is generally complicated. On 
the other hand, the analysis and synthesis of systems by means of the Walsh  
Hadam ard transform  play an im portant role in digital image processing, since the 
operations are performed by using functions that only take values ±  1. For this 
reason, they suit computer processing and allow fast algorithms to be developed.

It is clear therefore that these two types of function have a well defined scope in 
the field of image processing. However, in spite of their discontinuous nature (which 
seems not to be a natural representation signal for analogical systems), the Walsh 
functions have the remarkable property of being cyclically periodic [1], i.e. they can 
be considered as square-wave functions with step-like amplitude changes occurring 
at periodical intervals. Since spatial periodicity is a sufficient condition for an object 
aperture to generate the so-called self-imaging phenomenon [2—5], Walsh functions 
should behave in free propagation of light in a rather similar way as periodic 
structures, such as the binary Ronchi grating. In this way, the analysis and synthesis 
of signals performed in a Walsh scheme can he very useful for studying the 
properties of certain optical systems where both the free propagation of light and the 
interaction of aperture and diffracted field are relevant.

We start by analysing the behaviour of the Walsh functions under Fresnel 
diffraction in accordance with their periodicity properties. This analysis will be 
extended to a more general aperture synthesized as a linear superposition of Walsh 
functions. Finally, we illustrate this approach with some experimental results.
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In equation (1), [R k(x)} denotes the set of Rademacher functions, which are periodic 
square waves of am plitude +  1, having period dk  21 _*.r0. T he integer m is the rank 
of the binary expansion of n, in which the#* are the corresponding bits, 0 or 1. Le. 
n  2mgm + 2m lgm_ j 4 .. . +2°g0. Since the Rademacher functions form an incom
plete set, they cannot serve as an appropriate basis for synthesizing any optical signal.

For our purposes, it is more convenient to rewrite the Walsh functions as defined 
in the entire space domain, and which are restricted to take only 0 or 1 values, instead 
of + l , i.e.

Next, we consider a binary aperture with an am plitude transm ittance given by 
the Walsh function as written in equation (2). If  it is illuminated with a 
monochromatic plane wave propagating along the a axis, the diffracted field 
am plitude u„(x; z), in the Fresnel region, becomes

where K  is a normalization constant. In  equation (4), we have replaced the 
Rademacher functions by their corresponding Fourier expansions, namely the 
coefficients ck which are non zero only for odd values of Hence, apart from the 
Fresnel pattern produced by the uniform finite aperture (  x 0(2, x 0j2), we obtain

(5)

where * denotes convolution.
Next, we analyse the properties of un(x;z) .  If  we want to retrieve an am plitude 

distribution that resembles the Walsh function (as in the self imaging phenomenon 
produced by periodic infinite apertures), then it is clear that the effect of the finite 
size of the aperture on u„(x; z)  should be minimized. T o  this end, the sine function
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2. P ro p erties  o f  W a lsh  fu n c tio n s  u n d e r  F r e sn e l d iffra ctio n
Inside a certain finite domain j.v| <  x 0j2, the orthogonal and complete set of Walsh, 

functions {Wal„(.v); n  1 ,2 ,. ..}  can be written as [1]

m

Zl

(3)

By using equations (1) and (2), the following expression for u„(x\ a) results:
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array, denoted sine (x: k x, . . . , km), m ust be approximated by ¿ functions. Therefore, 
overlap between different sine functions should be avoided, except when the 
respective maxima coincide. T he mean width of all the sine functions is Ax — 
and the separation between successive maxima of sine (.v; /?  1, . . .  , k i _ t  1, k h 
kj+ j  1 , . . . ,  km  1} is SXj  2J/.z;x0, p  for which R p(x) is the lo west order
Rademacher component that is present in TV„(x). Since 6xj/Sxp  2J p, coincidence 
between the several maxima always occurs, and the m inim um  distance between 
adjacent maxima of the whole array becomes Sx  Sxp  2p/ .z jx0. Hence, the validity 
of the approximation sine (')  <>(*) is assured whenever d x » A x ,  or equivalently 
2P>> 1. Of course, this condition places a limitation on the lowest order Rademacher 
function that can be present in Thus, by assuming 20» 1, we obtain

(6)

It is convenient to rewrite equation (6) in the following way:

or, equivalently

(7 a)

From equations (7), we can derive the conditions to be satisfied in order to obtain a 
self image of R j(x ); namely

(8)

For these values of s, the am plitude distribution given by equation (7) can be 
considered as a positive self image of R / x ) ,  spatially modulated by the remaining 
defocused Rademaeher functions which act as a noise source.

However, by taking into account that

{]())
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where h and q are positive integers. Both conditions are fulfilled whenever
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i.e. the first self image of Rj(x)  coincides with the a  2m j self image of then
at the self-image planes associated with R p(x), ah the Rademacher functions are well- 
focused. Therefore, for the distances

3. In tera c tio n  b e tw e e n  th e  lig h t f ie ld  a n d  a n  a p ertu re  m ask : an ap p roach  
b a sed  on  W alsh  fu n c tio n s

We turn now to the interaction between the light field and a given aperture from 
the view point of the discussed properties of the Walsh functions. Since they form an 
orthogonal and complete set within a finite domain, any transparency limited by a 
certain pupil can he considered as synthesized from Walsh functions, instead of 
sinusoidal functions. If this transparency is rhe input object of a system illuminated 
by a coherent plane wave, then each Walsh com ponent behaves in free propagation in 
a similar way to that treated in §2. Taking into account the binary nature of these 
functions, it is rather simple to understand the interaction of the diffracted field with 
an arbitrary binary aperture placed at a certain distance s  (at least in the KirchhotT 
approximation, where the product of the light am plitude with the transmittance 
function of the aperture can be considered for the transm itted field). AH the Walsh 
functions focused at the plane of the aperture mask as positive self images are 
transm itted by the system without appreciable distortion or attenuation, while the 
remaining Walsh components are severely distorted and attenuated. Of course, the 
interaction is still very complicated for those W alsh components which are not in 
focus at the plane of the aperture mask. For this reason, it seems appropriate to 
consider this kind of analysis for all those cases involving several interactions 
between the diffracted field and the aperture. T hus, if the num ber of interactions 
becomes large, the resulting field will be mainly synthesized by the first type of 
Walsh functions. This approach was used in [6, 7] to explain the spatial filtering 
properties of some periodic and non periodic aperture arrangements. However, in 
such cases, all the apertures were assumed to be synthesized by Rademacher 
functions which form an incomplete set of periodic functions.

Figure 1. Scheme of the optical device employed for obtaining the self images of the Walsh
fun ctions.
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Figure 2. (a) Walsh function Wal(.v)  R H(x) R 9(x). (b) First self-image of Wai(.v), recorded
at s  24cm.
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Figure 3. (<?) Walsh function Wal(jc)  R ,{x) R H(x) R<,(x). ib) First self image of R s(x), and
second self-image of R^(x), recorded at 3 —24 cm. (c) First self-image of Wal(.x), 
recorded at s  48cm .
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In order to illustrate the results obtained in §2, we have synthesized an aperture 
consisting of a single Walsh function (in the normalized form, as given by equation 
(2)). W hen illuminated with a coherent plane wave, the aperture gives rise to the self
imaging phenomenon in accordance with equations (/) { ! 2} (see figure 1). Figure 
2 (u) shows the Walsh function composed by two Rademacher functions /?s(,v) and 
Rq(x). Figure 2(b) shows the intensity distribution recorded at the first self image 
plane of R%(x), which coincides with the second self image plane of Rq(x). Hence, the 
first self image of the complete Walsh function can be observed. Figure 3 (a) shows 
the Walsh function composed of three Rademacher functions R (x). R s(x) and 
Rg(x). In figure 3 (b) the first self-image of R$(x) and the second self-image of Rg(x) 
are well focused but some artifact noise due to the defocused self image of i?7(x) can 
be observed. In figure 3 (c), the three Rademacher components are in focus, so 
producing the first self image of the complete Walsh function. Owing to the fact that 
a lower order Rademacher com ponent is present in the latter case, the approxim
ation involved in deriving equation (6) is not well satisfied, and hence the self image 
of the Walsh function exhibits more artifact noise than in the former case.
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4. C o n c lu sio n s
From  a mathematical point of view, either a Walsh or a Fourier synthesis can be 

performed for all classes of finite apertures. W hich of these approaches is more suited 
for synthesis and processing purposes is an open question in the field of digital image 
systems [8].

For optical systems, we can take into account, something resembling a signal-to- 
noise ratio that characterizes the system. If  certain Walsh functions are either 
perfectly cancelled or transm itted by a binary aperture, their associated energy can 
be considered as a signal level. T he remaining Walsh functions present in the field 
amplitude (which are defocused at the plane of the aperture) will be severely
distorted in transmission, so contributing to a noise level. Therefore, a treatm ent 
based on a Walsh approach can be suitably carried out for those cases in which 
several interactions between the diffracted field and a certain aperture mask occur in 
such a way that the signal level remains practically unchanged, while the noise level 
becomes increasingly lower. This is the case of several periodic arrays of apertures, 
such as the in-line analogue of a Fabrv- Perot interferometer.
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