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Abstract

We examine the quantum correlations of spin pairs in the cyclic XX spin 1/2 chain in a trans-

verse field, through the analysis of the quantum discord, the geometric discord and the information

deficit. It is shown that while these quantities provide the same qualitative information, being non-

zero for all temperatures and separations and exhibiting the same type of asymptotic behavior for

large temperatures or separations, important differences arise in the minimizing local measurement

that defines them. Whereas the quantum discord prefers a spin measurement perpendicular to the

transverse field, the geometric discord and information deficit exhibit a perpendicular to parallel

transition as the field increases, which subsists at all temperatures and for all separations. More-

over, it is shown that such transition signals the change from a Bell state to an aligned separable

state of the dominant eigenstate of the reduced density matrix of the pair. Full exact results

for both the thermodynamic limit and the finite chain are provided, through the Jordan-Wigner

fermionization.
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I. INTRODUCTION

The investigation of quantum correlations in mixed states is presently attracting strong

attention [1]. While in bipartite pure states such correlations can be identified with entan-

glement, it was recently recognized that separable (non-entangled) bipartite mixed states,

defined as states which can be created by local operations and classical communication, and

which are therefore convex mixtures of product states [2], may still exhibit useful quantum

correlations, stemming from the non-commutativity of the different products. The mixed

state based quantum algorithm introduced by Knill and Laflamme (KL) [3] has shown that

an exponential speed-up over classical algorithms can in fact be achieved without entangle-

ment [4], in contrast with the case of pure states [5].

This has turned the attention to alternative measures of quantum correlations for mixed

states, such as the quantum discord [1, 6–8], which are able to capture the quantumness

of such mixed states, vanishing just for states diagonal in a product basis and coinciding

with entanglement in the pure state limit. A finite discord between the control qubit and

the remaining maximally mixed qubits was in fact found in the KL algorithm [9], renewing

the interest on this measure [10–14]. Other measures with similar properties include the

closely related one-way information deficit [1, 15, 16], the geometric discord [17], which al-

lows an easier evaluation, and the generalized entropic measures of ref. [18], which include

the previous ones as particular cases. Various applications and operational interpretations

of the quantum discord and related measures were recently provided [1, 10, 16, 19–24]. We

remark that all these measures require a minimization over local measurements in one of the

constituents (which can be viewed as the determination of the least disturbing local mea-

surement [25]), which makes their evaluation difficult in systems with high dimensionality.

Spin chains provide an interesting scenario for studying these measures and their relation

with criticality [1, 26–36]. In particular, the state of a spin pair in an entangled ground state

(GS) is in general a mixed state, entailing that differences between the entanglement and

the quantum discord of a spin pair will arise already at zero temperature [26, 28, 30]. These

differences become significant in the exact ground states of finite XY chains for transverse

fields lower than the critical field Bc [30], with the quantum discord reaching full range in

this region.

The aim of the present work is to analyze in detail the behavior of the quantum discord,
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the geometric discord and the one-way information deficit of spin pairs in chains with XX-

type first neighbor couplings in a transverse field, at both zero and finite temperature.

Such model is particularly interesting for both quantum information and condensed matter

physics, exhibiting distinct features such as eigenstates with definite magnetization along

the field axis and a special critical behavior [37]. It is first shown that in contrast with

entanglement [38–40], discord-type measures exhibit common features such as a non-zero

value for all separations L at all temperatures T > 0. Exact asymptotic expressions for the

decay with L and T will be provided, on the basis of the exact treatment based on the Jordan-

Wigner fermionization [39–42]. Nonetheless, we will also show that important differences

between the quantum discord on the one side, and the geometric discord and information

deficit on the other side, do arise in the minimizing local spin measurement. While in the

quantum discord the latter is always orthogonal to the transverse field (even at strong fields

if T > 0), in the geometric discord and information deficit it exhibits a perpendicular to

parallel transition as the field increases, at a field lower than the T = 0 critical field Bc. Such

transition in the minimizing measurement is present at all temperatures and separations,

and as will be shown, is a signature of the transition from a Bell state to a separable aligned

state of the dominant eigenstate of the reduced density matrix of the pair. This difference

indicates a distinct response of the minimizing measurement in these quantities to the onset

of quantum correlations.

In Section II we summarize the main features of the previous measures, including the

equations that determine the stationary local measurements. The application to the spin

1/2 XX chain is made in section III, where we first discuss some general properties of these

measures in this model and show that spin measurements parallel and perpendicular to the

field are always stationary. We then consider in detail the thermodynamic limit and the

finite case. Details of the exact calculation are provided in the Appendix. Conclusions are

finally given in IV.

II. DISCORD AND GENERALIZED INFORMATION DEFICIT

Let us consider a bipartite quantum system A+B initially in a state ρAB. A local complete

projective measurement MB on system B is defined by a set of orthogonal projectors ΠB
j =

IA⊗Πj , where Πj = |jBihjB| are one dimensional projectors satisfying
P

j Πj = IB, ΠjΠk =
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δjkΠk. The state of the total system after an unread measurement of this type becomes

ρ′AB =
X

j

ΠB
j ρABΠ

B
j . (1)

In [18, 25] we considered the minimum generalized information loss by such measurement,

IBf = Min
MB

Sf(ρ
′
AB)− Sf(ρAB) , (2)

where Sf (ρ) = Tr f(ρ) denotes a general entropic form, with f a smooth strictly concave

function for p ∈ [0, 1], satisfying f(0) = f(1) = 0 [43]. Eq. (2) satisfies IBf ≥ 0 for any

such f , becoming the generalized entanglement entropy Sf(ρB) = Sf(ρA) in the case of

pure states (ρ2AB = ρAB). However, it can be non-zero in separable mixed states, vanishing

just for states which are already of the form (1) [18], i.e., states which remain unchanged

after the local measurement MB and are hence diagonal in a product basis {|ijAi ⊗ |jBi}.
The positivity of IBf ∀ Sf follows from the majorization relation ρ′AB ≺ ρAB satisfied by (1)

[18, 25, 44].

If f(ρ) = −ρ log2 ρ, Sf(ρ) becomes the von Neumann entropy S(ρ) and Eq. (2) becomes

the one way information deficit [1, 15, 16], which we will denote as IB1 . It can be rewritten

in terms of the relative entropy [44, 45] S(ρ||ρ′) = −Tr ρ(log2 ρ
′ − log2 ρ) as [18]

IB1 = Min
MB

S(ρ′AB)− S(ρAB) = Min
MB

S(ρAB||ρ′AB) . (3)

For a pure state, IB1 becomes the standard entanglement entropy S(ρA) = S(ρB).

If f(ρ) = 2ρ(1− ρ), Sf (ρ) becomes the so called linear entropy S2(ρ) = 2(1− Tr ρ2) and

Eq. (2) becomes

IB2 = 2Min
MB

Tr (ρ2AB − ρ′
2
AB) = 2Min

ρ′
AB

||ρAB − ρ′AB||2 , (4)

where ||O||2 = TrO†O and the last minimization can be extended to any state of the general

form (1). It is then seen that (4) is proportional to the geometric discord introduced in [17],

defined as the square of the minimum Hilbert-Schmidt distance from ρAB to a classically

correlated state with respect to B. For pure states IB2 becomes the squared concurrence

C2
AB [46], which for such states is just the linear entropy of any of the subsystems [47].

Both measures (3)–(4) can then be regarded as particular cases of the generalized infor-

mation deficit (2). We may similarly define [25] IBq = Sq(ρ
′
AB)−Sq(ρAB) for entropies Sq(ρ)
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associated to f(ρ) = (ρ− ρq)/(1 − 21−q), q > 0 [48]. IBq reduces to (4) for q = 2 and to (3)

for q → 1 (Sq(ρ) → S(ρ) in this limit). Normalization of f(ρ) was chosen such that IBf = 1

∀Sf for a two-qubit Bell state

On the other hand, the quantum discord [6, 7] for a measurement in B can be written as

DB = Min
MB

S(A|MB)− S(A|B) = Min
MB

[IMB

1 (ρAB)− IMB

1 (ρB)] , (5)

where S(A|MB) denotes the conditional von Neumann entropy of A given a measurement

MB in B, S(A|B) = S(ρAB) − S(ρB) is the quantum conditional entropy and the last

expression is the result for a complete projective measurement MB, which is the case we will

here consider. DB is just the minimum decrease of the mutual information S(A)− S(A|B)

after an unread measurement in B [6, 7]. We then have DB ≤ IB1 , with DB = IB1 when

the minimizing measurements for DB and IB1 coincide and ρ′B = ρB. Nonetheless, like

IB1 , D
B ≥ 0, vanishing just for the classically correlated states (1) and reducing to the

entanglement entropy S(ρA) = S(ρB) for pure states ρAB.

However, important differences between IB1 (or in general IBf ) and DB may arise in the

minimizing measurement. While for a general classically correlated state of the form (1) the

minimum (0) for both DB and all IBf is attained for a measurement in the local basis defined

by the projectors ΠB
j (i.e., the pointer basis [6, 7]), in the particular case of product states

ρA⊗ρB, D
B (but not IBf ) becomes the same for any MB, as for such states S(A|MB) = S(A)

∀ MB. The same holds for pure states ρAB, where DB is again the same for any MB, as

here S(A|MB) = 0 ∀ MB of the present form, whereas the minimum IBf is obtained, for any

Sf , for a measurement MB in the local part of the Schmidt basis [18], i.e., again in the basis

of eigenstates of the reduced state ρB. These differences will have important consequences

for the results of the next section, leading to a quite different response of the minimizing

measurement to the onset of quantum correlations. They reflect the fact that while in IBf one

is looking for the least disturbing local measurement, such that ρ′AB is as close as possible

to ρAB, in DB the search is for the measurement in B which makes the ensuing conditional

entropy smallest, i.e., by which one can learn the most about A.

We also remark that the determination of the minimizing measurement MB is in general

a difficult problem. Complete projective measurements at B are determined by d2B − dB

real parameters if B has a Hilbert space of dimension dB, growing then exponentially with

the number of components of B. For IBf , the minimizing measurement should fulfill the
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stationary condition [25, 49]

TrA[f
′(ρ′AB), ρAB] = 0 , (6)

which leads to dB(dB − 1) real equations [25]. In the quantum discord (5), an additional

term −[f ′(ρ′B), ρB] is to be added in (6), with f(ρ) = −ρ log2 ρ [25] (see also [50, 51]).

Nevertheless, in the case of the geometric discord I2, the final equations can be simplified

considerably. In particular, for a general mixed state of two qubits

ρAB = 1
4
(I + rA · σA + rB · σB + σ

t
AJσB) , (7)

where σ = 2s are the Pauli matrices, σA = σ ⊗ I, σB = I ⊗ σ, hσA,Bi = rA,B and

J = hσAσ
t
Bi, it can be shown that [17]

IB2 = 1
2
(trM2 − λ1) , (8)

where λ1 is the largest eigenvalue of the positive semi-definite 3×3 matrix M2 = rBr
t
B+J tJ .

The minimizing MB is a spin measurement along the direction of the associated eigenvector

k1 of M2. A closed expression for IB3 can also be obtained for this case [25].

III. APPLICATION TO THE XX MODEL

We now consider a chain of N spins si with first neighbor XX couplings in a uniform

transverse magnetic field. The Hamiltonian reads

H =
X

i

Bsiz − J(sixsi+1,x + siysi+1,y) , (9)

and is obviously invariant under rotations around the z axis, satisfying [H,Sz] = 0, with

Sz =
P

i siz the z-component of total spin. Its eigenstates can then be characterized by the

total magnetization M along z. The sign of the field B and the coupling strength J can be

changed by local rotations eiπsjz at all and even spins j respectively (assuming N even in

the cyclic case N + 1 ≡ 1), so that we will set in what follows B ≥ 0, J ≥ 0.

We will examine the spin 1/2 case, where exact results for finiteN as well as the thermody-

namic limit N → ∞ can be obtained via the Jordan-Wigner fermionization (see Appendix).

We will focus on the cyclic case N +1 ≡ 1, where pair correlations between spins i and j in

the ground state or in the thermal state ρ ∝ exp[−βH ] will depend just on the separation

L = |i− j|.
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For any global state ρ satisfying [ρ, Sz] = 0, the reduced state ρij = Trij ρ of any pair

i 6= j will commute with siz + sjz. In the cyclic case, ρL ≡ ρij will then have the form

ρL =















p+L 0 0 0

0 pL αL 0

0 αL pL 0

0 0 0 p−L















(10)

= p+L |↑↑ih↑↑|+ p−L |↓↓ih↓↓|

+(pL + αL)|Ψ+ihΨ+|+ (pL − αL)|Ψ−ihΨ−| , (11)

where (10) is the representation in the standard basis and (11) the eigenvector expansion,

with |Ψ±i = |↑↓i±|↓↑i√
2

Bell states. Here p+L + p−L + 2pL = 1, with

p±L = 1
4
± hszi+ hsizsjzi , (12)

αL = hsixsjx + siysjyi , (13)

and hszi = hSzi/N the intensive average magnetization along z. It corresponds to rA = rB =

(0, 0, 2hszi) and Jµν = δµνJµ in (7), with 2hszi = p+L − p−L , Jx = Jy = 2αL, Jz = 1− 4pL.

The eigenvectors of ρL in the ground or thermal state will not depend then on the field

or separation. For B ≥ 0 and J ≥ 0 in (9), p−L ≥ p+L and αL ≥ 0. The largest eigenvalue of

ρL will then correspond to the Bell state |Ψ+i if

αL > αc
L = p−L − pL , (14)

and to the aligned separable state |↓↓i if αL < αc
L. Hence, in the ground state we may

expect as the field decreases a transition from |↓↓i to |Ψ+i in the dominant eigenstate of

ρL, at a certain field BL
c ≤ Bc, where Bc = J denotes the T = 0 critical field (such that the

ground state is fully aligned (M = −N/2) for B > Bc). We will see such crossing reflected

in the transition exhibited by the geometric discord and the information deficit (but not the

quantum discord). We will also find the same effect at finite temperatures.

A. Parallel and perpendicular geometric discord and information deficit

We first discuss the general properties of the discord and information deficit of the states

(10). Due to the permutation symmetry of ρij , we will omit in what follows the superscript
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B (i.e., j) in If and D, as IBf = IAf , D
B = DA. For αL = 0, ρL is diagonal in the standard

basis and will then have zero entanglement and discord: E = D = If = 0 ∀ Sf . It will be,

however, classically correlated, being a product state ρi ⊗ ρj only when pL =
p

p+Lp
−
L (in

which case ρi = ρj =
p

p+L |↑ih↑ |+
p

p−L |↓ih↓ |).
Quantum correlations will then be driven solely by αL, and will lead to a finite value of

D and If ∀ αL 6= 0. The geometric discord (4) for such state can be evaluated immediately

with Eq. (8) (here (M2)µν = δµνλµ, with λx = λy = J2
x , λz = J2

z + |rB|2) and reads

I2 =







Iz2 = 4α2
L , |αL| ≤ αt

L

I⊥2 = 2(α2
L + αt

L
2
) , |αL| ≥ αt

L ,
(15)

where αt
L =

√
λz

2
=

q

(p−
L
−pL)2+(pL−p+

L
)2

2
and the superscript in I2 indicates the direction of the

minimizing local spin measurement (along z if |αL| < αt
L and along any orthogonal direction

k if |αL| > αt
L). Hence, I2 increases first quadratically with αL and exhibits then a parallel

→ perpendicular transition at αL = αt
L, corresponding to a transition field BL

t . For p
−
L > pL

such transition correlates with that exhibited by the dominant eigenstate of ρL (Eq. (14)). In

fact, if |p+L − pL| = |p−L − pL| and p−L > pL, α
t
L = αc

L.

Eq. (15) is to be contrasted with the concurrence of ρL, which requires a finite threshold

value of αL:

C = 2Max[|αL| −
q

p+Lp
−
L , 0] . (16)

Hence, discord-type quantum correlations with zero entanglement will arise for 0 < |αL| ≤
p

p+Lp
−
L .

The behavior of the generalized information deficit (2) is similar to that of the geometric

discord. For a spin measurement along a vector k forming an angle γ with the z axis,

the eigenvalues of the post-measurement state ρ′L are, setting δ = hszi = (p+L − p−L)/2 and

µ, ν = ±1,

p′
ν
µ =

1+2νδ cos γ+µ
√

[(1−4pL) cos γ+2νδ]2+4α2
L
sin2 γ

4
.

It is then verified that ∂Iγf /∂γ = 0 at γ = 0 and γ = π/2: Both parallel (γ = 0) and

perpendicular (γ = π/2) measurements are always stationary, in agreement with the general

considerations of [25]. Intermediate minima may also arise for a general Sf , but the essential

competition is between Izf ≡ I0f and I⊥f ≡ I
π/2
f .

For small αL and δ 6= 0, the minimum Iγf for any Sf will be obtained for γ = 0, with

Izf = 2f(pL)− f(pL + αL)− f(pL − αL) ≈ kfα
2
L , (17)
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where kf = |f ′′(pL)| (we assumed here pL 6= 0). Hence, as αL increases from 0, all If will

exhibit an initial quadratic increase with αL, like the geometric discord.

On the other hand, if δ = 0 (p+L = p−L), as in the case of zero field in the ground or

thermal state, the minimum Iγf for any Sf is attained for γ = 0 if |αL| < αt
L and for γ = π/2

if |αL| > αt
L, where αt

L = |1
2
− 2pL| = |p−L − pL| as in Eq. (15). Hence, all If ’s will in this

case exhibit, like the geometric discord, a parallel → perpendicular transition at the same

value of αL. Moreover, for p−L > pL, α
t
L coincides in this case exactly with αc

L, i.e, with the

value where the dominant eigenstate of ρL becomes a Bell state.

The same behavior occurs when p±L = 1
4
± δ (implying pL = 1

4
) with αL, δ small, a typical

situation to be encountered at high temperatures or large separations. A series expansion

of Iγf leads to Iγf ≈ kf [α
2
L − 1

2
sin2 γ(α2

L − δ2)], where kf = |f ′′(1/4)|, implying again

If =







Izf ≈ kf α
2
L , |αL| < |δ|

I⊥f ≈ kf(α
2
L + δ2)/2 , |αL| > |δ|

, (18)

with αt
L = |δ| = αc

L if p−L > pL. Hence we obtain in this case a universal parallel→ transverse

transition at |αL| = |δ| ∀ Sf and L. In other words, all If behave like the geometric discord

in this limit.

In contrast, the minimizing projective spin measurement of the quantum discord D will

not exhibit such transition for the present Hamiltonian. We obtain, setting now f(p) =

−p log2 p,

Dγ = Iγ1 −
X

ν=±
[f(1

2
+ νδ cos γ)− f(1

2
+ νδ)] . (19)

Hence, Dz ≡ D0 = Iz1 , but Dγ < Iγ1 if | cos γ| < 1 and δ 6= 0 (however, at zero field,

δ = 0 and Dγ = Iγ1 ∀ γ, implying D = I1). While both γ = 0 and γ = π/2 are again

always stationary, the minimum Dγ will be always obtained for γ = π/2 (D = D⊥) for the

actual reduced states derived from the ground or thermal state determined by H , directly

reflecting the spin-spin coupling in (9) (which involves the spin components perpendicular

to the field axis). This will also occur for small αL, since in this limit the actual values of

p±L will correspond to a product state, entailing no preferred direction in Dγ for αL = 0. In

fact, for small αL and γ = π/2, Eq. (19) leads, for pL =
p

p+Lp
−
L > 0, to

D⊥ ≈ 1
ln 2

( 1
pL

− arctanh 2δ
δ

)α2
L , (20)
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which is always smaller than Dz = Izf ≈ α2
L

pL ln 2
. Nonetheless, a quadratic increase with αL is

also present.

B. The thermodynamic limit

We will first examine the previous quantities in the ground and thermal state of (9) in

the large N limit, where we may express all elements of ρL in terms of the integrals (see

appendix)

gL =
1

π

Z π

0

cos(Lω)

1 + eβ(B−J cosω)
dω , (21)

where β = 1/kBT and L = 0, 1, . . ., with g0 = 1/2 + hszi the intensive magnetization. We

then obtain

p±L = (g0 − 1
2
± 1

2
)2 − g2L , pL = g0 − g20 + g2L , (22)

αL = 1
2
Det(AL), Aij = 2gi−j+1 − δi,j−1 , (23)

with AL the first L×L block of the matrix of elements Aij (i, j = 1, . . . , L). Thus, α1 = g1,

α2 = g2(1− 2g0) + 2g21, etc.

Ground state results. At T = 0, all correlations vanish for |B| > J , where the ground

state is fully aligned along z (αL = 0, p+L = 1 ∀ L). For |B| < J we obtain instead

gL =
sin(ωL)

Lπ
, ω = arccos(B/J) , (24)

with g0 = ω/π.

Results for I2, I1, D and the eigenvalues of ρL are shown in Figs. 1–2 for L = 1 and 3.

It is first verified that while the minimum quantum discord corresponds to D⊥ ∀ |B| < J ,

the minimum geometric discord I2 exhibits, for decreasing B, the expected sharp Iz2 → I⊥2

transition. Moreover, for L = 1, this transition takes place exactly at the point where the

Bell state |Ψ+i becomes dominant in ρL, i.e., B
L
c = BL

t . Remarkably, for L = 1 this exact

coincidence occurs at both zero and finite temperature, as follows from Eqs. (22)–(23): In

this case α1 = g1 and the crossing condition (14), α1 = p−1 − p1, implies

g1 =
1
2
− g0 , (25)

at this point. In such a case p1 − p+1 = p−1 − p1 = α1, so that αc
1 = αt

1 (Eq. (15)) and hence

BL
t = BL

c for L = 1. At T = 0 we have, explicitly,

α1 =
sinω
π

=

√
1−B2/J2

π
, (26)
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Figure 1. (Color online) Results for the geometric discord I2 (top left), the information deficit

I1 (top right), the quantum discord D (bottom right) and the eigenvalues of the reduced density

matrix ρL (bottom left) for a pair of contiguous spins (L = 1) in the ground state of the XX chain

in the thermodynamic limit, as a function of the scaled transverse field. Superscripts z and ⊥

denote the results for spin measurements parallel and perpendicular to the field. In the top right

panel the intermediate minimum Iγ1 in the small crossover region is also shown. The dashed line in

the top left panel depicts the square of the concurrence C. The minimum Iν (ν = 1, 2) corresponds

to I⊥ν essentially in the region where the dominant eigenvector of ρL is the Bell state |Ψ+i.

and this transition occurs at Bt ≈ 0.67J , i.e., sinω = π/2−ω, corresponding to an intensive

magnetization hszi ≈ −0.235. It is also seen that I2 ≥ C2 ∀ B, i.e., the geometric discord

remains larger than the corresponding entanglement monotone.

The behavior of the information deficit I1 is similar, except that the previous transition

is smoothed through a small crossover region 0.55 . B/J . 0.67 where an intermediate

measurement (0 < γ < π/2) provides the actual minimum: As B decreases, the minimizing

angle γ increases smoothly from 0 to π/2 in this interval.

For higher separations, the behavior is similar except that values of If and D are lower

and the transition field BL
t is shifted towards lower fields, in agreement with the decrease of

the field BL
c where |Ψ+i becomes dominant, as seen in Fig. 2 for L = 3. BL

t remains close

to BL
c but the agreement is not exact. The quantum discord continues to be minimized by

a perpendicular measurement ∀ |B| < J . Notice that in this case the concurrence is very
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Figure 2. (Color online) The same quantities of Fig. 1 for third neighbors (L = 3).

small and non-zero just in the vicinity of B = J , whereas all If and D remain non-zero ∀
|B| < J , ∀ L.

Results for large separations L & 3 can be fully understood with the small αL, δ ex-

pressions (17), (18) and (20). For large L we may neglect gL in p±L and pL, in which case

pL ≈
p

p+Lp
−
L = ω

π
(1− ω

π
), while

αL = ηL/
√
L , (27)

with ηL approaching a finite value as L increases (ηL → 0.294 at B = 0, decreasing with

increasing B). For sufficiently large L, Eq. (17) then leads to

If = Izf ≈ kfη
2
L/L , |B| > BL

t , (28)

with kf = |f ′′(pL)| (kf = 4 in I2 and 1
pL ln 2

in I1). Hence, all If ’s decrease as L−1 for

increasing separations L.

For large L the transition field BL
t becomes small, so that for |B| < BL

t we may employ

the lower row of Eq. (18), with δ ≈ −B/(πJ), since (24) implies here ω ≈ π/2 − B/J and

hence p±L ≈ 1
4
∓ B/(πJ):

If = I⊥f ≈ 1
2
kf [η

2
L/L+B2/(πJ)2] , |B| < Bt (29)

where kf = |f ′′(1/4)| and

BL
t ≈ πηLJ/

√
L , (30)
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Figure 3. (Color online). Left: The T = 0 transition field BL
t where the measurement minimizing

the geometric discord I2 changes from perpendicular to parallel, as a function of the separation L

(solid line), together with the T = 0 field BL
c where the dominant eigenvector of ρL changes from

a Bell state to an aligned state (dashed line). Both fields coincide for L = 1 and L → ∞. The

asymptotic result (30) for large L is also depicted (dotted line). Right: The transition fields BL
t (T )

of the geometric discord at finite temperatures, for L = 1, 2, 3 and 5, such that I2 = I⊥2 (Iz2 ) for

B < BL
t (T ) (> BL

t (T )). Dashed lines depict again the fields BL
c (T ) below which the Bell state is

the dominant eigenvector of ρL. For L = 1, both fields coincide exactly ∀ T , approaching J/2 for

high T , whereas for L ≥ 2 they merge for high T , vanishing as (J/T )L−1 (Eq. (35)).

as determined from the condition I⊥f = Izf (ηL ≈ 0.294 in (29)–(30)). This last equation

coincides for large L with the condition αL = p−L − pL (Eq. (14)), so that in this limit

BL
t = BL

c , as seen in the left panel of Fig. (3): The field (30) also determines the onset as B

decreases of |Ψ+i as dominant eigenstate of ρL. This field decreases then as L−1/2.

On the other hand, the quantum discord exhibits no transition: it is verified that D = D⊥

∀ B, L. Its expression for large L can be obtained directly from Eq. (20) and impliesD ∝ L−1

for large L, like If :

D = D⊥ ≈ kD η2L/L, (31)

where kD = 1
ln 2

( 1
pL

− arctanh 2δ
δ

) with δ = ω/π− 1/2. For B → 0, δ → 0 while pL → 1/4, and

D⊥ → I⊥1 .

We finally notice that for B → J , Eq. (24) leads to ω ≈
p

2(1− B/J), and hence

αL ≈ gL ≈ ω/π ∀ L at leading order. We then obtain the common L-independent limits

I2 ≈ 8(1− B/J)/π2 , I1 ≈
p

I2 , (B → J) (32)

with D ≈ I1 at leading order. The independence of separation for B → J is verified and

13
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Figure 4. (Color online) The geometric discord I2 vs. temperature at fixed field, for first and third

neighbors. At fields B < Bc = J (left panel), I2 decreases with increasing T and a transition

I⊥2 → Iz2 can take place, as seen here for L = 3. For B > Bc, I2 = Iz2 first increases at low T ,

although this revival becomes very small as L increases, as seen in the inset for L = 3. For high

T , I2 ∝ (T/J)−2L (Eq. (34)).

easily understood in the finite case (see next section).

Finite temperatures. As T increases, αL decreases for fields |B| < J (actually |B| < J−εL,

with εL small), implying the decrease of all quantum correlations in this region. Nonetheless,

while the concurrence (and hence entanglement) terminates at a finite T [39], the quantum

discord and all If ’s vanish only asymptotically for high T . In addition, for T > 0 a small

but finite value of D and If will also arise for B > J (Fig. 4), as correlated excited states

become accessible.

Setting kB = 1, at high temperatures T ≫ Max[J,B] Eq. (22)–(23) lead to

g0 ≈ 1
2
− B

4T
, g1 ≈ J

8T
,

with gL = O(T−3) or higher for L ≥ 2. Hence, in this limit we obtain, at leading non-zero

order,

p±L ≈ 1
4
(1∓B/T ) , pL ≈ 1

4
, αL ≈ 1

2
(J/4T )L , (33)

implying that we may directly apply Eqs. (18) and (20). Therefore, If and D will vanish

exponentially with increasing L, i.e., If , D ∝ (T/J)−2L. Nonetheless, for all If ’s there is

still a transition field BL
t ∀ T such that I⊥f < Izf for |B| < BL

t , with BL
t decreasing with

increasing T and approaching the field BL
c for the onset of |Ψ+i as the dominant eigenstate

14



of ρL. The final result for high T derived from Eq. (18) is

If =







Izf ≈ kf
4
( J
4T
)2L , |B| > BL

t

I⊥f ≈ kf
2
(1
4
( J
4T
)2L + B2

(4T )2
) , |B| < BL

t

, (34)

where kf = |f ′′(pL)| ≈ |f ′′(1/4)| and

BL
t ≈ J

2
(
J

4T
)L−1 , (35)

as determined from the condition I⊥f = Izf , which coincides in this limit with that derived

from the crossing condition (14). Hence, for first neighbors (L = 1) BL
t approaches for high

T the finite limit J/2, whereas for L ≥ 2 it decreases as (J/T )L−1, as verified in the right

panel of Fig. 3 for I2. In this limit the transition fields BL
t approach BL

c ∀ If . For lower T

they remain quite close. It is also seen in Fig. 3 that in the case of I2, B
L
t = BL

c ∀ T for

L = 1, as previously demonstrated.

In contrast D = D⊥ ∀ B, T , with (Eq. (20))

D⊥ ≈ kD
4
( J
4T
)2L , (36)

for high T , where kD ≈ 2
ln 2

. Again, D⊥ ≈ I⊥1 for B → 0.

We finally notice that for T > 0 and strong fields B ≫ J, T , we have

gL ≈ e−βB

π

Z π

0

eβJ cos ω cos(Lω)dω = e−βBIL(βJ) ,

where IL(x) denotes the modified Bessel function of the first kind (IL(x) ≈ ex/
√
2πx for

x → ∞ while IL(x) ≈ (x/2)L/L! for x → 0). Hence, in this limit gL decreases exponentially

with the field, with pL ≈ g0 and αL ≈ gL. The geometric discord then becomes

I2 ≈ 4e−2B/T I2L(J/T ) , (37)

decreasing as e−2B/T for strong fields and also quite fast with separation if B ≫ T ≫ J

(IL(J/T ) ≈ (J/2T )L/L!). On the other hand, I1 and D will decrease for strong fields as αL

(∝ e−B/T ).

C. The finite case

In a finite chain, the exact ground state has a definite discrete magnetization M . There-

fore, it will exhibit N transitions M → M + 1 as the field decreases from above Bc = J ,
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Figure 5. (Color online) The minimum geometric discord I2 (top left), information deficit I1 (top

right) and quantum discord D (bottom right) for spin pairs with separation L = 1, . . . , N/2 in the

ground state of a finite cyclic chain of N = 40 spins as a function of the scaled transverse magnetic

field. For reference the concurrence (bottom left) is also depicted. The dotted lines depict the

thermodynamic limit for separations L = 1, 2, 3 and N/2. In each panel the inset depicts the

vicinity of the critical field Bc = J , where all curves reach a common value for all separations L

(Eqs. (39)–(40)).

starting at M = −N/2 for B > Bc. In the cyclic case the critical fields are given by [39]

Bk = J cos[π(k−1/2)/N ]
cos[π/(2N)]

, k = 1, . . . , N (38)

such that M = k−N/2 for Bk+1 < B < Bk, with B1 = J , BN = −J . For N → ∞ Eq. (38)

reduces to Eq. (24) (B = J cosω, with ω/π = k/N = 1/2 + M/N). Details of the exact

calculation for the finite case at 0 and finite T are given in the Appendix.

Accordingly, all measures If and D will exhibit at T = 0 a stepwise behavior, starting

from 0 for B > Bc, which can be appreciated in Fig. 5 and which is centered around the

result for the thermodynamic limit (also depicted for L = 1, 2, 3 and N/2) for L . N/4.

Just for large L & N/4, the finite result becomes larger. In contrast, the concurrence is

non-zero for large L just in the immediate vicinity of Bc = J .

Actually, as shown in the insets of Fig. 5, all measures If , D and C acquire a common

value for all separations L for B → J , i.e., in the first interval B2 < B < B1, where
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M = −N/2 + 1 and the ground state is the W -state

|Ψ0i =
1√
N
(|↑↓↓ . . .i+ . . .+ | . . . ↓↓↑i) .

This state leads to a L-independent rank 2 reduced state ρL, with p+L = 0, p−L = 1 − 2/N

and pL = αL = 1/N in (10). For such state we obtain, if N ≥ 4,

I2 = Iz2 = 4
N2 = C2, I1 = Iz1 =

p

I2 , (39)

in agreement with the thermodynamic limit result (32) (for large N the second critical field

is B2 ≈ J(1 − π2

N2 ) for large N and hence, 8
π2 (1 − B

J
) ≈ 4

N2 if B = B1+B2

2
). Note that for

this state, αL ≤ αc = p−L − pL ∀ N ≥ 4 (just for N = 3, where αL > αc, a perpendicular

measurement is preferred in both I2 and I1). In contrast, D is minimized by a perpendicular

measurement ∀ N , with

D⊥ ≈ 2
N
− 1

N2 log2(N/e) , (40)

for large N (though D⊥ ≈ Dz = Iz1 at leading order).

For lower fields, it is seen that for small L ≥ 2, I2 is maximum at the parallel-

perpendicular transition. Such maximum becomes flattened in I1 and is absent in the

quantum discord D, since the latter is minimized by a perpendicular measurement ∀ B < J

and L. For L > 1 its maximum is attained in the vicinity of Bc = J .

The minimizing angles for I2 and D in the finite case of Fig. 5 are depicted in Fig. 6.

For I2, it exhibits the sharp transition from γ = 0 (z phase) to γ = π/2 (⊥ phase) as B

decreases, which now occurs at one of transition fields (38) (BL
t = Bk for some L-dependent

k). For L = 1 the measurement transition signals exactly that ground state transition

M → M + 1 where ρL changes its dominant eigenstate, as clearly depicted in the top right

panel of Fig. 6 (where it corresponds to k = 11 in (38)), while for larger L both transitions

are very close. As seen in the left panels of Fig. 6, as L increases the transition fields for

different L begin to merge, coinciding for large L & N/4, while as N increases they approach

the thermodynamic limit result for L . N/4, becoming then constant. A similar picture is

obtained for the minimizing angle of I1, although in this case the measurement transition can

occur in two or three “steps”, reminiscent of the smoothed transition of the thermodynamic

limit.

The bottom right panel in Fig. 6 depicts the finite temperature geometric discord “phase”

diagram according to the minimizing measurement for N = 40 spins (fields BL
t ), together

17



0 0.5 1.0B•J

0

π/4

π/2

Γ
L=12

3
4

9-20

5-8

D

I2

0 0.5 1.0
B•J

0

0.5

p,
I 2 N=40

L=1

I2
¦

I2
z

I2
p

ÈY+\
È¯¯\

0 20 40L
0

0.25

0.5

B
 /J t N=40

N=100
N=¥z-phase

|_-phase

0 0.4 0.8B•J
0

0.5

1

T•
J

L=123

20

BR
t

BI2t

Figure 6. (Color online). Top: Left: The minimizing angle for the geometric discord I2 as a

function of the magnetic field for spin pairs with separations L = 1, . . . , N/2, in the finite chain of

Fig. 5. Dotted lines indicate the sharp ⊥→ z transitions for different L. No transition occurs in

the quantum discord D (dashed line), where γ = π/2 ∀ B and L. Right: Results for the geometric

discord I⊥2 and Iz2 (solid lines) for N = 40 and L = 1, together with the two dominant eigenvalues of

ρ1 (dotted lines). Both cross at the same step. Bottom: Left: Exact transition fields BL
t delimiting

the ⊥ and z phases of I2 at T = 0 for N = 40, N = 100 and the thermodynamic limit. Right:

The geometric discord “phase” diagram in the finite chain of N = 40 spins, for all separations

L = 1, . . . , N/2 (solid lines). The z (⊥) phases lie to the right (left) of these curves. Dashed lines

depict the fields BL
c (T ) for L ≤ 4, below which the Bell state becomes dominant in ρL.

with the fields BL
c where dominant eigenstate changes from the Bell state to an aligned

state, for all separations L = 1, . . . , N/2. For L = 1 there is again almost exact coincidence

between both fields for all T , since the deviation from the thermodynamic limit condition

(25) is small. For larger L the agreement is not exact for low T , but they become again

coincident for high temperatures ∀ L, where deviations from the thermodynamic limit results

become small.
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IV. CONCLUSIONS

We have examined the behavior of discord-type measures of quantum correlations for

the case of spin pairs in the cyclic XX chain. Their behavior is substantially different from

that of the pair entanglement, acquiring at T = 0 non-zero values for all pair separations

L if B < Bc and decaying only as L−1 for large L. Moreover, they remain non-zero for

all temperatures, decaying as T−2L for sufficiently high T . Thus, they all exhibit the same

“universal” asymptotics, independently of the particular choice of entropic function in If .

It can then be most easily accessed through the geometric discord, which offers the simplest

evaluation. The ensuing picture is, consequently, quite different from that exhibited by the

pair entanglement [39], which, although reaching full range in the immediate vicinity of

Bc, is appreciable just for the first few neighbors, as seen in Fig. 5, and strictly vanishes

beyond a low limit temperature. Hence, critical systems like the XX chain seem to offer vast

possibilities for discord-type quantum correlations between close or distant pairs.

The second important result is that in spite of the similar behavior, these measures exhibit

substantial differences in the minimizing local spin measurement that defines them. The

quantum discord, which minimizes a conditional entropy, always prefers here measurements

along a direction orthogonal to the transverse field, even if correlations are weak (i.e., large

L, high T or strong fields B if T > 0). The information deficit-type measures, which evaluate

the minimum global information loss due to such measurement and include the geometric

discord and the one-way information deficit, exhibit instead a transition in the optimum

measurement, from perpendicular to parallel to the field as the latter increases, present for

all pair separations and at all temperatures. Such difference was previously observed in

certain two-qubit and two-qutrit states [25, 49].

In the present model such behavior is a signature of the transition exhibited by the

dominant eigenstate of the reduced state of the pair, which changes from a maximally

entangled state to a separable state in the immediate vicinity of the measurement transition.

Hence, the latter reveals an actual relevant change in the structure of the reduced state.

Moreover, for contiguous pairs and in the case of the geometric discord, both transitions

occur exactly at the same field, at all temperatures. For general separations there is also

exact agreement between both fields at high T , for all measures If . In the finite chain the

T = 0 measurement transition coincides of course with one of the ground state magnetization
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transitionsM → M+1. These results indicate that the “least disturbing” local measurement

optimizing these quantities can be significantly different from that minimizing the quantum

discord, even though they coincide exactly in some regimes, being essentially affected by the

main component of the reduced state. Its changes can then be used to characterize different

quantum regimes, even when entanglement is absent.

The authors acknowledge support from CONICET (LC, NC) and CIC (RR) of Argentina.

Appendix A: Exact solution of the cyclic chain

We give here a brief summary of the method employed for obtaining the exact solution of

the cyclic XX chain for both finite N and the thermodynamic limit, at both 0 and finite T

[39]. Through the Jordan-Wigner transformation [41], and for each value σ = ±1 of the Sz

parity Pz = exp[iπ(Sz+N/2)], the XX Hamiltonian can be mapped exactly to the fermionic

Hamiltonian

Hσ =
PN

j=1B(c†jcj − 1
2
)− 1

2
J(1− δjNδσ1)(c

†
jcj+1 + c†j+1cj) (A1)

where N+1 ≡ 1 and cj , c
†
j denote fermion annihilation and creation operators. Eq. (A1) can

be solved exactly through a discrete Fourier transform c†j = 1√
N

P

k∈Kσ
eiωkjc′†k to fermion

operators c′k, where ωk = 2πk/N and k is half-integer (integer) for σ = 1 (−1), i.e., Kσ =

{−[N
2
] + δσ, . . . , [

N−1
2

] + δσ} with [. . .] the integer part and δ1 =
1
2
, δ−1 = 0. We then obtain

Hσ =
X

k∈Kσ

λk(c
′†
k c

′
k − 1

2
), λk = b− v cosωk . (A2)

The 2N energies are then
P

k∈Kσ
λk(Nk − 1/2), where Nk = 0, 1 and σ = (−1)

P
k Nk . The

single fermion energies λk depend on the global parity σ and are degenerate (λk = λ−k) for

|k| 6= 0, N/2. A careful comparison of the ensuing levels leads to the critical fields (38).

The exact partition function Z of the spin system corresponds to the full grand-canonical

ensemble of the fermionic representation. However, due to the parity dependence of the

latter, this requires a (fermion) number parity projected statistics [39]. Z can then be written

as a sum of partition functions for each parity,

Z = Tr
X

σ=±1

Pσe
−βHσ = 1

2

X

σ=±1

(Zσ
0 + σZσ

1 ) , (A3)
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where Pσ = 1
2
(1+σPz) is the projector onto parity σ and Zσ

ν = eβBN/2
Q

k∈Kσ
(1+(−1)νe−βλk)

for ν = 0, 1. The thermal average of an operator O can then be written as

hOi = 1
2
Z−1

X

σ=±1

(Zσ
0 hOiσ0 + σZσ

1 hOiσ1) , (A4)

where hOiσν = (Zσ
ν )

−1Tr [P ν
z e

−βHσO]. For many-body fermion operators O, the thermal

version of Wick’s theorem cannot be applied in the final average (A4), but it can be applied

for evaluating the partial averages hOiσν , in terms of the basic contractions (L = |i− j|)

gL ≡ hc†icjiσν = N−1
X

k∈Kσ

hc′†k c′kiσν cos(Lωk) , (A5)

where hc′†kc′kiσν = [1 + (−1)νeβλk ]−1. As siz = c†ici − 1
2
, this leads to hsiziνσ = g0 − 1

2
and

h(siz + 1
2
)(sjz +

1
2
)iσν = g20 − g2L , hsi+sj−iσν = 1

2
Det(AL)

where sj± = sjx ± isjy and AL is the L×L matrix of elements (AL)ij = 2gi−j+1− δi,j−1. All

elements in (10) can then be analytically evaluated.

For N → ∞ and finite separations L, we can ignore parity effects and directly employ

Wick’s theorem in terms of the final averages gL = hc†icji, with sums over k replaced by inte-

grals over ω ≡ ωk. This leads to Eqs. (21)–(23). When the ground state is non-degenerate,

Eqs. (22)–(23) can also be applied for finite N in the T → 0 limit, using the exact contrac-

tions gL ≡ hc†icji0 = 1
N

P

k∈Kσ
Nk cos(Lωk), with Nk = 0, 1 the occupation of level k.
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