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Abstract— This paper presents a novel dual adaptive
dynamic controller for trajectory tracking of nonholonomic
wheeled mobile robots. The controller is developed in
discrete-time and the robot’s nonlinear dynamic functions
are assumed to be unknown. A sigmoidal multilayer percep-
tron neural network is employed for function approximation,
and its weights are estimated stochastically in real-time.
In contrast to adaptive certainty equivalence controllers
hitherto published for mobile robots, the proposed control
law takes into consideration the estimates’ uncertainty,
thereby leading to improved tracking performance. The
proposed method is verified by realistic simulations and
Monte Carlo analysis.

I. INTRODUCTION

Motion control of nonholonomic mobile robots has
been receiving considerable attention for the last fifteen
years [1]. This activity is not only justified by the vast
array of existing and potential practical applications, but
also by some particularly interesting theoretical chal-
lenges. In particular most mobile configurations man-
ifest restricted mobility, giving rise to nonholonomic
constraints in the kinematics. Moreover the majority of
mobile vehicles are underactuated, since they have more
degrees of freedom than control inputs. Consequently
the linearised kinematic model lacks controllability; full-
state feedback linearisation is out of reach; and pure,
smooth, time-invariant feedback stabilisation of the Carte-
sian model is unattainable [2].

Earlier research focused only on kinematic control of
nonholonomic vehicles [1]–[3], assuming that the control
signals instantaneously establish the desired robot veloci-
ties. This is commonly known as perfect velocity tracking
[4]. Controllers based on a full dynamic model [4]–[6]
capture better the behaviour of real robots because they
account for dynamic effects such as mass, friction and
inertia, which are otherwise neglected. However, the exact
values of these dynamic parameters are often uncertain
or even unknown, and may even vary over time. These
factors call for the development of adaptive dynamic
controllers to handle better unmodelled robot dynamics,
as well as noise and external disturbances.

To address these advanced control issues, some re-
searchers opt to use pre-trained function estimators,
specifically artificial neural networks (ANNs), to render
nonadaptive conventional controllers more robust [7].
These techniques require prior off-line training and re-
main blind to variations which take place after the training
phase. To account for parametric variations, adaptive
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control and robust sliding mode control [6] have also been
proposed. Another approach is that of online functional-
adaptive control, where the uncertainty is not restricted
to parametric terms, but covers the dynamic functions
themselves [8]–[11].

Adaptive controllers which have hitherto been proposed
for the control of mobile robots are based on the heuristic
certainty equivalence (HCE) property [8]–[11]. In such
cases, the estimated functions are used for control as if
they were the true ones; ignoring completely their uncer-
tainty. When the uncertainty is large, for instance during
startup or when the unknown functions are changing,
HCE often leads to large tracking errors and excessive
control actions which can excite unmodelled dynamics
or lead to instability. Consequently we opt to employ
stochastic adaptive control, more specifically the dual
control principle introduced by Fel’dbaum in [12]–[14].
Basically a dual adaptive control law is designed with two
aims in mind: (i) to ensure that the output tracks the de-
sired reference signal, with due consideration given to the
estimates’ uncertainty; (ii) to excite the plant sufficiently
so as to accelerate estimation, thereby reducing quickly
the uncertainty in future estimates. These two features are
known as caution and probing respectively [15], [16].

In contrast to other work on mobile robot motion
control, the novel contribution of this paper is to introduce
a neuro-adaptive dynamic controller featuring these dual
adaptive properties. Moreover, the control law is devel-
oped entirely in discrete-time and the resulting closed-
loop dynamics are independent of the plant parameters.
In this paper we focus on the trajectory tracking problem
of wheeled mobile robots (WMRs). Nevertheless the em-
ployed framework is completely modular, and can easily
be adopted for other robot control scenarios.

The presented method employs a sigmoidal multilayer
perceptron (MLP) ANN to estimate the robot’s nonlinear
dynamic functions, which are assumed to be completely
unknown. The ANN parameters are estimated stochas-
tically in real-time and no preliminary off-line training
is assumed. The estimated functions and a measure of
their degree of uncertainty are both used in the suboptimal
dual adaptive control law, which operates in cascade with
a trajectory tracking kinematic controller. Section II of
this paper develops the stochastic discrete-time dynamic
model of the robot. This is then utilised in the dual adap-
tive control design outlined in Section III. The proposed
method is verified and compared by realistic simulation
and Monte Carlo analysis in Section IV, which is followed
by a brief conclusion in Section V.
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II. MODELLING

This paper considers the differentially driven wheeled
mobile platform depicted in Fig. 1. We ignore the passive
wheel and adopt the following notation:
Po: midpoint between the two wheels
Pc: centre of mass of the platform without wheels
d: distance from Po to Pc

b: distance from each wheel to Po

r: radius of each wheel
mc: mass of the platform without wheels
mw: mass of each wheel
Ic: moment of inertia of the platform about Pc

Iw: moment of inertia of wheel about its axle
Im: moment of inertia of wheel about its diameter

The robot dynamic state can be expressed as a five
dimensional vector q � [x y φ θr θl]

T , where (x, y)
is the coordinate of Po, φ is the robot orientation angle
with reference to the xy frame, θr and θl are the an-
gular displacements of the right and left driving wheels
respectively. The pose of the robot refers to the three-
dimensional vector p � [x y φ].

A. Kinematics

Assuming rolling without slipping, the mobile platform
is subject to three kinematic constraints, two of which are
nonholonomic [5]. The three kinematic constraints can be
written in the form A(q)q̇ = 0, where

A(q) =


 − sin φ cos φ 0 0 0

cos φ sin φ b −r 0
cos φ sin φ −b 0 −r


 .

Furthermore, one can verify that A(q)S(q) = 0, where

S =




r
2 cos φ r

2 cos φ
r
2 sinφ r

2 sin φ
r
2b − r

2b
1 0
0 1


 .

The kinematic state-space model of the WMR in Fig. 1
can now be expressed as

q̇ = S(q)ν, (1)

where ν represents a column vector composed of the
angular velocities of the two driving wheels, specifically

ν � [νr νl]
T �

[
θ̇r θ̇l

]T

.

x

y
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d
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φ
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Fig. 1. Differentially driven wheeled mobile robot

B. Dynamics

The dynamic equations of motion of the WMR under
consideration can be written in matrix form as [5]:

M(q)q̈ + V (q̇, q)q̇ + F (q̇) = E(q)τ − AT (q)λ, (2)

where M(q) is the inertia matrix, V (q̇, q) is the cen-
tripetal and Coriolis matrix, F (q̇) is a vector of frictional
forces, E(q) is the input transformation matrix, τ is the
torque vector and λ is the vector of constraint forces.

Differentiating (1) with respect to time, substituting
the expression for q̈ in (2), premultiplying the resulting
expression by ST (q), and noting that ST (q)AT (q) = 0
it can be shown that

M̄ν̇ + V̄ (q̇)ν + F̄ (q̇) = τ (3)

where:

M̄ =

[
r2

4b2 (mb2 + I) + Iw
r2

4b2 (mb2 − I)
r2

4b2 (mb2 − I) r2

4b2 (mb2 + I) + Iw

]
,

V̄ (q̇) =

[
0 mcr2dφ̇

2b
mcr2dφ̇

2b 0

]
,

F̄ (q̇) = ST (q)F (q̇), I = (Ic + mcd
2) + 2(Im + mwb2)

and m = mc + 2mw. It is important to note that:
Remark 2.1: M̄ is symmetric and positive definite.
Remark 2.2: The nonlinearities in the WMR dynamics

can be totally attributed to V̄ (q̇) and F̄ (q̇) since M̄ is
independent of the state vector and/or its derivatives.

Remark 2.3: V̄ (q̇) is effectively a function of ν only,
since φ̇ = r

2b (νr − νl) as can be seen in (1).
We will now discretise the continuous-time dynamics

(3) to account for the fact that the controller is imple-
mented on a digital computer. Using a first order forward
Euler approximation with sampling interval T seconds the
following discrete-time dynamic model is obtained:

νk − νk−1 = fk−1 + Gk−1τk−1, (4)

where the subscript integer k denotes that the correspond-
ing variable is evaluated at time kT seconds and vector
fk−1 and matrix Gk−1 are given by

fk−1 = −TM̄−1
k−1

(
V̄k−1νk−1 + F̄k−1

)
,

Gk−1 = TM̄−1
k−1.

The following conditions are assumed to hold:
Assumption 2.1: The control input vector τ remains

constant over each sampling interval.
Assumption 2.2: The sampling interval is chosen low

enough for the Euler approximation to hold.
To account for noise, uncertainty and disturbances we

introduce an additive discrete random vector εk. The de-
terministic model (4) is hence converted to the following
nonlinear, stochastic, discrete-time dynamic model

νk − νk−1 = fk−1 + Gk−1τk−1 + εk, (5)

under the following condition
Assumption 2.3: εk is an independent, zero-mean,

white, Gaussian process, with covariance matrix Rε.
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III. CONTROL DESIGN

A very simple, yet useful representation of the tra-
jectory tracking problem, is through the concept of the
virtual vehicle [3]. Basically, the time dependent reference
trajectory is designated by a non-stationary virtual vehicle
having the same nonholonomic constraints as the real
robot. The controller aims for the real WMR to track the
virtual vehicle at all times, in both pose and velocity.

A. Kinematic Control

The discrete-time tracking error ek is defined as:

ek �


 e1k

e2k

e3k


 �


 cos φk sin φk 0
− sin φk cos φk 0

0 0 1


 (prk

− pk) ,

where prk
� [xrk

yrk
φrk

]T denotes the virtual vehicle
sampled pose vector. In trajectory tracking the objective
is to make e converge to zero so that p converges to pr.
For this task we propose a discrete-time version of the
continuous-time kinematic controller proposed in [3]:

νck
= C

[
vrk

cos e3k
+ k1e1k

ωrk
+ k2vrk

e2k
+ k3vrk

sin e3k

]
, (6)

where νck
is the wheel velocity command vector issued

by the kinematic controller, (k1, k2, k3) > 0 are design
parameters, vrk

and ωrk
are the translational and angular

virtual vehicle velocities respectively, and C is a velocity
conversion matrix given by:

C =

[
1
r

b
r

1
r − b

r

]
.

If we consider only the kinematic model (1) of
the WMR and assume perfect velocity tracking
(i.e. νk = νck

∀ k), then (6) solves the trajectory track-
ing problem. However mere kinematic control rarely
suffices and often leads to performance degradation, since
it ignores all dynamic effects [8].

B. Nonadaptive Dynamic Control

If the nonlinear dynamic functions fk and Gk are
assumed perfectly known, the control law

τk = G−1
k

(
νck+1 − νk − fk + kd (νck

− νk)
)

(7)

with the design parameter −1 < kd < 1, yields the
following plant-independent, closed-loop dynamics

νk+1 = νck+1 + kd (νck
− νk) + εk+1. (8)

This solves the velocity tracking problem since (8) and
the choice of kd, clearly indicate that |νck

− νk| → εk as
k → ∞. It is important to note that:

Remark 3.1: The control law (7) requires the velocity
command vector νc to be known one sampling interval
ahead. For this reason it is required to advance the
kinematic law (6) by one sampling interval. This is
achieved by generating the reference trajectory vectors
corresponding to the (k + 1) instant, and using a first
order hold to estimate pk+1 from pk. The latter is a valid
approximation in the light of Assumption 2.2.

Remark 3.2: The case with kd = 0 in (7), corresponds
to deadbeat control associated with digital control.

C. Dual Adaptive Dynamic Control

The dynamic control law (7) driven by the kine-
matic law (6), solves the trajectory tracking problem
when the WMR dynamic functions fk−1 and Gk−1

in (5) are completely known. As emphasised in Sec-
tion I this is rarely the case in real-life robotic appli-
cations, commonly manifesting: unmodelled dynamics,
unknown/time-varying parameters and imperfect/noisy
measurement. Consequently, we consider fk−1 and Gk−1

to be completely unknown.
1) Neuro-Stochastic Function Estimator: A sigmoidal

MLP ANN is used for the approximation of the vector of
discrete nonlinear functions fk−1. Unlike the activation
functions synonymous with other classes of ANNs, such
as Gaussian radial basis function (RBF) ANNs [15], the
sigmoidal functions in MLPs are not localised, implying
that typically MLP networks require less neurons than
RBF ANNs for the same degree of accuracy. This implies
that MLPs are less computationally demanding, making
them attractive for high-order systems, since the number
of neurons need not rise exponentially with the number
of states, as with other types of ANNs that exhibit the
curse of dimensionality [17].

The MLP ANN used to approximate fk−1, which
estimate is denoted as f̂k−1, is given by

f̂k−1 =

[
φT (xk−1, âk)ŵ1k

φT (xk−1, âk)ŵ2k

]
, (9)

in the light of the following definitions and assumption:
Definition 3.1: xk−1 � [νk−1 1] denotes the ANN

input and the augmented constant serves as a bias input.
Definition 3.2: φ(·, ·) is the vector of activation

functions, whose ith element is given by
φi = 1/

(
1 + exp

(−ŝT
i x

))
, where ŝi is ith vector

element in the group vector â; i.e. â �
[
ŝT
1 · · · ŝT

L

]T

where L denotes the number of neurons. In practice ŝi

characterises the shape of the ith neuron.
In this definition the time index has been dropped for
clarity, and throughout the paper the ˆ notation is used to
indicate that the operand is undergoing estimation.

Definition 3.3: ŵik
represents the synaptic weight esti-

mate vector of the connection between the neuron hidden
layer and the ith output element of the ANN.

Assumption 3.1: The input vector xk−1 is contained
within a known, arbitrarily large compact set χ ⊂ R

2.
It is known that Gk−1 is a state-independent matrix

with unknown elements (refer to Remark 2.2). Hence, its
estimation does not require the use of an ANN. Moreover
it is a symmetric matrix (refer to Remark 2.1), a property
which is exploited to construct its estimate as follows:

Ĝk−1 =

[
ĝ1k−1 ĝ2k−1

ĝ2k−1 ĝ1k−1

]
, (10)

where ĝ1k−1 and ĝ2k−1 represent the unknown elements.
The ANN weight-tuning algorithm is developed next.

The following formulation is required in order to proceed.
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Definition 3.4: The unknown parameters requiring es-
timation are grouped in a single vector ẑk �

[
v̂T

k ĝT
k

]T
,

where v̂k �
[
ŵT

1k
ŵT

2k
âT

k

]T
and ĝk �

[
ĝ1k−1 ĝ2k−1

]
.

Definition 3.5: The measured output in the identifica-
tion model (5) is denoted by yk � νk − νk−1.

Assumption 3.2: Inside the compact set χ the neural
network approximation error is negligibly small when
the ANN parameter vector v̂k is equal to some unknown
optimal vector denoted by v∗

k.
This ∗ notation is used throughout to refer to the optimal
value of the operand. Assumption 3.2 is justified due to
the Universal Approximation Theorem of ANN [15].

By (9), (10), Definitions 3.1 to 3.5 and Assumptions
3.1, 3.2; it follows that the stochastic dynamic model (5)
can be represented in the following state-space form:

z∗
k+1 = z∗

k

yk = h (xk−1, τk−1,z
∗
k) + εk,

(11)

where h (xk−1, τk−1,z
∗
k) is the nonlinear function of the

unknown optimal parameters in z∗
k given by

h (xk−1, τk−1,z
∗
k) � f̂k−1(xk−1,w

∗
1k

,w∗
2k

,a∗
k)

+ Ĝk−1(g∗
k)τk−1. (12)

It is proper to note that:
Remark 3.3: The unknown optimal parameter vector

z∗
k , required for the estimation of fk−1 and Gk−1 in

(9) and (10) respectively, does not appear linearly in the
system model (11). Consequently, nonlinear estimation
techniques have to be used.
In this paper we opt to employ the well known Extended
Kalman Filter (EKF) in predictive mode, for the estima-
tion of z∗

k+1, as detailed right after the following set of
necessary preliminaries.

Definition 3.6: ∇hk
denotes the Jacobian matrix of

h (xk−1, τk−1,z
∗
k) with respect to z∗

k evaluated at ẑk.
By (9), (10) and (12) it can be shown that:

∇hk
= [∇fk

∇Γk
] �

[
∂(f̂k−1)
∂(v̂k)

∂(Ĝk−1τk−1)
∂(ĝk)

]

where:

∂(f̂k−1)
∂(v̂k)

=

[
φT

k−1 0T

0T φT
k−1

· · · ŵ1,i(φi − φ2
i )x

T · · ·
· · · ŵ2,i(φi − φ2

i )x
T · · ·

]

where i = 1, . . . , L and ŵj,i denotes the ith element
of the jth output weight vector ŵjk

, notation-wise φk−1

implies that the activation function is evaluated for xk−1

and âk, 0 denotes a zero vector having the same length
as φk−1, and in this equation both φi and x correspond
to time instant (k − 1);

∂(Ĝk−1τk−1)
∂(ĝk)

=

[
τrk−1 τlk−1

τlk−1 τrk−1

]
,

where τrk−1 and τlk−1 are the first and second elements
of the input torque vector τk−1 respectively.

Definition 3.7: The information state, Ik [15] consists
of all the output measurements up to instant k and all the
previous inputs, denoted by Y k and Uk−1 respectively.

Assumption 3.3: The density p(z∗
0) ∼ N (z̄0,Rz0).

Assumption 3.4: z∗
0 and εk are mutually independent.

In the light of Definitions 3.6, 3.7 and Assumptions 3.3,
3.4, the EKF is applied to the nonlinear stochastic model
(11). Inherently, it introduces the approximation

p(z∗
k+1|Ik) ≈ N (ẑk+1,Pk+1), (13)

where ẑk+1 and Pk+1 satisfy these recursive equations

ẑk+1 = ẑk + Kkik

Pk+1 = Pk − Kk∇hk
Pk,

(14)

where the EKF gain matrix and the innovations vector
are given by Kk = Pk∇T

hk

(
∇hk

Pk∇T
hk

+ Rε

)−1
and

ik = yk − h (xk−1, τk−1, ẑk) respectively, with initial
conditions ẑ0 = z̄0 and P0 = Rz0 . These initial con-
ditions reflect the prior estimate of the unknown optimal
vector and its uncertainty respectively.

Expressing yk+1 as a first order Taylor series around
z∗

k+1 = ẑk+1, yields the following approximation

yk+1 ≈ h (xk, τk, ẑk+1)+
∇hk+1

(
z∗

k+1 − ẑk+1

)
+ εk+1,

(15)

which leads the following lemma.
Lemma 3.1: On the basis of approximations (13)

and (15) it follows that p(yk+1|Ik) is approximately
Gaussian with mean h (xk, τk, ẑk+1) and covariance
∇hk+1Pk+1∇T

hk+1
+ Rε.

Proof: The proof follows directly from the linearity
of (15), the approximate conditional distribution of z∗

k+1

in (13), and the Gaussian distribution of εk+1 as specified
in Assumption 2.3.

The EKF formulation (14) constitutes the adaptation
law for the proposed dual adaptive scheme. Additionally,
it provides a real-time update of the density p(yk+1|Ik)
as detailed in Lemma 3.1. This information is essential in
the dual control law detailed next.

2) The Control Law: The proposed control law is
based on an explicit-type, suboptimal dual performance
index based on the innovations dual method originally
proposed by Milito et. al. [18] for single-input single-
output (SISO) linear systems. This approach was later
extended by Fabri and Kadirkamanathan [19] for the dual
adaptive neural control of nonlinear SISO systems. In
contrast to these works, our control law caters for the
nonlinear, multiple-input multiple-output (MIMO) nature
of the relatively more complex system, namely the WMR.

The innovation-based performance index Jinn, adopted
from [19] and modified to fit the MIMO scenario at hand,
is given by

Jinn = E
{(

yk+1 − ydk+1

)T
Q1

(
yk+1 − ydk+1

)
+

(
τT

k Q2τk

)
+

(
iT
k+1Q3ik+1

) ∣∣∣Ik
}

, (16)

where E
{·|Ik

}
denotes the mathematical expectation

conditioned on Ik, and the following definitions apply.
Definition 3.8: ydk+1 is the reference vector of yk+1

and is given by ydk+1 � νck+1 − νck
(by Definition 3.5).
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Definition 3.9: Design parameters Q1, Q2 and Q3

are diagonal and ∈ R
2×2. Additionally Q1 is positive

definite, Q2 is positive semi-definite and each element of
Q3 is ≤ 0 and ≥ the corresponding element of −Q1.
It should be noted that:

Remark 3.4: The design parameter Q1 is introduced
to penalise high deviations in the output, Q2 induces
a penalty on large control signals and prevents ill-
conditioning, and Q3 affects the innovation vector so as
to induce the dual feature characterising our scheme.
It is now possible to present the dual adaptive control law.

Theorem 3.1: The control law minimising performance
index Jinn (16), subject to the WMR dynamic model
(5) and all the previous definitions, assumptions and
Lemma 3.1, is given by

τk =
(
ĜT

k Q1Ĝk + Q2 + Nk+1

)−1

×
(
ĜT

k Q1

(
ydk+1 − f̂k

) − κk+1

)
,

(17)

where the following definitions apply.
Definition 3.10: Q4 � Q1 + Q3, and the ith row, jth

column term of any matrix AS be denoted by aS(i, j).
Definition 3.11: Pk+1 is repartitioned as

Pk+1 =

[
Pffk+1 P T

Gfk+1

PGfk+1 PGGk+1

]
,

where: Pffk+1 ∈ R
5L×5L and PGGk+1 ∈ R

2×2.

Definition 3.12: Matrix B � PGfk+1∇T
fk

Q4, so that

κk+1 �
[
b(1, 1) + b(2, 2) b(1, 2) + b(2, 1)

]T
.

Definition 3.13: The elements of Nk+1 are given by:

n(1, 1) = q4(1, 1)pGG(1, 1) + q4(2, 2)pGG(2, 2)
n(2, 2) = q4(1, 1)pGG(2, 2) + q4(2, 2)pGG(1, 1)
n(1, 1) = 0.5 × (q4(1, 1) + q4(2, 2))

× (pGG(1, 2) + pGG(2, 1))
n(2, 1) = n(1, 2).

Note that the time index in Nk+1 indicates that each
individual element pGG(·, ·) corresponds to PGGk+1 .

Proof: Given the approximately Gaussian distribu-
tion p(yk+1|Ik) in Lemma 3.1, and several general results
from multivariate probability theory, it follows that

Jinn =
(
hk+1 − ydk+1

)T
Q1

(
hk+1 − ydk+1

)
+ τT

k Q2τk

+ trace
{

Q4

(
∇hk+1Pk+1∇T

hk+1
+ Rε

)}
,

where hk+1 denotes h (xk, τk, ẑk+1). Replacing hk+1

by f̂k + Ĝkτk, and employing the formulations in Defini-
tions 3.6 and 3.11 to factorise completely in terms of τk; it
is possible to differentiate the resulting cost function with
respect to τk, and equate to zero to get the dual control
law (17). The resulting second order partial derivative of
Jinn with respect to τk (the Hessian matrix), is given
by 2×

(
ĜT

k Q1Ĝk + Q2 + Nk+1

)
. By Definitions 3.9,

3.13 it is clear that this Hessian matrix is positive definite,
meaning that (17) minimises the dual performance index

(16) uniquely. Moreover, the latter implies that the inverse
term in (17) exists without exceptions.
Referring to control law (17) it is important to note that:

Remark 3.5: Q3 acts as a weighting factor where at
one extreme, with Q3 = −Q1, the controller completely
ignores the estimates’ uncertainty resulting in HCE con-
trol, and at the other extreme, with Q3 = 0, it gives
maximum attention to them, which leads to cautious
control. For intermediate settings of Q3, the controller
operates in a dual adaptive mode. It is well known that
HCE control leads to large tracking errors and excessive
control actions when the estimates’ uncertainty is rela-
tively high. On the other hand, cautious control is known
for its slowness of response and control turn-off [15].
Consequently, dual control exhibits superior performance
by striking a balance between the two extremes.

IV. SIMULATION RESULTS

The WMR was simulated via the continuous-time, full
model given by (1) and (2) with the following nomi-
nal parameter values: b = 0.5m, r = 0.15m, d = 0.2m,
mc = 30kg, mw = 2kg, Ic = 15kgm2, Iw = 0.005kgm2,
Im = 0.0025kgm2. Sampling interval T = 50ms and the
sampled data was corrupted with noise εk. To render the
simulations more realistic, a number of model parameters
(such as masses, frictions and inertias) were allowed
to vary randomly (within realistic limits) about their
nominal values, from one simulation trial to another. The
MLP ANN contained 10 neurons (L = 10) and ẑ0 was
generated randomly. It took a standard desktop computer
with no code optimisation merely 8s to simulate 30s of
real-time. Clearly, this indicates that the proposed dual
control algorithm is not computationally demanding.

For comparison purposes, trials were conducted
using the three modes of operation in (17) namely:
HCE (Q3 = −Q1), cautious (Q3 = 0) and dual
(Q3 = −0.8Q1). Another control mode, referred to as
tuned non-adaptive (TNA) control, was also included
for comparison. The TNA controller is implemented
via (7) assuming the model parameter nominal values
specified above. In contrast, the HCE, cautious and dual
controllers, assume no preliminary information about
the model. In Fig. 2: Plot (a) depicts the WMR (dual
control) tracking the reference trajectory (reaching 2m/s).
It clearly verifies the good tracking performance of the
proposed scheme, even with non-zero initial conditions.
Plots (c) and (d) compare the Euclidian vector norm
of the pose error during the transient and steady-state
performance (respectively), for the four controllers
under test. Plot (c) clearly indicates that dual control
exhibits the best transient initial performance among
the adaptive modes (in accordance to Remark 3.5). It
is not surprising that the TNA controller leads to better
initial transient response, since it requires no learning
process and is pre-tuned to the nominal parameters of
the actual model. However this superiority is quickly
lost in the steady-state phase, depicted in Plot (d), since
by that time, the initially random estimates used by
the adaptive controllers would have converged to better
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Fig. 2. (a): reference (×) & dual WMR (©); (b): same as (a) & HCE WMR
(�)

; (c): transient performance; (d): steady-state performance.

approximations of the real functions, while the TNA
would still be assuming the far less accurate nominal
parameters that it was originally tuned with. Plot (b)
also verifies the superiority of dual control over the
more crude HCE controller. To quantify the performance
objectively, a Monte Carlo analysis involving 500 trials
was performed on all four controllers. The accumulated
Euclidian norm of the pose error was calculated over
the whole three minute simulation interval after each
trial. The mean and variance of the accumulated cost are
tabulated in Table I, with the dual control case leading
to the best performance, as stated in Remark 3.5.

V. CONCLUSIONS

The novelty in this paper comprises the introduction of
dual neuro-adaptive control for the discrete-time, dynamic
control of mobile robots using MLPs. The proposed
controller exhibits great improvements in steady-state and
transient performance over non-adaptive and non-dual
adaptive schemes respectively. This was confirmed by
simulations and Monte Carlo analysis. Future research
will investigate the addition of fault-tolerant schemes
for the control of mobile robots. We also anticipate to
get satisfactory experimental results once the proposed
algorithm is tested on a real mobile robot.
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TABLE I

MONTE CARLO ANALYSIS RESULTS

HCE CAUTIOUS DUAL TNA

Average cost 501 372 352 399

Variance 58,902 87 23 1259
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