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Communicating Generators in JavaScript
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Abstract. This paper outlines the design, performance, and use of an application pro-
gramming interface and library for concurrent programming with CSP in JavaScript.
The implementation harnesses ECMAScript 6 Generators to provide co-operative
scheduling and channel communication within a single JavaScript engine. External
channels lie atop WebSockets, amongst other web technologies, to enable multicore
and distributed execution across standard web browsers and Node.js servers. Low-
level benchmarks indicate that scheduling and messaging performance is within ex-
pectations for this dynamic and diverse execution environment. Sample code snippets
highlight the applicability of CSP to contemporary web development in hiding the lo-
cation of computation and state through the channel abstraction. The “call-back hell”
scenario common to many JavaScript applications is alleviated by using channels in-
stead of callbacks, and the possibility of performing parallel and scientific computing
is explored with promising results. Finally, the limitations of the present design are
discussed, and possible enhancements such as the dynamic migration of state and code
are considered.
Keywords. CSP, JavaScript, concurrency, distributed systems, programming tools,
world-wide web

Introduction

Love it or hate it, JavaScript [1] dominates today’s Web with a presence that extends from
desktop and mobile browsers all the way to server-side back-ends. It is a multi-paradigm
language featuring first-class functions, and is untyped, dynamic, and usually interpreted.
Applications written in JavaScript are event-driven, and tend to feature several levels of nested
function call-backs.

JavaScript’s ubiquity makes it an attractive target for a CSP-like [2] API and library. Its
expressive flexibility combined with recently introduced language features such as generators
also make it a convenient target. Moreover, recent and emerging web technologies such as
WebSockets [3] and Web Workers [4] make it possible to provide a distributed implementa-
tion running across standard browsers and servers.

This paper outlines the design, performance, and use of an application programming
interface and library for concurrent programming with CSP in JavaScript ES6 and beyond.
Sections 1 and 2 explain how to harness ECMAScript 6 Generators to provide co-operative
scheduling and channel communication within a standard JavaScript engine. Subsequently,
external channels that lie atop web technologies to enable multicore and distributed execution
across unmodified web browsers and Node.js servers are described in Section 3.

1Corresponding Author: Kevin Vella, Department of Computer Science, University of Malta, Msida
MSD2080, Malta; E-mail: kevin.vella@um.edu.mt
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Low-level benchmarks are presented in Section 4 to characterise the scheduling and mes-
saging overheads introduced by the library. Section 5 highlights the applicability of CSP to
contemporary web development in JavaScript. Finally, related work is surveyed, the limi-
tations of the present design are explored, and possible enhancements such as the dynamic
migration of state and code are considered in Sections 6 and 7.

1. JavaScript, Concurrency and Web Standards

Current browsers support most of the recent ECMAScript 6 [1] language specification. This
iteration of JavaScript introduces generators: functions which can be partially evaluated (in
an imperative sense). A generator is capable of suspending its own execution and preserving
its state, and its resumption can be triggered in an event-driven fashion.

A generator function is defined by function* (){...}, which returns a Generator
object on initialisation. Its execution is suspended through the yield expression, and resumed
by invoking the next() method on its Generator object from its external scope.

The next() method continues executing the generator function’s code until a yield
(or any of the other exit expressions such as return or throw) is encountered. In addition,
generators are also capable of sending and receiving data [5], as shown in Listing 1.

1 var generatorFunction = function* (){
2 var ret = yield 1;
3 return ret;
4 };
5 var generator = generatorFunction ();
6 var x = generator.next().value; // x = 1
7 var y = generator.next (2).value; // y = 2

Listing 1. Basic execution of a generator.

Lines 1 to 4 define the GeneratorFunction generatorFunction. Line 5 instantiates
a Generator object from the GeneratorFunction (generatorFunction), which is subse-
quently invoked with next() in line 6. The generator yields in line 2 and passes the value
1 to the caller, which then retrieves it using .value and stores it in x (line 6 again). Line 7
resumes the generator function from line 2 and passes it the value 2. The generator function
stores it in ret, and returns it to the caller on exiting in line 3. Back in line 7, the value 2 is
received and stored in y.

Moreover, the yield* expression offers a way to route the aforementioned calls to an-
other generator [5,6]. When invoking a Generator object which delegates to another gener-
ator, the delegated generator is evaluated, as shown in Listing 2.

1 var delegate = function* (){
2 yield 1;
3 };
4 var generator = (function* (){
5 yield* delegate ();
6 }());
7 var x = generator.next().value; // x = 1

Listing 2. Delegating execution to another generator.
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1.1. Distributed JavaScript

As the “language of the web”, JavaScript is designed to interact with external entities ranging
from DOM elements to remote servers and clients. JavaScript is not only interpreted by most
of today’s browsers, as server-side JavaScript has become a major trend owing to server
run-times such as Node.js [7], which is built on Google Chrome’s V8 JavaScript engine.
Nowadays it is commonplace to develop front and back-ends for web applications using the
same programming language.

A relatively recent technology, WebSockets [3] enable web servers and browsers to com-
municate using event-driven APIs. Various JavaScript libraries have been implemented on
top of this functionality, for instance socket.io [8]. WebRTC [9] is another emerging technol-
ogy that allows peer-to-peer (browser-to-browser) communication, although an intermediate
server is still required for connection establishment. Also of relevance, socket.io-p2p [10] is
a library implementing socket.io-like APIs over WebRTC.

JavaScript relies on event-driven function callbacks rather than threading to handle log-
ical concurrency. Multicore processors are harnessed through workers, each operating in its
own isolated address space and communicating by passing messages across address space
boundaries. Amongst the worker implementations available for JavaScript are Web Work-
ers [4] on browsers, and Cluster [11] workers on Node.js.

The proliferation of JavaScript engines across the Internet poses the challenge of writing
reusable code which can execute and move seamlessly in this environment. The opportunity
thus arises to envisage, develop, and experiment with software tools to simplify the task at
hand.

2. CSP-style Concurrency in JavaScript

The architecture of the system was strongly influenced by the T9000 processor design as
described in Networks, Routers, and Transputers [12]. A simple yet efficient software library
was produced by adopting this approach.

2.1. The Dispatcher

Generators are unable to send and receive data amongst themselves or synchronise without
additional support; they require an intermediate function to handle the routing of data as
well as their rescheduling. This necessitates that all such generators, which we have termed
co-generators, are contained within a special dispatcher function’s scope.

The dispatcher is created on initialisation of a CSP environment through csp(), the sin-
gle top-level scope for all CSP code running within a JavaScript engine. This is equivalent
to the top-level PAR in an occam [13] program. The API accepts multiple co-generators as
individual comma-separated parameters or as an array, and schedules them for concurrent
execution by the dispatcher. These top-level co-generators can create and schedule additional
co-generators for execution by the dispatcher as explained in Section 2.2. In turn the csp()
function itself returns once all the co-generators under its management have no more pro-
cessing to do on the event-loop, either because they are waiting for some event, or because
they have terminated. Listing 3 illustrates csp() in use.
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1 csp.csp(
2 function* (){ /* ... */ },
3 // ...
4 function* (){ /* ... */ }
5 );

Listing 3. Executing several co-generators within a CSP environment.

Fairness is not guaranteed across multiple CSP environments running in the same
JavaScript engine, as each dispatcher is not aware of co-generators in the other CSP environ-
ments.

On initialisation the dispatcher schedules these co-generators on the FIFO run queue
for starvation-free execution. Each queue node is an object containing the Generator object
itself and an associated value. Initially undefined, this value is updated as the co-generator
executes, and is passed to the co-generator whenever it resumes execution through next().

When an executing co-generator pauses with a yield, the returned value is examined
by the dispatcher, which invoked the co-generator in the first place. The returned value is
typically an object created by the API function called after yield, wrapping data relevant to
the co-generator’s state and the API itself. Based on this data, the dispatcher performs the
corresponding action and switches to the next co-generator on the run queue, as portrayed in
Figure 1, until the run queue is empty. For this reason, the following rules must be observed
when calling API functions (other than CSP environment and channel creation) to avoid
undefined behaviour.

1. An API function must be prefixed with yield. This is necessary because API func-
tions wrap any essential data in an Object which is to be interpreted by the dispatcher.
Not doing so will corrupt the state of the CSP environment, as the co-generator would
not pause and the API does not function as supposed to.

2. CSP constructs are to be called from the scope of a generator contained by a CSP
environment, csp(), directly or indirectly. Should they be invoked outside of a csp()
call a dispatcher would not be available to schedule execution and communication.

Since yield on its own does not call a specific API function, nothing is returned to the
dispatcher, and it simply enqueues the paused co-generator at the end of the queue. Judicious
use of yield is conducive to fairness in this co-operative scheduling regime.

Dispatcher

 

g1

g0

gn

Figure 1. Execution flow of co-generators.
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2.2. Co-Generator Creation and Termination

The CSP environment created with csp() initialises and concurrently executes the top-
level co-generators listed in its arguments. The API functions described here create new co-
generators, making use of the enclosing CSP environment’s FIFO dispatcher and run queue
to provide starvation-free execution in a deadlock-free CSP environment whose constituent
co-generators yield regularly.

The fork() API function schedules the passed co-generators on the run queue. The cre-
ated co-generators do not resynchronise with their parent co-generator. On the other hand, the
co() API function, demonstrated in Listing 4, is similar to occam’s PAR construct. The caller
is not executed again after calling co() until all co-generators in that concurrent section are
executed to completion. This is achieved by creating a barrier across the given co-generators,
and resuming the caller once these co-generators have all joined the barrier on completion
of their execution. If the dispatcher queue is empty, and there are still barriers waiting on
co-generators, this is an indication that deadlock has occurred. An Error is thrown by the
dispatcher in such cases, allowing exceptional situations to be handled appropriately within
JavaScript but outside the CSP environment.

1 csp.csp(function* (){
2 yield csp.co(
3 function* (){ /* ... */ },
4 // ...
5 function* (){ /* ... */ }
6 );
7 });

Listing 4. Dynamically creating co-generators.

2.3. Channels

Apart from being an object which co-generators reference to communicate data, the Channel
also serves as a temporary home for suspended co-generators. When either a send() or
recv() is called on a Channel, the API function returns the Channel object and any data
stored on it to the dispatcher, which in turn deals with them appropriately.

At its inception, a Channel is empty. The first co-generator to perform send() or
recv() on the channel is suspended, waiting for a second co-generator to communicate on
the channel. The dispatcher hangs the suspended co-generator on the Channel in the mean-
time. When the second co-generator communicates on the Channel, the corresponding API
function (send() or recv()) returns the Channel object to the dispatcher. Upon examining
the Channel object returned, the dispatcher discovers the suspended co-generator, and thus
schedules both communicating co-generators at the back of the run queue while also passing
the data to the receiving co-generator.

Currently, run-time checks are performed to ensure that no more than two co-generators
use a particular channel to communicate: one sender and one receiver. In future this constraint
may be relaxed to favour the convenience of any-to-any channels [14]. An example of channel
communication is shown in Listing 5.
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1 var channel = new csp.Channel ();
2
3 csp.csp(function* (){
4 var x = yield channel.recv(); // x = 1
5 }, function* (){
6 yield channel.send (1);
7 });

Listing 5. Channel communication between co-generators.

2.4. Timeouts

Timeouts, as shown in Listing 6, provide similar functionality to occam’s TIMER. The time
elapsed in milliseconds since the creation of the entire CSP environment is obtained using
csp.clock(), while csp.timeout() only reschedules the calling co-generator once the
specified number of milliseconds have passed since the creation of the CSP environment. Al-
ternatively, csp.sleep() reschedules the co-generator after the specified interval in millisec-
onds. No co-generator will resume execution before its timeout expires, and multiple waiting
co-generators will resume execution in timeout order.

1 csp.csp(function* (){
2 // ...
3 yield csp.timeout(csp.clock() + 1000);
4 // continue after current time + 1 second
5 });

Listing 6. Using a timeout within a co-generator.

The specified timeout order is preserved by keeping waiting co-generators and their re-
spective expiry times in a queue ordered by expiry times. The dispatcher polls the current
time at every yield point, and returns any waiting co-generators with times in the past to
the run queue in order of expiry. This maintains the expected scheduling order for waiting
co-generators even if their timeouts have already expired, but not for co-generators whose
timeouts expired before their relative csp.timeout() invocations.

If the dispatcher queue is empty but there are still unexpired timeouts, a JavaScript time-
out is set with the time remaining to the nearest timeout. This callback function resumes
the dispatcher, which proceeds to reschedule the co-generators whose timeouts have since
expired.

2.5. Choice

The current implementation of choice supports channel input guards, timeout guards as well
as boolean guards. Since each guard is associated with an action, the choice API function
takes a list of pairs containing the guard and the guarded action. The choice API function
wraps the guards in an object and returns it to the dispatcher, which then carries out the
choosing procedure. Listing 7 shows the csp.choice() function in use.
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1 var channel = new csp.Channel ();
2
3 csp.csp(function* (){
4 yield csp.choice(
5 {
6 "recv": channel ,
7 "action": function* (x) { /* ... */ }
8 },
9 {

10 "timeout": 1000,
11 "action": function* () { /* ... */ }
12 },
13 {
14 "boolean": true ,
15 "action": function* () { /* ... */ }
16 }
17 );
18 });

Listing 7. Choice on a number of guards.

A choice consists of the following sequential phases: enabling, waiting, and disabling
(start and end are not relevant here because there is no shared state between co-generators).
The enabling co-generator determines whether a guard is ready, in which case a flag is set in
the dispatcher. In the case of a channel guard, it is ready whenever a sending co-generator is
waiting on the channel. A timeout guard is never ready instantaneously, and only the timeout
expiring first is considered, as the others will never be ready before the first one. Lastly, a
boolean guard is ready if and only if its condition evaluates to true.

When all guards are enabled, the dispatcher inspects whether the ready flag was set. If it
was not set, the dispatcher is said to be in the waiting phase for that choice, and proceeds to
execute the next co-generator on queue. On the other hand, if the flag was set to true then it
knows that one of the guards is ready, so it begins the disabling procedure.

Disabling the guards can also happen as the choice is satisfied in time, for instance when
a timeout expires, or when a sending co-generator arrives on an enabled channel. The guards
are temporarily stored on the channel so that when a sending co-generator arrives on the
channel, the dispatcher has a reference to the guards to disable. Guarded channels are disabled
by clearing any data stored from the enabling stage, whilst a guarded timeout is disabled by
clearing the timeout.

Whilst iterating over the guards to disable them, the first ready one is ultimately chosen.
Although previously it was said that a choice is made non-deterministically, the order of how
guards are disabled influences the way they are chosen. As a result, the choice() implemen-
tation is, by design, a prioritised one, since ready guards that are listed before are chosen over
the latter ones.

If a channel guard is chosen, a generator helper is scheduled to actually perform the input.
This generator receives the data from the channel satisfying the choice(), which is passed
as an argument to the corresponding action, and called through the yield* expression. When
the action is executed to completion, the helper reschedules the co-generator performing the
choice(). ALT in occam permits prefixing any guard with a boolean condition, which must
be true before the guard may be considered for selection; at present our API excludes this
functionality. Moreover, choice() does not allow output guards.



34 K. Micallef and K. Vella / Communicating Generators in JavaScript

3. External Channels

A number of external channel implementations are provided for communication between
co-generators operating in separate JavaScript engine instances. This includes instances dis-
persed across distributed Node.js servers and browsers, as well as instances operating in dis-
joint address spaces on the same machine.
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Figure 2. External Channel abstraction.

When an external channel is created and connected across two JavaScript engine in-
stances, an object is obtained on each end which is then used as an end-point over which to
communicate, as depicted in Figure 2. Once connected, external channels expose the usual
Channel functionality so that no changes to the actual application code are required. A com-
municating co-generator is oblivious as to whether it is performing local or external commu-
nication.

3.1. Transport for External Channels

External channel implementations over JavaScript socket libraries such as socket.io [8] and
WebSocket [3] are provided so that Node.js instances can communicate with browsers as
well as with each other. This enables channel communication across physically distributed
co-generators on the Internet. A socket object is obtained when a connection is established
through socket.io or WebSocket, and this is passed as an argument to the channel creation
API function. Exchanged messages are tagged with unique identifiers so as to multiplex
DistributedChannels over the same socket. The distributed version of the local channel
communication example which was presented in Listing 5 follows, in Listings 8 and 9.

1 http.createServer ().listen (8000);
2 io.on("connection",function(socket) {
3 var channel = new csp.DistributedChannel(socket , "id1");
4
5 csp.csp(function* (){
6 var x = yield channel.recv();
7 });
8 });

Listing 8. Channel communication between distributed co-generators (server).
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1 var socket = io.connect("http :// serverhost :8000/");
2 var channel = new csp.DistributedChannel(socket , "id1");
3
4 csp.csp(function* (){
5 yield channel.send (1);
6 });

Listing 9. Channel communication between distributed co-generators (client).

Using the underlying socket library, the HTTP server in Listing 8 listens on port 8000
(lines 1 and 2) until the client in Listing 9 connects to it (line 1). On connection, both sides
create their ends of a distributed channel over socket objects, with id1 as the shared identifier
for channel multiplexing over a socket. Execution continues as per Listing 5. It should also be
possible to drop in socket objects obtained from socket.io-p2p [10], an API abstraction over
WebRTC [9], but unexpected behaviour was observed in practice, possibly due to WebRTC
not being finalised in current JavaScript engines.

Another external channel implementation enables communication between workers,
which typically execute in separate operating system processes to harness multicore proces-
sors. Since browser and Node.js workers are incompatible [4,11], separate handlers were im-
plemented. Nonetheless, only one WorkerChannel type is provided to handle both cases.
Any overhead resulting from having to identify the worker type at run-time is restricted to
the channel creation phase.

1 var worker = new Worker("worker.js");
2 var channel = new csp.WorkerChannel(worker);
3
4 csp.csp(function* (){
5 var x = yield channel.recv();
6 });

Listing 10. Channel communication between co-generators across workers (master).

1 var channel = new csp.WorkerChannel(self);
2
3 csp.csp(function* (){
4 yield channel.send (1);
5 });

Listing 11. Channel communication between co-generators across workers (worker – worker.js).

As before, worker creation is externalised, and the worker object obtained is passed as
an argument when creating the WorkerChannel. An adaptation of Listings 8 and 9 for Web
Workers is shown in Listings 10 and 11. A similar worker object is obtained when forking a
Cluster Worker, and is used in the same manner.

3.2. External Channel Protocol

External channel communication involves first synchronizing the channel end-points and then
performing the actual communication, as shown in Figure 3. This two-phase protocol is nec-
essary since race conditions may result in sending data both to a local co-generator and a re-
mote one. Thus, whenever synchronization occurs, the co-generators on the external channels
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Figure 3. State diagram of an external channel.

are tied to the communication taking place. Once communication is complete, the external
channel is in an idle state again.

The synchronisation phase involves sending an empty message, which could be avoided
by conflating the first packet of data to be sent with the synchronization message. It should
also be possible to optimistically kick off the message sending phase before synchronisation
is complete, while passing on responsibility for dynamic buffer allocation to JavaScript itself.

3.3. Implementation Details

Very few alterations to the dispatcher were needed to accommodate external channels. Be-
cause the external channels implemented here use event listeners to receive data, it was nec-
essary to pass the event listener to the dispatcher to initialise it on first use of the said channel.
This is not done on the channel’s creation, since a reference to the dispatcher is needed by
the external channels without exposing the dispatcher to the user. Moreover, when perform-
ing a choice() on an external channels, the sending co-generator would not be stored on
the channel as it would if it were a local channel. External channels are ready as soon as the
synchronisation phase completes, hence this case needs to be considered when enabling a
guarded external channel.

It should be noted that the design of the system allows new external channel types
to be added without requiring internal modifications. Provided that the synchronize-then-
communicate protocol is observed, no changes to the dispatcher are required.
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Both the DistributedChannel and WorkerChannel implementations utilise a single
listener to wait for messages independently of recv() calls on the said channel. Messages
are sent over the corresponding object asynchronously. Hence, whilst the receiver is handling
a message, the JavaScript engine hosting the sender is not stalled waiting for the receiver’s
acknowledgement.

Callbacks are used internally by the socket.io implementation to send an acknowl-
edgement to the sender on message receipt. Since synchronization does not occur until a co-
generator involved in a choice is actually committed to the channel, when a co-generator is
not already suspended on the channel the callback is instead stored to be called later.

Node.js Cluster workers also utilise callbacks, but these are invoked automatically. Be-
cause of this, synchronising involves sending an actual message instead of invoking a call-
back function, so in this case the listener includes logic which would otherwise be in the
sender callback. Web Workers are handled in a similar way. Since callback hooks are not
provided when sending the actual data the sender assumes the receiver has received the data,
and continues execution immediately.

4. Performance Analysis

In this section a number of performance measures are presented and analysed. A number of
low-level benchmarks, including CommsTime [15], were deployed to estimate the perfor-
mance of channel communication, co-generator creation and context-switching. Unless oth-
erwise stated, the readings were taken on a desktop computer with the following specifica-
tions: Core i5-3210M 2.50GHz, with Turbo Boost up to 3.1GHz (virtualisation enabled); 8GB
RAM; Windows 10 Home 64-bit. Readings were taken for the JavaScript engines shipped
with clean installations of the following products: Node.js v4 64-bit, Google Chrome v49 64-
bit and Mozilla Firefox v45 64-bit. Each experiment was designed to measure the time taken
to complete a large number of operations, from which the mean time for a single operation
was calculated. Furthermore, every experiment was repeated on three separate occasions to
obtain the mean times that are presented here.

4.1. External Channel Overhead

The time it takes to send a number of empty messages over an external channel connecting a
co-generator on one JavaScript instance to another co-generator running on a second instance
was measured. The measurement was retaken, this time using the channel’s underlying trans-
port mechanism directly and hence bypassing the channel API. The overhead incurred by
using external channels was taken as the difference between the two measurements divided
by the number of messages. This experiment was repeated for channels over WebSockets and
Web Workers running on all three JavaScript engines that were considered.

A Node.js server and a browser were deployed on distributed locations in order to
conduct the experiment for external channels over WebSockets. The server-side instance
is mandatory because of the client-server WebSocket constraint, at least until a working
WebRTC channel is available. The receiver was located on the server, and the sender on the
browser. Sending an empty message over a channel still necessitates a rendezvous, which is
accomplished with a ping-pong message pattern. This is evident in Figure 4, since the total
communication time on the channel is twice as expensive when compared to socket.io trans-
mission. Later in this section it is shown that the synchronisation incurs a fixed overhead that
fades into insignificance as the message gets larger.
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Separate experiments were conducted for worker channels on Node.js and browsers,
since different worker objects (Node.js Cluster workers versus browser workers) are used by
the underlying implementations. Both are evaluated by setting up the receiver on a worker
and the sender on the master. Similar to distributed channels, there is an penalty associated
with using worker channels. However, as seen in Figure 5, channel transmission time per
message is less than twice that of the underlying implementation. This is a consequence of
using the built-in callbacks instead of a reply message when notifying the sender on message
receipt.

An anomaly observed in Node.js was that channels outperformed the underlying trans-
port library. This might be due to the sender waiting for the receiver to process the previous
data, thus consuming more time. This case requires further investigation, as merely adding
a timeout before sending each message yielded the expected ratio. As expected, Node.js
workers were generally more processor-hungry than their browser counterpart, since Node.js
workers are operating system processes while browser workers employ multithreading.

4.2. Scaling Up

The time taken to perform a yield was measured for n co-generators running concurrently
within a CSP environment, for values of n up to 10, 000. Each co-generator performed m
yields in a tight loop, and the time to perform one yield was reached by dividing the
total execution time by the product of n and m. Figure 6 shows that yield execution time
increased with the number of co-generators n instead of remaining constant.

In order to establish the source of this behaviour, a separate test was conducted to evalu-
ate if the execution time for invoking next() on a generator remains the same when calling
it n times on a single generator versus invoking it once on each of n generators. Single invo-
cations on multiple generators incurred increasing overhead compared to the single generator
case as n was increased. This phenomenon was studied further using a profiler, and was found
to be a consequence of increasing garbage collection overhead. As it is evident that this issue
is external to the library implementation, one hopes that future implementations of JavaScript
will improve on generator performance at scale.

Next, producer and consumer co-generators were set up on both ends of an external
channel overlying a WebSocket, and the time taken to send messages of various sizes was
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measured. The consumer was deployed on a Node.js instance and the browser hosted the pro-
ducer. Figure 7 indicates that communication time for large messages (> 100000 bytes) in-
creased linearly with the message size. Less decipherable behaviour was observed around and
below the default TCP socket send window size of 64KB. Firefox performed as expected all
the way down to zero-sized messages, but Node.js observations for small messages ballooned
out of control. Having checked that Nagle’s algorithm [16] had already been disabled by the
underlying socket library, eyes turned to the garbage collector. This hypothesis was strength-
ened when the expected result was sporadically observed after disabling garbage collection,
but ultimately not confirmed with confidence.



40 K. Micallef and K. Vella / Communicating Generators in JavaScript

4.3. CommsTime and Co-generator Creation

The CommsTime benchmark [15] derives performance metrics for communication and
context-switching times in CSP-like systems. The implementation, which is reproduced in
Listing 12 in its entirety, consists of four co-generators which communicate through channels
for a number of iterations.

1 var csp = /*...*/; // import
2
3 function* Prefix(n, in, out){
4 yield out.send(n);
5 var value;
6 while (true){
7 value = yield in.recv();
8 yield out.send(value);
9 }

10 }
11
12 function* Delta(in, out0 , out1){
13 var value;
14 while(true){
15 value = yield in.recv();
16 csp.co(function* (){
17 yield out0.send(value);
18 }, function* (){
19 yield out1.send(value);
20 });
21 }
22 }
23
24 function* Successor(in, out){
25 var value;
26 while (true){
27 value = yield in.recv();
28 yield out.send(value + 1);
29 }
30 }

31
32 function* Consume(loops , in){
33 var t0, t1, value;
34 // warm -up loop
35 for (var i=0; i <1000; i++){
36 value = yield in.recv();
37 }
38 while (true){
39 t0 = Date.now();
40 // benchmark loop
41 for (var i=0; i<loops; i++){
42 value=yield in.recv();
43 }
44 t1 = Date.now();
45 // print results here!
46 }
47 }
48
49 (function Commstime (){
50 var a = new csp.Channel (),
51 b = new csp.Channel (),
52 c = new csp.Channel (),
53 d = new csp.Channel ();
54 csp.csp(
55 Prefix(0, b, a),
56 Delta(a, c, d),
57 Successor(c, b),
58 Consume (1000000 , d)
59 );
60 }());

Listing 12. CommsTime benchmark.

CommsTime was executed on a single JavaScript instance, and the results are shown
in Figure 8. Communication is considerably more expensive than context switching due to
run-time checks to ensure a single sender and receiver on each channel, data routing between
the co-generators, and rescheduling both co-generators involved in the communication on the
run queue.

Measured co-generator creation times for csp(), fork() and co() are shown in Fig-
ure 9. The co() API function is the most expensive, due to barrier creation and resynchro-
nisation of each created co-generator on its completion. The fork() API function, which
merely schedules the co-generators at the end of the run queue, is the least expensive. The
CSP environment creator, csp(), falls between the former two constructs in terms of over-
head. It is responsible for initialising the API functions accessible within the environment,
creating the dispatcher and run queue, and scheduling the passed co-generators.
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Figure 8. CommsTime performance.
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Figure 9. Co-generator creation perfor-
mance.

5. Case Studies

5.1. Synchronous JavaScript

JavaScript code is typically asynchronous, with callback functions handling the deferred re-
sult. This matches its intended application, as HTML elements remain responsive instead of
blocking on network operations. Unfortunately, control flow in asynchronous code is not im-
mediately evident, especially with intricately nested callback functions. Control skips from
the calling function to the called asynchronous function and immediately back to the caller.
The callback function, which was passed as an argument to the asynchronous function, is
typically invoked when the asynchronous call completes.

With the introduction of co-generator functions that can be suspended and resumed,
callbacks are no longer necessary in JavaScript. A co-generator function that communicates
through channels handles asynchronicity and blocking just as well while maintaining an in-
tuitive control flow. The reader is referred to [17] for a detailed discussion and concrete ex-
amples. With external channels over WebSockets and eventually WebRTC the same concept
applies across distributed locations.

5.2. Parallel Computing

Naive computation of the Mandelbrot set [18] was favoured as a simple and embarrassingly
parallel example to demonstrate that linear speed-up is achievable when using the library for
such systems. A task farming pattern was adopted: a farmer co-generator located on a Node.js
server continuously supplies worker co-generators located on Cluster [11] worker nodes with
tasks (individual horizontal lines of a 3000× 2000 pixel canvas) to compute.

The experiment was conducted on Ubuntu 14.04.1 64-bit with Linux kernel 4.2.0-34,
running on a pair of quad core Intel Xeon E5620s clocked at 2.40GHz and 24GB of RAM,
with hyperthreading disabled. Figure 10 illustrates the speed-up obtained with up to eight
workers, both with and without result harvesting through channels.

Linear speed-up is predictably achieved when result harvesting is not performed but the
situation deteriorates when harvesting, with a top speed-up of 6 obtained on 8 cores. This may
be due to WorkerChannels crossing address space boundaries, as Node.js Cluster workers are
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individually hosted in operating system processes. However it must be noted that no profiling
was attempted at this stage.
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Figure 10. Mandelbrot set computation speed-up.

6. Related Work

Preceding this work and indeed inspiring it, js-csp [19] uses JavaScript generators to provide
CSP-like features that are constrained to operate within a single JavaScript engine. In com-
mon with Google’s Go language [20] and Clojure [21]’s core.aync [22] library, js-csp omits
a PAR-like operation that synchronises completed generators before returning. A Clojure-to-
JavaScript transpiler, ClojureScript [23], enables the use of the CSP functionality offered by
core.async in JavaScript.

ECMAScript 6 also includes promises, which offer an alternative path towards CSP-like
behaviour in tandem with generators, as seen in asynquence [24]. The adoption of async
and await in ECMAScript 7 presents another alternative, as showcased in the async-csp [25]
library.

CSP libraries are available for several popular programming languages: CCSP [26],
CTC [27], and libcsp [28] for C; CTC++ [27] and C++CSP [29] for C++; JVMCSP [30,31]
(a target for the ProcessJ programming language), CTJ (formerly CJT) [32] and JCSP [33]
for Java and JVM languages; CSP.NET [34] and CSP for .NET [35] for the .NET framework;
PyCSP [36] for Python; CSO [37] for Scala; and CHP [38] for Haskell. In particular, CCSP,
JCSP, CTC++, CSP.NET, PyCSP and CSO support some form of distributed execution.

7. Conclusions

A straightforward distributed implementation of CSP-style concurrency in a JavaScript li-
brary was achieved, principally influenced by the occam language [13] and the T9000 proces-
sor [12]. It was shown that it is possible to eliminate callbacks in JavaScript with minimal ef-
fort using channels. Moreover, the use of channels was extended across distributed locations
using standard technologies such as WebSockets and workers, to ultimately harness the com-
bined processing resources of servers and browsers. The channel abstraction hides whether
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the computation on the other end is local or remote; this allows the relocation of computation
with significantly fewer modifications to the application code.

This implementation or elements of its design could be harnessed by process-oriented
programming languages such as ProcessJ to target JavaScript. The opportunity to provide
online e-learning services using an in-browser process-oriented programming environment is
of particular interest [39].

Looking forward, it should be possible to implement external channels using async
functions coupled with promises with even less boiler-plate code. One might envisage taking
a library such as async-csp [25] in this direction once ECMAScript 7 is commonplace.

The library can be extended to support additional features such as shared channels as
showcased in occam-π [40]. Sending channel endpoints over channels would require a suit-
able underlying link to be automatically identified or established at the migrated channel
endpoint’s new location. At present, manual establishment of the underlying link is required
prior to channel creation, which can easily be performed outside the CSP environment for
static communication patterns. Since link establishment is external to channel creation and
communication API functions, one could conceive an unobtrusive extension to the library
that would be responsible for automatically synthesizing underlying links for channels based
on the resources available.

The interpreted and dynamic nature of JavaScript opens up further possibilities: any indi-
vidual function’s source code and associated state is available at run-time, and can be passed
to eval() at a remote location to implement the base functionality for dynamic code mobility
across distributed locations. Thus, code and execution state would be able to automatically
migrate between JavaScript environments on the basis of available processing and memory
capacity. Optimistic message delivery on channels can cut down waiting times while preserv-
ing synchronization semantics; the associated buffer management is easily delegated to the
JavaScript engine, for better or for worse. On the flip-side, run-time performance is generally
unpredictable and far below what is achievable with compiled languages.

In closing, it is noted that a significant part of this paper has focused on distributing CSP-
like code across the Web. Partial failure is unavoidable over a distributed system’s lifetime,
and it can be argued that synchronous external channels are not a perfect match for such
situations. Indeed, vanilla CSP does not consider partial failure, and neither does the library in
its present state. In vague CAP [41] terms, such concurrency models fall within CA territory:
Consistent and Available, but not Partition tolerant. One might justifiably ask, how should
emerging libraries and languages in the CSP vein behave under network partition conditions?
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