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Abstract

A graphG is singular if there is a non-zero eigenvector v0 in the nullspace of its adjacency

matrix A. Then Av0 = 0. The subgraph induced by the vertices corresponding to the non-

zero components of v0 is the core of G (w.r.t. v0). The set whose members are the

remaining vertices of G is called the periphery (w.r.t. v0) and corresponds to the zero

components of v0. The dimension of the nullspace of A is called the nullity of G.

This paper investigates nut graphs which are graphs of nullity one whose periphery is

empty. It is shown that nut graphs of order n exist for each n ≥ 7 and that among singular

graphs nut graphs are characterized by their deck of spectra.

1 Introduction

The adjacency matrix A(G) = A of a graph G having vertex set V(G) = {v1, v2, . . . , vn} is

an n× n symmetric matrix (aij) such that aij = 1 if vi and vj are adjacent and 0 otherwise. A

is also represented by (R1, R2, . . . , Rn)
T where Ri is the ith row vector of A corresponding to

vertex vi. The rank of a graph G, denoted by r(G), is the rank of its adjacency matrix A

which is equal to n(G)− η(G) where n(G), η(G) denote the order of G and the dimension of

the nullspace of A (i.e. the nullity of A) respectively.

All the graphs we consider are simple (i.e. without multiple edges or loops) and the vertex set

is labelled.

A graph G is said to be singular if its adjacency matrix A is a singular matrix. Then there

exists a non-zero vector v0 such that Av0 = 0. Thus at least one of the eigenvalues of A is zero.

Also v0 is in the nullspace of A ( which is the kernel of the linear transformation corresponding

to A) and is called a kernel eigenvector.

For a graph G of nullity one, the nullspace of A is generated by v0 since its dimension is one.

Following [6], the subgraph of G induced by the vertices corresponding to the non-zero

components of v0 is called the core χt (sometimes referred to as the support in the literature)

with respect to v0, where t is the number of vertices of the core called the core-order.

The set, the members of which are the remaining vertices of G, is called the periphery

(w.r.t. v0).
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In [6], the structural features particular to the 61 singular graphs of nullity one, called minimal

configurations, whose periphery induces the empty graph (with no edges) and where

|V(χt)| ≤ 5, were determined. It would be interesting to study the extent to which the vertices

of the core spread through G. The indications were that the core is a proper subgraph of G.

The same result holds for |V(χt)| = 6. However in [1] an example of a graph of core-order 9,

where the core is G itself, is given and the question, whether there are other graphs with this

property, that are substantially different in structure, is posed.

In this paper such graphs which we call nut graphs (having an empty periphery) are

investigated. Certain structural features are studied and new structures presented.

Furthermore it is shown that, for each integer n ≥ 7, nut graphs of order n exist and that

among singular graphs, nut graphs are characterized by their deck of spectra.

In related work [8], these results are used to show that for singular graphs the core-orders for

which nut graphs occur determine the maximum weight of the vectors in a minimal basis for

the nullspace of A.

Definition 1.1 A graph G of order n is a nut graph if it is

i) singular with nullity one

ii) none of the components of a kernel eigenvector is zero.

So in a nut graph, G = χn and the periphery P is empty.

2 Structural features of nut graphs

The following lemmas describe five structural features of nut graphs.

Lemma 2.1 A nut graph G is connected.

Proof Let G be a nut graph of order n with adjacency matrix A and with kernel eigenvector

v0 = (α1, α2, . . . , αt, β1, β2, . . . , βs)
T . Suppose it is disconnected with 2 components G1 and

G2. Then in block form,

A =





















A(G1) O

O A(G2)





















, (1)

where O is a zero matrix, and G1 and G2 are the components of G of order t and s

respectively.
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Now A(v0) = 0 =⇒ A(α1, α2, . . . , αt, 0, . . . , 0)
T = 0

and A(0, . . . , 0, β1, β2, . . . , βs)
T = 0.

=⇒ A has at least two linearly independent kernel eigenvectors.

This is a contradiction since a nut graph has nullity one.//

Lemma 2.2 A nut graph G has no terminal vertices.

Proof : Let uk be a terminal vertex of a nut graph G with adjacency matrix A and kernel

eigenvector v0 = (α1, α2, . . . , αn)
T , αi 6= 0, i ∈ {1, 2, . . . , n}. Then the corresponding row

vector of A is Rk = (ak1, ak2, . . . , akn)
T where ak,i = 1 for exactly one value i ∈ 1, 2, . . . , t, and

zero for the rest. Thus Av0 = 0 implies αi = 0, a contradiction. Thus Rk has at least two

non-zero entries so that a core cannot have terminal vertices.//

Lemma 2.3 A nut graph G is not bipartite.

Proof: Let G be a nut graph of order n with kernel eigenvector

v0 = (α1, α2, . . . , αt, β1, β2, . . . , βs)
T . Suppose that G is the bipartite graph G(X,Y, E). Then

in block form,

A =





















O B1

B2 O





















, (2)

where O is a zero square matrix, and B1 and B2 describe the edges between X and Y .

Now A(v0) = 0 =⇒ A(α1, α2, . . . , αt, 0, . . . , 0)
T = 0

and A(0, . . . , 0, β1, β2, . . . , βs)
T = 0.

=⇒ A has at least two linearly independent kernel eigenvectors.

This is a contradiction since a nut graph has nullity one.//

Lemma 2.4 Let G be a nut graph. A vertex v ∈ V(G) is not adjacent to just two

adjacent vertices which have the same neighbours.

Proof: Suppose v1 is adjacent to the two vertices v2 and v3 which are adjacent and have the

same neighbours. Then by applying relation Av0 = 0, it follows that α2 = α3 = 0, a

contradiction. Hence this configuration is inadmissible. //
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Lemma 2.5 Let G be a nut graph. None of the vertex deleted subgraphs G− v is Kn−1.

Proof: Suppose that the one vertex-deleted subgraphs of the nut graph G, say G− vn, is the

complete graph Kn−1. Further suppose that vn has valency ρ, 1 ≤ ρ ≤ n− 1. Without loss of

generality, it may be assumed that vn is adjacent to the vertices v1, v2, . . . , vρ. Then the

adjacency matrix of G is of the form

A =













0 1 1 1 . . . 1 a1n

1 0 1 1 . . . 1 a2n

1 1 0 1 . . . 1 a3n
...

...
...

...
...

...
...













, (3)

where a1n = a2n = . . . = aρn = 1 and aρ+1,n = aρ+2,n = . . . = ann = 0.

Then if v0 = (α1, α2, . . . , αn)
T , αi 6= 0, i ∈ {1, 2, . . . , n}, the first ρ rows in the matrix

equation Av0 = 0 are

α2 + α3 + α4 + . . . + αρ + αρ+1 + . . . + αn = 0

α1 + α3 + α4 + . . . + αρ + αρ+1 + . . . + αn = 0

α1 + α2 + α4 + . . . + αρ + αρ+1 + . . . + αn = 0
...

...
...

...
...

...
...

...
...

α1 + α2 + α3 + . . . + αρ−1 + αρ+1 + . . . + αn = 0

Hence

α1 = α2 = α3 = . . . = αρ. (4)

The last row in the matrix equation Av0 = 0 is

α1 + α2 + α3 + . . .+ αρ = 0. (5)

From (5) and (6) it follows that αi = 0, i = 1, 2, . . . , ρ. Hence, some of the components of the

kernel eigenvector v0 are zero, a contradiction since G is a nut graph.//

3 Small Nut Graphs

Theorem 3.1 Let G be a nut graph. Then ◦(G) ≥ 7 and the number of edges m is at

least 8. There is only one nut graph with 7 vertices and 8 edges.

Proof: The graphs of order less than 7 that have nullity one, that are connected,

non-bipartite and without terminal vertices are as follows [2, 3]:

• 1 of order 4,
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• 2 of order 5 and

• 17 of order 6.

By direct checking, it is established that each of these graphs has core number less than the

order of the graph and so is not a nut graph.

Let G be a nut graph of order n ≥ 7. Since it is connected m ≥ n− 1. Equality is ruled out

since connected graphs with n− 1 edges are trees which have terminal vertices.

Suppose now that m = n. Then G is a circuit (which is not a nut graph) or has terminal

vertices. Hence m > n.

Among the graphs of order 7 with 8 edges, 4 have nullity one. Of these 4 graphs, only the

graph X1 shown in Fig. 1 is a nut graph. Thus this graph is the smallest nut graph. This

completes the proof. //

Fig.1

Theorem 3.2 There are 3 nut graphs of order 7 shown in Fig.1.

4 Construction of larger nut graphs

4.1 Inserting 4 vertices into an edge of a nut graph

Starting with a nut graph G with 2 adjacent vertices u, v, a larger nut graph G∗ is

constructed by inserting 4 vertices a, b, c, d in the edge uv, as shown in Fig.2. The components

of a kernel eigenvector of G∗ corresponding to the vertices u, a, b, c, d, v of the subgraph P6

taken in order are f(u), f(v),−f(u),−f(v), f(u), f(v) where f(u) and f(v) are the

components, corresponding to the vertices u and v, respectively, of a kernel eigenvector v0 of

G. The components corresponding to the vertices of G remain unchanged.

Fig.2

Lemma 4.1 The graph G∗ just constructed is a nut graph.
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Proof: That the constructed graph has nullity one can be seen by row reduction of the

adjacency matrix. In nut graph G, uv two adjacent vertices joined by an edge e into which 4

vertices are inserted to form G∗. Then

A(G) =



















...
...

An−2 c1 c2
...

...

. . . r1 . . . 0 1

. . . r2 . . . 1 0



















where the last two rows and columns correspond to the vertices u and v. If in A(G∗) the last 4

rows and columns correspond to the 4 inserted vertices then

A(G∗) =







































...
...

An−2 c1 c2 O
...

...

. . . r1 . . . 0 0 1 0 0 0

. . . r2 . . . 0 0 0 0 0 1

1 0 0 1 0 0

O 0 0 1 0 1 0

0 0 0 1 0 1

0 1 0 0 1 0







































.

The following elementary matrix operations that leave the rank unchanged are performed in

order.

The rows Rn+1 and Rn+2 are interchanged. This is followed by the interchange of rows Rn+3

and Rn+4.

The (n+ 4)th row is replaced by Rn+4 −Rn+2.

The (n+ 4)th column is replaced by Cn−1 − Cn+2.

The (n+ 1)th row is replaced by Rn+1 −Rn+3.

The (n− 1)th row is replaced by Rn−1 −Rn+1.

So A(G∗) is now







































...
...

An−2 c1 c2 O
...

...

. . . r1 . . . 0 1 0 0 0 0

. . . r2 . . . 1 0 0 0 0 0

0 0 1 0 0 0

O 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







































.
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In block form this is





















An 0

0 I4





















where 0 is a zero square matrix, I4 is the

identity matrix of order 4 and An denotes the rows and columns of A(G).

It is clear that the rank of A(G∗) is 4 more than the rank of A(G). Thus the nullity of G∗ is

one and so G∗ is a nut graph.

4.2 Addition of one vertex

Starting with a nut graph G with a kernel eigenvector v0 = (α1, α2, . . . , αn)
T , a vertex v is

added joining a set of vertices I such that the sum of their corresponding αi vanishes. Another

vertex u of G which is not adjacent to any of the vertices of I is joined to each vertex of I.
This construction, is shown in Fig. 3 for |I| = 2. If the nullity of the constructed graph G′ is

one then a nut graph G′ of order ◦(G) + 1, is produced such that the components of the kernel

eigenvector corresponding to the vertex v is equal but of opposite sign to that of u, whereas

the components corresponding to the other vertices remain unchanged.

Fig.3

Starting with N1 = X1 shown in Fig.1, N2 is constructed by joining each of the vertices v3 and

v8 to v1 and to v2. A nut graph of order 8 is obtained. A nut graph N3 of order 9 is

constructed by starting with N2 and joining each of the vertices v4 and v9 to v2 and to v8. A

nut graph N4 of order 10 is constructed by starting with N3 and joining each of the vertices v3

and v10 to v8 and to v9.

The 4 nutgraphs N1, N2, N3, N4 will be used in the proof to show for which orders nut graphs

exist.

Repeating the procedure for constructing N1, N2, N3, N4, another nut graph N5 of order 11 is

constructed by starting with N4 and joining each of the vertices v4 and v11 to v9 and to v10.

However, starting with N5 and joining each of the vertices v3 and v12 to v10 and to v11 does

not yield a nut graph since the graph produced has nullity 2.
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4.3 Inserting 2 vertices in an isthmus of a nut graph

Let G be a nut graph (with kernel eigenvector v0) whose edge e = uv is an isthmus such that

G− e has 2 disjoint components Bs, Et. The graph Ga, shown in Fig.4, is constructed by

inserting 2 vertices a, b in the edge uv. Then Ga is a nut graph. The components of a kernel

eigenvector of Ga corresponding to the vertices of P4 taken in order are

f(u), f(v),−f(u),−f(v) where f(u) and f(v) are the components of v0 corresponding to the

the vertices u and v, respectively.

The s components corresponding to the vertices of Bs remain unchanged while the t

components corresponding to the vertices of Et change sign.

Fig.4

It is now shown that this construction yields nut graphs. The adjacency matrix of G can be

written as

A(G) =































Bs 0

1 0 . . . 0

0 . . . 0 1

0 Et































,

and let the corresponding eigenvector be denoted by (α1, α2, . . . αs, β1, β2, . . . βt), so that the

rows Rs and Rs+1 represent vertices u and v respectively.

The adjacency matrix of Ga is then

A(Ga) =



































0 0

Bs 0
...

...

1 0

0 1

0 Et

...
...

0 . . . 0 1 0 . . . 0 0 1

0 . . . 0 0 1 . . . 0 1 0



































,

where the last 2 rows and columns correspond to the vertices a, b. By row and column

reduction the rank of A(Ga) is the same as that of
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D =











































0 0

Bs 0
...

...

0 0

0 -1 . . . 0 0 0

0 . . . 0 -1

0 Ct 0

0 . . . 0 0 . . . 0 1 0

0 . . . 0 0 . . . 0 0 1











































,

which has an eigenvector v′ = (α1, α2, . . . αs,−β1,−β2, . . .− βt, 0, 0), so that η(Ga) ≥ 1. Now

suppose η(Ga) > 1. Then there is another eigenvector v′′ of D linearly independent of v′.

There are 3 possibilities:

1) v′′ has no components corresponding to Rs and to Rs+1. This would imply that Bs is

singular so that G would not be of nullity one: a contradiction.

2) v′′ has no component corresponding to Rs+1 but has one corresponding to Rs. This would

imply that Ct is singular so that G would not be of nullity one: a contradiction.

3) v′′ has components corresponding to Rs and to Rs+1. The equations Dv′ = 0 and Dv′′ = 0

would imply that Bs or Ct is singular so that G would not be of nullity one: a contradiction.

Thus η(Ga) = 1.

4.4 Triangle and pentagon joined by an odd path

Fig.5

If C3 and C5 are joined by an odd path Ps for s ≥ 3, then the resulting graph is a nut graph

Hs with the components of the kernel eigenvector corresponding to the vertices of valency 2 of

the path following the pattern −2, 1, 2,−1− 2, 1, . . . as shown in Fig. 5. It is noted that given

Hs the addition of two vertices as in section 4.3 to obtain Hs+2 increases the rank of A(Hs) by

2 so that the nullity remains one.

4.5 A Circuit Cn surrounded by n triangles

Let Cn be the circuit on n vertices and let a copy of C3 be attached to each vertex of Cn. The

resulting graph is of order 3n. This construction is given in [1]. The smallest member of this

class is illustrated in Fig.6.
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Fig.6

It is now shown that this construction yields nut graphs. The adjacency matrix of such a

graph G of order 3n can be written as

A(G) =



























































1 1 0 . . . 0

0 0 1 1 0 . . . 0

Cn
. . .

. . .
. . .

. . .

0 . . . 0 1 1 0 0

0 . . . . . . 0 1 1

1 0 . . . 0 0 1 0 0 0 . . . 0

1 0 . . . 0 1 0 0 0 0 . . . 0

0 1 0 . . . 0 0 0 0 1 0 . . . 0

0 1 0 . . . 0 0 0 1 0 0 . . . 0
. . .

. . .
. . .

. . .

0 . . . 1 0 . . . 0 0 1

0 . . . 1 0 . . . 0 1 0



























































,

where Cn represents the rows and columns of Cn. (The horizontal lines in the matrix were

introduced to render the pattern of the entries more obvious).

Using elementary row and column operations a matrix L of the same rank as A(G) is obtained.

L =













± 1

I3n−1

...

± 1

0 . . . 0













.

5 Order of nut graphs

Theorem 5.1 There exist nut graphs of order n for each n ≥ 7.

Proof:

The 4 nutgraphs N1, N2, N3, N4 (constructed in section 4.2) and the constant value of the

nullity on inserting 4 vertices (proved in section 4.1) ensure that there are nut graphs for all

n ≥ 7.//
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This result is the basis of the study of the maximum weight of the vectors in a minimal basis

for the nullspace of the adjacency matrix of a singular graph in [8, 9].

6 Deck of spectra of nut graphs

Let Adj(A) denote the adjoint of A, which is the matrix (Aij) where Aij is the cofactor

corresponding to aij of A.

Lemma 6.1 Let G be a singular graph with adjacency matrix A. If ui = (Ai1, . . . , Ain)

is a non-zero row vector of Adj(A), then uT
i is a kernel eigenvector.

Proof: The result follows since Det(A) = 0, and therefore ∀i ∈ {1, 2, . . . , n},

A

















Ai1

Ai2

Ai3

...

Ain

















=

















0

0

0
...

0

















. (6)

Lemma 6.2 Let G be a graph with adjacency matrix A.

Then η = 1 =⇒ rank (Adj(A)) = 1.

Proof: It is shown that each row of Adj(A) is a multiple of a non-zero row of Adj(A). If

η(G) = 1 then r(G) = ◦(G)− 1 and the determinant of at least one submatrix of order n− 1 of

A is not zero. So at least one row vector of the adjoint of A is not zero. By Lemma 1, every

non-zero row vector of Adj(A) is a kernel eigenvector and is unique (up to multiples), since the

nullspace of G has dimension one. //

Lemma 6.3 For η = 1 the one-dimensional nullspace of A is generated by

uk = (Ak1, . . . , Akn), any non-zero row vector of the adjoint.

Proof: This follows from Lemmas 1 and 2 since the non-zero rows of the adjoint are

multiples of each other. //

Theorem 6.1 A nut graph has a deck of nonsingular vertex-deleted subgraphs.

Proof: Let G be a nut graph with adjacency matrix A and adjoint Adj(A) = (Aij). Since

η = 1, rank(Adj(A)) = 1. The core of G is χn. So there exists k ∈ {1, 2, . . . , n} such that,

uT
k = (Ak1, Ak2, . . . , Akn)

T is a kernel eigenvector no component of which is zero. Since Adj(A)
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is symmetrical, each row is non-zero and a rational multiple of uk. Thus Aki 6= 0, ∀i, k. Hence

each diagonal entry Aii of Adj(A), is non-zero. On the other hand Aii is equal to the

determinant of the adjacency matrix of the vertex-deleted subgraph G− vi. The determinant

of the adjacency matrix of a singular graph is equal to zero. Thus none of the vertex-deleted

subgraphs of G is singular. //

Theorem 6.2 A graph with nullity one having a deck of nonsingular vertex-deleted

subgraphs is a nut graph.

Proof: Let G be a graph with adjacency matrix A and adjoint Adj(A) = (Aij). The

determinant of a vertex-deleted subgraph G− vi of G is Aii which is therefore non-zero. Hence

every row of the adjoint is a non-zero vector. By Lemma 6.1, every non-zero row of the adjoint

is a kernel eigenvector of G. Because η(G) = 1, all rows of the adjoint are rational multiples of

each other by Lemma 6.2. Hence each entry of Adj(A) is non-zero and therefore all

components of a kernel eigenvector in the one-dimensional nullspace of A are non-zero. //

From Theorems 6.1 and 6.2 the following results are deduced:

Theorem 6.3 If a graph G has nullity one, then G is a nut graph if and only if none of

the spectra in the deck of spectra of G has a zero eigenvalue.

Corollary 6.1 If a graph G has a deck of nonsingular vertex-deleted subgraphs, then G

is either non-singular or is a nut graph.

Finally Theorem 6.1 is applied to deduce another structural feature of nut graphs.

Lemma 6.4 If e is an edge of the nut graph G such that G− e has two disjoint

components A, B, then neither A nor B is bipartite.

Proof Let e = uv, such that u is a vertex of A and v is a vertex of B. Suppose that B is

bipartite. Then B is a component of G− u, whereas B − v is a component of G− v. Either B

or B − v possesses an odd number of vertices; hence either B or B − v is singular. Therefore

either G− u or G− v is singular. Therefore, by Theorem 6.1, G is not a nut graph. //

It is observed that this property agrees with the structure of the nut graphs in sections 4.3 and

4.4.

7 Coefficient of λ

In [7] it is proved that, for a graph G with nullity one, the square of the norm of the principal

kernel eigenvector v0 (the one with integral components the g.c.d. of which is one) divides L,
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the coefficient of λ in the characteristic polynomial of A(G). A minimal configuration is a

singular graph with nullity one, the periphery of which induces the empty graph and where the

deletion of a vertex of the periphery increases the nullity. A conjecture was presented which

said that for a minimal configuration, examples of which are shown in Fig.7, |L| = ||v0||2. Nut

graphs are minimal configurations and counter examples to the above conjecture are found

among nut graphs. In fact for nut graph N1, mf = |L|
||v0||2 = 1 but for nut graphs N2, N3, N4

and N5, mf = |L|
||v0||2 6= 1. Indeed the investigation of the significance of mf is still an open

problem.

Fig.7
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