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1 Introduction

Abstract

LetH be a disconnected graph with connected componentsH1, H2, . . . , Ht.
If the characteristic polynomial of H were not reconstructible from the
deck of characteristic polynomials of its one-vertex deleted subgraphs,
then H would consist of exactly two connected components of the same
order. We show that if H has a pendant edge in the component with
the larger number of edges or if the smaller component of H is a tree,
then H is polynomial reconstructible.
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2 Introduction

A graph G(V, E) of order n has a vertex set V(G) = {v1, v2, . . . , vn} and a set
E of m(G) edges joining distinct pairs of vertices. The adjacency matrix
A(G) (or A ) of a graph G is an n×n symmetric matrix [aij ] such that aij = 1
if vi and vj are adjacent and 0 otherwise. The adjacency matrix describes G
completely (up to isomorphism). The characteristic polynomial φ, defined
as φ(G,λ) :=Det(λIn −A), can be expressed as

φ(G,λ) =
n
∏

i=1

(λ− λi). (1)

It is a polynomial
n
∑

i=0
aiλ

i with integer coefficients ai. We refer to the solutions

λ1, λ2, . . . , λn of the characteristic equation of A as the eigenvalues of G.
They are independent of the labelling of G and they are said to form the
spectrum Sp(G) of G [1, 2, 4].
In 1941, S.M.Ulam and P. J.Kelly formulated what has become known as
Ulam’s Reconstruction Conjecture (RC) [9, 12]. Alternative statements of
the RC were presented independently by Kelly and Harary in 1964. In the
latter’s form we are presented with a deck D of n cards, each showing a one-
vertex-deleted unlabelled subgraph G− v for each v ∈ V(G). The problem is
to recover the parent graph from D. Many partial results have been obtained
and the RC has been proved for various classes of graphs including regular
graphs, trees and disconnected graphs.

A variation of the RC, first posed by D.M.Cvetković in 1973 at the Eighteenth
International Scientific Colloquium held in Ilmenau and later considered by
I.Gutman and D.M.Cvetković in [7], is the polynomial reconstruction
problem (PRP) which asks whether we can recover the characteristic poly-
nomial of a graph H of order n from, the p-deck, PD(H), of H, consisting
of the n characteristic polynomials of the one-vertex-deleted subgraphs (with
multiplicities) [6]. This is referred to as Problem D by A. Schwenk in [10].
Since the solutions of φ(G − v, λ) = 0 are the eigenvalues of G − v, we refer
to the information on a card as either a characteristic polynomial or a set of
eigenvalues.
S. Simić resolved the problem positively for connected graphs with the small-
est eigenvalue of the one-vertex-deleted subgraphs bounded below by −2 [11].
Also D.M.Cvetković and M.Lepović showed that a tree T is polynomial recon-
structible in [8] by showing that there is no graph H which is non-isomorphic
with T and with the same p-deck as T, such that (H, T ) is a counter example
pair to the PRP.
A major problem that is often the cause why polynomial reconstruction is
hard to prove for a particular class of graphs is that disconnected graphs often
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present themselves as candidates for a counter example. In specific examples
considered so far, non isomorphic graphs of order at least 3, with the same p-
deck were found to be cospectral so that they do not provide counter example
pairs to the PRP[5]. In this article, we consider the class {H} of disconnected
graphs. We study the cases where a component belongs to two particular
classes in turn and show that certain subclasses of disconnected graphs are
polynomial reconstructible.
We shall not give an algorithm to reconstruct φ(H). Instead, we study the
properties that a graph G must have such that for H disconnected, (H, G)
is a counter example pair to the PRP. This approach establishes certain sub-
classes whose graphs cannot be counter examples, providing a positive answer
to the PRP for all such subclasses.

We list below a set of results which we will be making use of:

Theorem 2.1 (F.H.Clarke)[3, 1]
Let G be a graph and let φ(G,λ) = φ(G) be its characteristic polynomial.
The derivative of the characteristic polynomial is given by:

φ′(G,λ) =
n
∑

i=1

φ(G− vi, λ)

Corollary 2.2 From the polynomial deck of the subspectra, all the coef-
ficients in φ(G,λ) are derived, except for the constant term a0.

Proof: By integration of φ′(G,λ), the result follows immediately.
This much has been obtained independently by A. J. Schwenk [10] and Gut-
man and Cvetković [7].

Theorem 2.3 The Interlacing Theorem
Let G be a graph and let v ∈ V(G). If Sp(G)={Λi} where Λ1 ≥ Λ2 ≥ . . . ≥ Λn

and Sp(G− v) = {µi} where µ1 ≥ µ2 ≥ . . . ≥ µn−1,
then the eigenvalues of (G− v) interlace with those of G, i.e.

Λ1 ≥ µ1 ≥ Λ2 ≥ µ2 ≥ . . . ≥ µn−1 ≥ Λn.

In section 3, we discuss the properties of a potential counter example pair
(G, H) to the PRP when H is disconnected. In section 4, interesting inter-
lacing properties of the eigenvalues of G, H and their subgraphs reveal that
certain subclasses of the class of disconnected graphs are polynomial recon-
structible. We proceed, in section 5, to compare the number of edges of the
components of H, were a counter example to exist. This analysis exhibits
various subclasses of the class of disconnected graphs which are polynomial
reconstructible. We conclude by reviewing the subclasses of the class of dis-
connected graphs which we showed to be polynomial reconstructible. We
proceed to highlight the remaining subclasses for which the PRP is still open.
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Figure 1: The polynomials φ(G) and φ(H).

3 If the PRP had a negative answer for
Disconnected Graphs

Remark 3.1 LetH be a disconnected graph with componentsH1+̇H2+̇ . . . +̇Ht,
2 ≤ t ≤ n. Suppose that H is not uniquely reconstructible and that the
graph G has the same p-deck as H and the pair (G,H) is a counter exam-
ple to the PRP. From Corollary 2.2, it follows that PD(G) = PD(H) but
a0(G) 6= a0(H).

Lemma 3.2 φ(H) is a polynomial with real roots.

Proof: The result follows since A(H) is real and symmetric so that the
eigenvalues of H are real.

Remark 3.3 If T is a tree and (H, T ) a counter example pair to the PRP,
then H is necessarily disconnected. As a preparation to their proof that T is
polynomial reconstructible, D.Cvetković and M. Lepović listed the properties
of H as a partner in a counter example pair which we describe in Lemmas 3.4
to 3.7.

Lemma 3.4 (i) n(G) = n(H)

(ii) m(G) = m(H)

(iii) G and H have the same degree sequence

Proof:

(i) G andH agree on the number of verices since the number of polynomials
of the one-vertex-deleted subgraphs are the same for both G and H.
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(ii) m(G) = m(H) follows since φ(G) = φ(H) save for the constant term.
Hence, the coefficient of λn−2 is the same for both.

(iii) G and H have the same degree sequence since they have the same p-deck
and the degree of the ith vertex is the difference between the coefficients
of λn−2 in φ(G) and of λn−3 in φ(G− vi).

Lemma 3.5 G and H have no eigenvalues in common.

Proof: Suppose that G and H share a common eigenvalue, say λi. Then,
φ(G,λi) = φ(H,λi) = 0. ⇒ a0(G) = a0(H) contadicting the result in Remark
3.1.

Lemma 3.6 G is connected.

Proof: Suppose G is disconnected with G = G1+̇G2+̇ . . . +̇Gs, 2 ≤ s ≤ n.
Then, the maximum eigenvalue that appears in PD is λmax(G). Since H is
disconnected, the same holds for H. But then H and G share a common
eigenvalue λmax.

Lemma 3.7 λmax(G) > λmax(H).

Proof: λmax(H) = λmax(H − vi) for some i since H is disconnected. Now,
since PD(G) = PD(H), ∃w ∈ G such that λmax(G − w) = λmax(H). But
λmax(G − w) < λmax(G), since any vertex deletion in a connected graph
lowers the maximum eigenvalue. This implies that λmax(H) < λmax(G) as
required.

Theorem 3.8 If the graph H is disconnected, G has the same p-deck as
H and 0 < φ(H,λ) − φ(G,λ) = ∆a0, then a0(H) = a0(G) + ∆a0 where
∆a0 > 0.

Proof: Since φ′(H,λ) > 0, ∀λ > λmax(H), from Lemma 3.7 and Figure 1, it
follows that φ(H,λmax(G)) = ∆a0 > 0. Thus φ(H,λ)− φ(G,λ) = ∆a0, ∀λ.
In particular φ(H)(0) − φ(G)(0) = ∆a0. It follows that a0(H) − a0(G) =
∆a0 > 0.

4 Interlacing Properties of Eigenvalues

Theorem 4.1 The eigenvalues of H and G interlace in pairs i.e. if {Λi}
where Λ1 ≥ Λn ≥ . . . ≥ Λn are the eigenvalues of G and if {ζi} where
ζ1 ≥ ζ2 ≥ . . . ≥ ζn are the eigenvalues of H, then:

Λ1 > ζ1 ≥ ζ2 > Λ2 ≥ Λ3 > ζ3 ≥ ζ4 > Λ4 ≥ . . . ≥ ζn > Λn.



On P.R. of Disconnected Graphs – I. Sciriha & J. Formosa 6

Proof: To understand the strict inequalities in the result, we use Lemmas
3.2, 3.5 and Figure 1.

Remark 4.2 In [8], the properties of a disconnected graph H, which is not
polynomial reconstructible, are treated to prove that a tree T cannot have
a partner which together with T forms a counter example pair to the PRP.
Here we reproduce these results since they lead to Theorems 5.5 and 5.6.

Theorem 4.3 H consists of exactly two connected components H1 and
H2.

Proof: Suppose H = H1+̇H2+̇ . . . +̇Ht, 2 ≤ t ≤ n. Let, without any loss of
generality, λmax(H) be an eigenvalue of H1.

Case (i) Suppose that the two largest eigenvalues of H1 are the two largest
eigenvalues ofH. But then if v ∈ H2, H−v will still have two eigenvalues
of H1 between the two largest eigenvalues of G. Thus, ∃w ∈ V(G)
such that G − w also has these two eigenvalues of H1 between the two
largest eigenvalues of G. This contradicts The Interlacing Theorem 2.3.
Hence, the two largest eigenvalues of H belong to spectra of different
components.

Case (ii) Suppose that H3 is the third component of H, H1 and H2 be-
ing the components which have their largest eigenvalues between the
two larger eigenvalues of G. Then if u ∈ V(H3), H − u will have two
eigenvalues between the two larger eigenvalues of G. The same situation
holds for G−w for some w ∈ V(G). This is again a contradiction to The
Interlacing Theorem 2.3.

Hence, H has two components only.

Lemma 4.4 If H = H1+̇H2, then each component has distinct eigenval-
ues.

Proof: Suppose there exists some v ∈ Hi such that φ(H − v) has a repeated
factor (λ− λ0). Thus, λ0 is an eigenvalue of H and is also an eigenvalue of G
since G and H have the same PD. This contradicts Lemma 3.5.

Corollary 4.5 If H = H1+̇H2 where H1 is Ck, the circuit on k vertices,
then H is polynomial reconstructible.

Proof: This follows since every circuit has a repeated eigenvalue.

Lemma 4.6 Let H = H1+̇H2 be a disconnected graph which is not poly-
nomial reconstructible. Then H1 and H2 are of the same order.
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Proof: Suppose n(H1) > n(H2). Then, ∀v ∈ V(H2) such that H − v has two
eigenvalues of H1 next to each other on the real line with no eigenvalues of
H−v in between. Since G has the same p-deck as H, there exists some ω ∈ G
such that G − ω has two eigenvalues between two successive eigenvalues of
G and none between two other successive eigenvalues of G, contradicting the
Interlacing Theorem 2.3.

Theorem 4.7 Let H be a disconnected graph and (H, G) be a counter
example pair to the PRP. Then the multiplicity of the eigenvalues of H
does not exceed two.

Proof: Suppose for contradiction that the multiplicity of λ0 exceeds two.
Then H − v has the eigenvalue λ0 repeated at least twice, a contradicting the
existence of G.

Remark 4.8 Since φ(H) = O(λn), the following result is deduced immedi-
ately. It justifies the shape of φ(H) in Figure 1.

Corollary 4.9 The characteristic polynomial φ(H) has n(= 2k) zeros
with k minimum values and k − 1 maximum values.

Theorem 4.10 Let the eigenvalues of G be Λ1,Λ2, . . . ,Λ2k. If λ1, λ2, . . . , λk

are the eigenvalues of H1, then Λ1 > λ1 > Λ2; Λ3 > λ2 > λ4; . . .Λ2k−1 >
λk > Λ2k. Similarly, if `1, `2, . . . , `k are the eigenvalues of H2, then
Λ1 > `1 > Λ2; Λ3 > `2 > λ4; . . .Λ2k−1 > `k > Λ2k. Thus if φ(G) has a
minimum value between two successive eigenvalues of G, then H1 and
H2 both have one eigenvalue in this range.

Proof: From Lemma 3.2, Theorem 3.8 and Theorem 4.1, we know that there
are two successive eigenvalues of H between two eigenvalues of G in which
range there is a minimum value of G. Since G and H have the same p-
deck, Hi − v must have all its the eigenvalues common with some of those of
G−ω for some ω ∈ G. These lie in ranges on the real line between successive
eigenvalues of G where G has a maximum value. The remaining eigenvalues of
G are those belonging to Hj , i 6= j, and lie in ranges on the real line between
successive eigenvalues of G where G has a minimum value.

Lemma 4.11 H1 − v and H2 have no eigenvalues in common.

Proof: Suppose for contradiction, that H1 − v and H2 do share a common
eigenvalue. Then, φ(H − v) has a repeated eigenvalue and so does φ(G− ω)
for some ω ∈ V(G). For a counter example to exist, this is not allowed by
Lemma 4.4.

Theorem 4.12 For all vertices v ∈ V(H1), the sets of eigenvalues
{µi : 1 ≤ i ≤ k − 1} of H1 − v and {`i : 1 ≤ i ≤ k} of H2 strictly interlace
each other.
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Proof: There exists ω ∈ G such that φ(G − ω) = φ(H − v). Thus, the
eigenvalues of H − v interlace with the eigenvalues of G. Also the eigenvalues
of H2 lie in the ranges between consecutive eigenvalues of G where φ(G) has
a minimum value. This implies that the eigenvalues of H1 − v lie in ranges
between consecutive eigenvalues of G where a maximum value of φ(G) exists.
We deduce that
`1 > µ1 > `2 > . . . > µk−1 > `k.

Remark 4.13 We refer to the result obtained above as the Strict Interlac-
ing Theorem. From several examples we have tried, this strict interlacing
among eigenvalues of graphs, of the same order, appears to be very hard to
satisfy and could be the key to the successful search for a counter example
were one to exist.

Corollary 4.14
k

∑

i=1

(li)
2 >

k−1
∑

i=1

(µi)
2.

Proof: For all v ∈ V(H1), there is a matching between the eigenvalues of
H1 − v and n− 1 of the eigenvalues of H2, such that for each eigenvalue µj of
H− v, there is an eigenvalue `t, of H2, t = j or j+1 such that (`t)

2 ≥ (µj)
2.

Since `max lies between the two largest eigenvalues of G and µmax does not,
the matching of `max with µmax ensures that the inequality relating the sum
of the powers is strict.

5 Edges of Components

Remark 5.1 The result of Corollary 4.14 enables us to compare the number
of edges of the two components H1 and H2 of H. We denote by ρmin, the
minimum degree of the component H1 of H.

Lemma 5.2 Let H = H1+̇H2. If m(H1) ≥ m(H2) and a counter example
pair (H,G) exists, then

m(H1)−m(H2) ≤ ρmin − 1

Proof: By Corollary 4.14

k
∑

i=1

(li)
2 >

k−1
∑

i=1

(µi)
2

Now no card of the p-deck of H has repeated eigenvalues and interlacing of
the `is and the µjs is strict. Moreover, since

∑k
i=1(li)

2 = 2m(H2) and



On P.R. of Disconnected Graphs – I. Sciriha & J. Formosa 9

k−1
∑

i=1

(µi)
2 = 2m(H1 − v), then

k
∑

i=1

(li)
2 −

k−1
∑

i=1

(µi)
2 ≥ 2

Thus
2[(m(H2)−m(H1)) + ρmin] ≥ 2

Hence
0 ≤ m(H1)−m(H2) ≤ ρmin − 1

Remark 5.3 We use Lemma 5.2 repeatedly to determine subclasses of dis-
connected graphs which are polynomial reconstructible.

Theorem 5.4 Let H = H1+̇H2, and m(H1) − m(H2) ≥ ρmin. Then the
PRP has a positive answer for H.

Proof: This is just the contrapositive of Lemma 5.2.

Theorem 5.5 Let H = H1+̇H2 and m(H1) > m(H2). If H1 has a pendant
edge, then H is polynomial reconstructible.

Proof: If counter example (H,G) to the PRP exists, since ρmin = 1, then
m(H1)−m(H2) = 0 follows from Lemma 5.2.

Theorem 5.6 Let H = H1+̇H2 be a disconnected graph such that the
component H2 with the smaller number of edges, is a tree, then the
graph is polynomial reconstructible.

Proof: By Lemma 4.6, n(H1) = n(H2) = k and m(H2) = k−1. Suppose that
H were not polynomial reconstructible. ThenG exists and m(H) = m(G) ≥ 2k − 1.
Thus m(H1) ≥ k. Let H1 have m edges. By strict interlacing of the eigenval-
ues of H2 and H1 − v,

k−1
∑

i=1

(µi)
2 <

k
∑

i=1

(li)
2

2(m− ρmin) < 2(k − 1)

=⇒ k ≤ m < k − 1 + ρmin (2)

But for H1, kρmin ≤ 2m. Thus from inequality (2),

kρmin < 2ρmin + 2k − 2
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⇒ k(ρmin − 2) < 2ρmin − 2

Thus for for ρmin > 2,

k <
2(ρmin − 1)

ρmin − 2
. (3)

Case(i) If ρmin = 1, then m < k from inequality (2). Thus m = k − 1 and
H1 is a tree. The number of edges in such a graph H precludes the
existence of a counter example. Besides, by inequality 2, ρmin > 1.

Case(ii) If ρmin = 2, then m < k + 1 from inequality (2). Then m = k
and H1 is a unicyclic graph, which is a contradiction since a component
cannot be a circuit by Corollary 4.5.

Case(iii) If ρmin = 3, then k < 4 from inequality (3).

Case(iv) If ρmin > 3, then k < 3 from inequality (3).
But all graphs of order at most 10 have been shown to be polynomial
reconstructible [8] and hence a counter example (G, H) to the PRP
does not exist.

6 Conclusion

In the course of the proofs of the results above, it is clear that the following
conditions are sufficient for the various subclasses {H} of the the class of
disconnected graphs to be polynomial reconstructible:

1. The number of components of H is more than two.

2. H = H1+̇H2 and n(H1) 6= n(H2).

3. H = H1+̇H2 where Hi and Hj − v, i 6= j have a common eigenvalue.

4. One of the components has a repeated eigenvalue.

5. The second larger eigenvalue of one component Hi is greater than the
maximum eigenvalue of Hj , i 6= j.

6. Each component is a tree.

7. One component is a tree and the other unicyclic [8].

8. H = H1+̇H2 and m(H1)−m(H2) ≥ ρmin(H1).

9. H = H1+̇H2, m(H1) > m(H2) and H1 has degree 1.

10. H = H1+̇H2, m(H1) > m(H2) and H2 is a tree.
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The PRP is still open for the following subclasses {H} of the class of discon-
nected graphs:

1. H = H1+̇H2 and m(H1) = m(H2).

2. H = H1+̇H2, 0 < m(H1)−m(H2) < ρmin, H1 has no terminal vertices
and H2 is not a tree.
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