
Lifelong Verification of Software Systems

Christian Colombo Mark Micallef Gordon J. Pace
Department of Computer Science

University of Malta
Email: christian.colombo | mark.micallef | gordon.pace@um.edu.mt

Abstract—Computers systems are increasingly interacting
with our day-to-day life, but for this interaction to be facilitating
and supporting, rather than interfering with our actions, these
systems have to be dependable and trustworthy. The area of
system verification and validation has a long history in computer
science, but scaling up existing approaches to complex and large
real-life systems is still an open-ended research question. In this
paper we summarise and relate several ongoing research projects
and tool development efforts in this field taking place within the
Department of Computer Science.

I. Introduction

The degree of impact of computer system failures has
been monotonically increasing since the advent of comput-
ers, mainly due to the increased human interaction with,
dependence on and the delegation of tasks to computers. In
order to address this challenge, much research has gone into
techniques to improve the development process, from software
engineering looking into ways to organise and manage better
the development cycle in order to decrease the incidence of
bugs, to formal methods looking into mathematical techniques
to have sub-systems developed correct by construction or allow
them to be verified a posteriori. Despite these efforts, the
increase in size, complexity, decreasing time-to-market and
prevalence of systems still result in the incidence of errors
increasingly offsetting the improvement brought about by the
software-improvement techniques.

One important realisation is that bugs and failures are
inevitable, and they have to be addressed as a part of the
system lifetime. Current industrial practice usually sees the
treatment of dependability and reliability in two ways: (i) a
quality assurance team specifically focussing on identifying
problems in the software and which is active throughout
the system specification and development phase mostly using
testing techniques; and (ii) the development team, which incor-
porates monitors, usually in the form of assertions and checks,
for invariants and system properties directly or indirectly in
the code (despite the fact that the logic in the code should
safeguard from such assertions and checks to ever fire). If we
were to simplify the system lifetime as shown in Figure 1 into
development and production phases, it results that the quality
assurance team’s main activity is in the first phase, in which
they try to identify as many problems as possible, while the
defensive work of the development team plays a primary role
post deployment, in the production phase.

The verification problem in the two phases poses different
challenges, and it is thus not surprising that the methodologies
of the two approaches are distinct. The verification process
during the development phase has to deal with the fact that
(i) the specification is still being sketched out, (ii) parts of

Deployment

Development Production

Start of project

Fig. 1. Simplified timeline of a software project.

the system have not yet been developed, (iii) bugs are still
abundant in the system, and (iv) user behaviour must be
emulated in order to discover bugs. On the other hand, post-
deployment, the main challenge is that monitoring induces an
overhead on the system which is usually undesirable.

In this paper we start by outlining testing and runtime
monitoring, the two primary technologies used in the two
distinct phases (see Sections II). We then proceed to propose
a framework combining the two approaches (Section III),
reducing duplication of effort which takes place when the two
approaches are addressed separately. We emphasise how our
proposed approach deals with the distinct verification needs
of the different phases. In particular, we argue for the use of
domain-specific languages for writing the specification, which
enables us to use a single specification artefact for verification
throughout the system’s lifetime. The work builds upon recent
research taking place within the Department of Computer
Science focussing on testing and runtime verification.

II. Verification of Systems

The development of software systems can be loosely split
into two phases (shown in Figure 1): the development phase
and the production phase. Due to their distinct characteristics,
each of these phases poses particular challenges and possibil-
ities from a verification point of view. In what follows, we
attempt to articulate the significant differences in these phases
and how these affect the verification process.

Development Phase
During the development stage the main involvement of the
user is for the purposes of refining the specifications of the
system. The specifications are typically in flux at this stage and
evolve regularly. In this context, initially, verification at this
stage typically deals with low-level unit specifications which
are tested using unit tests. Due to their low level, unit tests do
not typically involve the user.

As the development progresses, testing becomes higher
level and system level testing starts to take place. During this
phase, the system is typically still too unstable for it to be
tested directly by the user. For this reason, user behaviour is
modelled into tests so that in the absence of an actual user
testing the system, the modelled user behaviour (shown in
Figure 2 as a user in a dotted box) is used to drive the system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/153558145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

System

Specification

System

Pre−deployment

Environment

System Use

Simulated

Simulated

Fig. 2. During testing, the user interaction with the system is emulated.

The main overall aim of verification in the development
phase is that of detecting as many bugs as early as possible.
Thus, the emphasis is not on the efficiency of the verification
code, or the guarantees it can give, but rather on how effec-
tively can the verification technique detect a large number of
bugs at the early stages of the development phase.

Production Phase
Once the developed system is completed up to some user-
accepted criteria and gets deployed, the concerns of the
verification effort changes — efficiency becomes of utmost
importance as verification during the runtime of a deployed
systems eats up resources which would otherwise be used to
serve user requests, and it becomes crucial to detect any bad
behaviour. The main reason for this contrast is that the purpose
of verification in the development stage is to aid developers
detect bugs while the aim of verification during production is
to ensure the user gets to experience the expected system’s
behaviour. Consequently, the stickman illustrated in Figure 3
represents the actual user as opposed to a modelled user. In
fact, an actual system usage pattern might be significantly
(or completely) different to the modelled user behaviour. The
reasons may include lack of knowledge about typical users of
the system, insufficient time for testing a representative set of
behaviours, etc.

In the subsections below, we elaborate more on the two
verification techniques of testing and runtime verification. In
particular, we will be expanding on the characterising features
and how these are being supported through various projects.

A. Testing

Testing activities aim to build confidence in a system by
uncovering as many bugs as early possible. The predominant
mechanism for doing so is that of exercising the system under
scrutiny in a variety of ways such that a sufficiently large
coverage of potential user behaviours is achieved. Confidence
is built by monitoring the discovery of new defects until such
a time when it is determined that the discovery of new severe
defects is sufficiently unlikely. Of course, a failure to find
defects in a system does not guarantee that such defects do

Actual

Actual

System Use

System

Specification

System

Environment

Post−deployment

Fig. 3. During runtime verification, the actual user’s interaction with the
system is available.

not exist. This lack of guarantees renders testing a risk-based
activity whereby engineers attempt to exercise systems in ways
that (in their assessment) are most likely to expose issues.

In comparison to a decade ago, the industry has achieved
significant progress where testing is concerned, even though
approaches tend to vary significantly between organisations
[1][2]. However, there is a drive to incorporate testing early
in the development process and share its responsibility across
different roles (developers, testers and customers). There is
a widespread belief that tools and techniques such as test
driven development [3], continuous integration [4] and auto-
mated system-level regression tests [5] empower developers to
confidently adapt the system to fluctuating specifications in the
knowledge that there is a safety net of tests to sound the alarm
if anything is broken. Despite this, problems in production still
persist, mainly due to the reasons discussed below.

Incomplete and dynamic specifications
In a dynamic market prone to disruptive innovations, customers
commission software development in the believe that it will
help them gain a competitive edge [6]. Consequently, their
vision of what the software should do changes continuously
in response to demands from the market in which they operate.
This results in specifications which can be incomplete, vague
and highly prone to change. Needless to say, building and
testing software when the goalposts are continuously moving
is a challenging task with the final specifications arguable only
being known when the decision is made to deploy a system to
production.

Incomplete System
Although development teams have access to environments in
which to deploy and test a system, it is rarely the case that such
environments are complete. For example, if a system interacts
with a number of third party services, such services would not
be present in a pre-production test environment. This leads
to extensive use of mock components during system testing
which, while helpful in simulating specific scenarios, arguably
reduce the realism of the environment in which the system is
tested.

Limited number of real users
During system development, testing largely depends on
exercising the system in a way in which it is expected that
real users will interact with it once deployed to production.
The problem with this approach is that it is very difficult
to predict all realistic interactions which the variety of
individuals who will use the system will have with it. That is
to say that whilst engineers aim to achieve as much coverage
as possible, there will likely always be a subset of users
whose particular behaviours are not explicitly tested. If the
system exhibits undesirable behaviour in an untested user
interaction, the inevitable result is the propagation of that
behaviour to a production environment.

It is worth noting that during testing, overheads introduced
by test drivers are not of particular concern. In fact it is
normal practice for large (possibly inefficient) test suites
to be executed overnight with developers finding test
results available in the morning. This enables them to
enter a systematic test-fix-repeat cycle throughout system
development with the aim of continually reducing risk and
building confidence. In this context, testing can be seen as a
first line of defence which eliminates a large percentage of
problems prior to system deployment albeit without providing
significant guarantees. This can then be reinforced by runtime
verification, a second line of defence that is capable of
providing guarantees in a production environment. This is the
subject of the following section.

B. Runtime Verification

Currently in the industry, runtime monitoring is largely
limited to inlined assertions and consistency checks as part of
the code of the system. However, many tools [7], [8], [9] are
now appearing, which allow the separation of the specification
from the code, and which automatically weave in the properties
into the code.

Runtime verification is typically applied once the system
is deployed, resolving a number of problems and challenges
arising from the testing process, but posing its own particular
challenges. By being applied directly on the actual runtime
behaviour generated from the system’s interaction with real
users, runtime verification does not have the problem of
having to mock the context of the system’s environment or
user behaviour. Also, since it is applied post-development,
all the system units are available, circumventing the problem
of having to mock units which may not yet have been fully
developed. On the other hand, the fact that monitoring occurs
at runtime introduces a new challenge — the monitor has
an impact on the system’s performance, which should not
interfere with its functionality. We discuss these issues in more
detail in this section.

Resource constraints
A major concern of runtime verification architectures is the
usage of runtime resources whose consumption might affect
the user’s experience. There are several techniques to mitigate
such a problem:

Offline monitoring
To provide continuous guarantee that the observed system
behaviour adheres to the specification, runtime verification is

run in sync with the executing system, and thus potentially
slowing it down. To avoid consuming precious runtime re-
sources, runtime verification can however be applied on the
runtime trace but out of sync with the system execution, freeing
the system from having to wait for the verifier’s guarantee.
Naturally this is less safe but any bugs occurring at runtime
are still caught, albeit with a lag. This technique has been
applied successfully on an industrial case study [?] dealing
with financial transactions. In the case of financial transactions,
it is particularly crucial not to cause any delays for the user
experience — especially during a surge in usage which is a
typically occurring pattern in such systems.

On/offline monitoring
The downside of opting for a purely offline runtime verification
approach is that by the time the violation is detected, the
system would have progressed further, making it difficult
to take any reparatory actions. One way of compromising
between online and offline monitoring is to enable the monitor
to switch across the two modes at runtime. Switching from
online to offline is easy as one would simply need to stop
enforcing the synchronisation between the system and the
monitor. On the other hand, to revert back to synchrony, there
are two main options [10]: if the synchronisation needs to
happen before the monitor has detected any problems, then
the system can be paused while the monitor catches up with
the system by processing all the pending events. If the monitor
has detected a bug during asynchrony, then the monitor cannot
“catch up” with the system since the monitor cannot progress
upon violations. The alternative is to somewhat undo the
behaviour of the system following the violation using some
sort of compensation mechanism [11] — similar to what is
typically used in processing long-lived transactions.

Actual user behaviour
A significant consequence of applying verification post de-
ployment is that the verification process has access to the
actual system behaviour. This means that guaranteeing that the
system behaviour is correct only requires one to ensure that the
current system behaviour is correct. This contrasts sharply with
the highly challenging guarantees required during development
which have to take into consideration any possible system
behaviour. In fact, while ensuring that a system works correctly
under any circumstance is generally intractable for non-trivial
systems, ensuring that a single system behaviour is correct is
tractable for a wide range of correctness properties.

Fixed specifications
Another advantage of operating in the post-deployment envi-
ronment is that by that stage, the system’s specifications would
have stabilised (as opposed to highly fluctuating specifications
during the development stage). Such an environment makes
it worthwhile to invest in specification analysis, particularly
to contribute towards the optimisation of their verification.
One such technique involves static analysis [12] to identify
parts of the specification which do not need to be verified
at runtime because it can be ascertained a priori that the
system can never violate such a specification. Static analysis
attempts to relate the behaviours of the system vis-a-vis the
behaviours prohibited by (parts of) the specification; if the
two sets of behaviours do not intersect, then the specification
or part thereof contributing to those behaviours can be ignored
during runtime verification.

Simulated

Environment Environment

Actual

Actual

System Use

System

System Specification

Post−deployment

Test Stimuli

Pre−deployment

System

Fig. 4. Framework to combine testing and runtime monitoring

III. Combining Verification Techniques

Clearly, the two verification approaches of testing and
runtime monitoring act orthogonally in terms of when they
are used in the lifetime of the system. However, the scope
of the verification coverage remains largely unchanged —
both testing and runtime monitoring would, for instance,
be interested to verify that across a whole transaction, the
sum of monetary transfers across accounts adds up to zero.
Through the separation of specification and implementation,
and automated techniques to transform the specification into
testing oracles and monitors, it would be possible to use a
common artefact for testing and monitoring.

Although one can approach the challenge by investigating
how artefacts produced for monitoring can be used to test
a system, this approach is not practicable due to (i) the
chronological order in which the two phases take place; and
(ii) the fact that few software development companies take
a structured approach to monitoring and largely use ad hoc
assertions and runtime checks.

Given that testing is practically universally adopted and
strictly regulated within software development companies,
migrating the testing oracles to be useful for monitoring
ensures that the approach is immediately applicable in practice.
The main challenge is that testing requires two elements —
the oracle which assesses whether a particular behaviour is
correct, and the test-case generator, which emulates the user
and environment behaviour, and which in most cases are given
intertwined. Furthermore, in approaches such as mock testing
this information may be combined further with information
about how to deal with parts of the system which have either
not yet been developed or which one may desire to emulate (for
efficiency or other reasons) during testing. Decoupling these
elements is not always straightforward.

Our proposed framework in which these components are
combined together can be found in Figure 4. We have already
investigated different frameworks to migrate testing informa-
tion into runtime monitors. In [13], we have looked at the
transformation of specifications written in QuickCheck [14] (a

commercial testing tool targeting systems written in Erlang)
into monitors written in Larva [7]. The test specifications in
QuickCheck combine trace generation with correctness condi-
tions, but through careful decomposition of the description it
was possible to generate effective runtime monitors. Similar to
the approach with QuickCheck, we are currently investigating
ways in which monitors can be extracted from JUnit tests. This
is somewhat more challenging than working with QuickCheck
since JUnit tests are typically not as generic as QuickCheck
tests, thus making it more difficult to extract monitors which
are applicable to observed runtime behaviour.

Other than this work, there is not much other prior re-
search in this direction. One notable exception is [15] which
enables the developer to express complex assertions in terms
of monitors instead of basic assertions. This is very useful
when attempting to verify assertions which span over multiple
snapshots of the system’s state. Examples include checking
the sequence of method calls, checking time delays between
particular events, etc.

We are currently looking into more effective and complete
ways in which to go from test specifications to monitoring
ones. One challenge we still have to address is that of reducing
monitoring overheads. Another is that tests are sometimes
expressed for very specific cases, based on the knowledge of
the test engineer that that value generalises to a large class
of inputs. For instance, the test engineer may test a financial
transaction system on transactions of $1 with the insight that
if the system works for this value, then it will work for all
values between the $0.01 to $999.99 range. We believe that
such choices should be documented as part of the test suite —
information which can be used to generalise the monitors to
check the results for all values, rather than just for that of $1.

From key issue which arises in this context is the language
used to express the specification. Specification languages need
to be fit for purpose, not only from a correctness perspec-
tive, but also from the point of view of being useful in
a modern software engineering context. Customers typically
specify systems in ambiguous natural language and are thus
likely to continuously refine (if not drastically change) these
specifications. This, combined with the current approach of
systematically interpreting natural language specifications in
order to develop a system and subsequently utilising yet
another language to define properties for monitoring purposes
provides ample opportunity for error, not to mention acting
as a substantial barrier to entry for monitoring techniques.
We argue that domain specific languages (DSLs) can play a
key role in this regard. Such languages can provide enhanced
expressiveness within the context of a particular domain and
can be ubiquitously used for specification, testing and moni-
toring purposes. Furthermore, they can be used as a common
language by both technical and non-technical stakeholders thus
reducing the potential of miscommunication. We argue that
whilst formal languages and logics utilised thus far do have
a role to play in lifelong verification of software systems,
this role should take the form of being the solid-yet-invisible
foundation on which domain specific languages are designed.
In doing so, stakeholders can communicate in a language
with which they are intimately familiar whilst behind-the-
scenes tools can extract information about expected system
behaviour from test scripts written in DSLs and leverage it to

construct useful monitors for added assurance in a system’s
post-deployment lifetime.

IV. Conclusions

With ever increasing pressures to release new software
versions, fast changing requirements and higher expectations
of software reliability, software development companies face
a continual balancing act: the quality of the software and the
time in which it reaches the market. To date most of the effort
of software quality assurance occurs in the pre-deployment
phase through testing. While highly effective, testing cannot
guarantee the absence of bugs and furthermore the quantity
and realism of the test cases are limited due to time pressures
and lack of tests involving real users. Another approach to
software assurance is runtime verification, a technique which
unlike testing is applied post-deployment, can detect any bugs
occurring at runtime while an actual user is using the system.
Applicable to different phases of a software system, these
techniques are highly complementary, enabling quick detection
of bugs in the pre-deployment stage, and guaranteed bug
detection upon occurrence in the post-deployment stage.

A number of approaches which aim at combining testing
and runtime verification exist and are also being developed
with the aim of exploiting the advantages and avoiding dupli-
cation of effort. In the future, we aim to continue exploring
synergies between the two techniques while attempting to
answer practical questions which would necessarily arise when
the two techniques are adopted in industry. For example,
given that in runtime verification the oracle executes with
the deployed system, should it be the responsibility of the
developers to write, or should it be considered as part of the
testing regime which is never switched off? The answer is
not straightforward and we look forward to investigate such
questions through industrial case studies.

References

[1] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. IEEE Computer
Society, 2007, pp. 85–103.

[2] E. Engström and P. Runeson, “A qualitative survey of regression
testing practices,” in Product-Focused Software Process Improvement.
Springer, 2010, pp. 3–16.

[3] L. Madeyski, Test-Driven Development. Springer, 2010.
[4] S. Stolberg, “Enabling agile testing through continuous integration,” in

Agile Conference, 2009. AGILE’09. IEEE, 2009, pp. 369–374.
[5] M. Fewster and D. Graham, Software test automation: effective use of

test execution tools. ACM Press/Addison-Wesley Publishing Co., 1999.
[6] L. Cao and B. Ramesh, “Agile requirements engineering practices: An

empirical study,” Software, IEEE, vol. 25, no. 1, pp. 60–67, 2008.
[7] C. Colombo, G. J. Pace, and G. Schneider, “Larva — safer monitoring

of real-time java programs (tool paper),” in SEFM, 2009, pp. 33–37.
[8] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, “Java-

mac: A run-time assurance approach for java programs,” Formal Meth-
ods in System Design, vol. 24, pp. 129–155, 2004.

[9] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview
of the MOP runtime verification framework,” JSTTT, 2011, to appear.

[10] C. Colombo and G. J. Pace, “Fast-forward runtime monitoring - an
industrial case study,” in Runtime Verification, Third International
Conference, RV 2012, ser. Lecture Notes in Computer Science, vol.
7687. Springer, 2012, pp. 214–228.

[11] C. Colombo, G. J. Pace, and P. Abela, “Compensation-aware runtime
monitoring,” in RV, ser. LNCS, vol. 6418, 2010, pp. 214–228.

[12] W. Ahrendt, G. J. Pace, and G. Schneider, “A unified approach for static
and runtime verification: Framework and applications,” in International
Symposium On Leveraging Applications of Formal Methods Verification
and Validation (ISOLA’12), 2012.

[13] K. Falzon and G. J. Pace, “Combining testing and runtime verification
techniques,” in International Workshop on Model-based Methodologies
for Pervasive and Embedded Software (MOMPES’12), ser. LNCS, 2012.

[14] J. Hughes, “Quickcheck testing for fun and profit,” in Practical Aspects
of Declarative Languages, ser. LNCS, 2007, vol. 4354, pp. 1–32.

[15] N. Decker, M. Leucker, and D. Thoma, “junitrv-adding runtime verifica-
tion to junit,” in NASA Formal Methods, ser. Lecture Notes in Computer
Science, vol. 7871. Springer, 2013, pp. 459–464.

