
Programming Compensations for System-Monitor
Synchronisation

Christian Colombo
Dept. of Computer Science

University of Malta
christian.colombo@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

ABSTRACT
In security-critical systems such as online establishments,
runtime analysis is crucial to detect and handle any unex-
pected behaviour. Due to resource-intensive operations car-
ried out by such systems, particularly during peak times,
synchronous monitoring is not always an option. Asyn-
chronous monitoring, on the other hand, would not compete
for system resources but might detect anomalies when the
system has progressed further, and it is already too late
to apply a remedy. A conciliatory approach is to apply
asynchronous monitoring but synchronising when there is
a high risk of a problem arising. Although this does not
solve the issue of problems arising when in asynchronous
mode, compensations have been shown to be useful to re-
store the system to a sane state when this occurs. In this
paper we propose a novel notation, compensating automata,
which enables the user to program the compensation logic
within the monitor, extending our earlier results by allow-
ing for richer compensation structures. This approach moves
the compensation closer to the violation information while
simultaneously relieving the system of the additional bur-
den.

1. INTRODUCTION AND BACKGROUND
Online systems handling large volumes of financial trans-
actions have become common: online betting and gaming,
payment gateways, online shopping, online banking, etc. Al-
though such systems go through heavy testing regimes, run-
time analysis remains crucial for detecting malicious user
behaviour such as fraud. Once users are detected to be
fraudulent, they can be stopped immediately from complet-
ing illegal activities. The downside is that detecting such
behavioural patterns is usually resource intensive. While
adding computing resources to meet the overheads might be
an option, we explore approaches which make better use of
available resources. On the one hand, online systems are
designed to cope with peak-time loads and thus valuable
resources might be lying idle during the rest of the time.
On the other hand, not all users pose the same risk level,
meaning that priority can be given for the analysis of high-
risk users over the rest of the users. To keep a close watch
on high-risk users while at the same time incurring as little
overhead penalty as possible, we have proposed a monitor-
ing architecture, cLarva[6, 5], which is able to synchronise
and desynchronise monitors depending on the perceived risk.
Thus, while monitors with associated high risk are executed
synchronously, consuming system resources, the majority of
the normal-risk monitors are run asynchronously — when

resources are otherwise lying idle.

The disadvantage of asynchronous monitoring is that by the
time the monitor detects a violation, the system would have
already progressed further. Considering the case of a fraud-
ulent user as an example, by the time the monitor detects
a fraud, the user might have already performed a number
of transactions. To this end we built means through which
the system can be resynchronised to the point at which the
monitor identified the violation. In cLarva, we have pro-
posed the use of compensations — actions which logically
undo particular actions when executed. For example, if a
user transfers money from a third-party bank account onto
his credit card, the compensation would entail the reverse
transfer minus a transfer charge. Note that the compensa-
tion need not be the exact inverse of the action it is meant
to “undo”. If the system monitor is running asynchronously,
and by the time the monitor identifies that the user is fraud-
ulent, the transfer has taken place, the compensation can be
used to restore the system to the state which occured at the
time of violation. The advantage of this approach is that
in the context of financial transactions, the compensations
are part-and-parcel of programming such transactions, com-
monly referred to as long-lived transactions.

Figure 1 depicts the current cLarva architecture where the
system sends events to the manager. If the manager is work-
ing in asynchronous mode (depending on the outcome of
dedicated heuristics), control is passed back immediately
to the system keeping the event in a buffer for later con-
sumption by the monitor. On the other hand, in case of
synchronous monitoring, the manager forwards the event to
the monitor and waits for monitor feedback which is relayed
to the system. If the monitor detects a violation, then the
system is stopped and the manager initiates the compen-
sation of the events remaining in the buffer, i.e. the events
which the system had carried out since the violation had
occurred.

To illustrate what happens when the monitor detects a vio-
lation in asynchronous mode, we use an example where the
system has sent the events a,b,c,d,e,f to the manager while
the monitor has only processed a,b,c and upon processing
d, it detects a problem. Note that at this point e and f are
still waiting to be processed in the manager buffer. To syn-
chronise the monitor and the system, e and f have to be
compensated for, for the system to revert back to the state
it was in when the problem occured. To this end the system

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OAR@UM

https://core.ac.uk/display/153558144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Monitoring System

System

 Manager

Events

Stop/Cont

Compensate

Events

Stop/Cont

HeuristicsDes Syn

 Monitor

Figure 1: The asynchronous architecture with com-
pensations cLarva.

is stopped and f, e are executed, representing the compen-
sations of f and e respectively. Once the system is back
to exactly after d occurred, any necessary corrective action
may take place.

While this architecture incorporates basic synchronisation
through compensations, it has a major shortcoming — it
assumes that all actions are compensable and that the com-
pensation of a particular action is the same no matter the
context. Clearly, this is not always the case. For example a
money transfer may be cancelled free of charge in the con-
text of a promotional offer while a percentage charge may be
incurred in the context of a normal transfer. Furthermore,
it might even be the case that under particular contexts a
particular action is not reversible (e.g. if the transfer took
place in the context of a shipped purchase order). As an
improvement over this näıve approach, we introduced the
notion of compensation scopes [5] such that once a scope
ends, activities within the scope can no longer be compen-
sated. While scopes make the architecture more realistic,
it still remains highly inflexible. For example there is no
way of expressing programmable compensations which en-
able the definition of a compensation for a whole scope; e.g.
if a purchase order has been shipped, a possible programmed
compensation would be to specify a new transaction which
ships back the order once it reaches its destination.

Another limitation of the existing approach is that it is not
possible to compensate for activities which occurred before
the point of violation detection. Note that even in the case of
synchronous monitoring, sometimes it is necessary to com-
pensate for activities which were allowed before a pattern
could be detected. For example in the case of a fraud, the
fraud might not have been detectable until the third suspi-
cious money transfer. In this case it would make sense to
reverse the previous two transfers as well once the user has
been detected as fraudulent. Referring back to the exam-
ple, this would correspond to the compensation of activities
a,b,c.

Moreover, in cLarva compensations are programmed and
executed by the system, introducing extra programming within
the system and potentially introducing bugs. Furthermore,
the system is not aware of why compensation is required and
thus eliminates the possibility of adapting compensations ac-
cording to the kind of violation that has been detected.

In this paper, we propose an improved cLarva architecture

which uses a flexible notation (see Section 3) enabling pro-
grammers to easily express compensations for activities in
an asynchronous monitoring setting. The new architecture
(see next section) allows programmed compensations and
the compensation of activities which occurred before the vi-
olation. A case study is presented in Section 4 to show how
the monitor can be programmed with compensation logic
and it can be used in realistic scenarios.

2. ENRICHING COMPENSATIONS FOR
MONITORING

The existing cLarva architecture is shown in Figure 1. It
has can signal the system to compensate for a sequence
of actions (the actions remaining in the buffer less scoped
actions). To allow more flexibility as regards the choice
of compensations, an architecture which has an additional
compensation management component within the monitor-
ing system is shown in Figure 2. This component receives
the system’s events (at the same time as the monitor), based
on which it dynamically manages which compensations are
to be executed if (and when) the monitor detects a prob-
lem. When the monitor identifies a problem, it signals the
compensation manager with a compensate signal followed by
the events remaining in the buffer. Once the compensation
manager has received and processed all the buffer events, it
receives the end of buffer signal (EOB), it starts signalling
the system to carry out the appropriate compensations.

Monitoring System

System
Heuristics

 Monitor

 Manager

Events

Stop/Cont

Events

Stop/Cont

Des Syn

Compensation
Manager

Compensation

Events Comp, EoB

Figure 2: The asynchronous architecture with the
compensation manager.

Note that unlike the previous architecture where there is a
fixed way to compensate for activities (the monitor simply
indicated which activities had to be compensated), the new
architecture enables an enriched notion of compensations by
delegating the decision to the compensation manager. Still,
the compensation manager requires a specification of how
to manage the compensations for a particular system. To
this end, we propose a specialised programming notation
which is focused on expressing automatic management of
compensations. Based on our experience with asynchronous
monitoring of real-life financial transactions [6], there are a
number of characteristics which the notation should support:

Explicit correspondence The notation should make the
correspondence between activities and their compen-
sations clear.

Automatic management Upon reaching an error state,
not only should compensations have been stored, but

it should also be clear which compensations should be
run and in which order. Thus, compensations should
be automatically stored during execution and auto-
matically activated upon reaching an error state.

Context-awareness The compensation of an activity varies
depending on the context in which the activity occurs.
For example if we are compensating a money transfer,
a fee is charged to the user account to cover the bank
charges involved. However, if the transfer originally
occurred in the context of a promotional offer, then
such a fee would be charged to the company account.

Support complex dependencies Properties of transaction-
based systems frequently revolve around life-cycles for
entities such as users and credit cards. Such life-cycles
usually involve complex intertwined logic which is very
naturally expressed in terms of unstructured notations
such as automata.

Scope management The current cLarva discards com-
pensations of scoped activities as soon as the end of
scope is reached. While it is true that various activities
can no longer be compensated once the end of scope is
reached, it is usually the case that the transaction as
a whole might be compensated for in a different way.
For example, once a purchase has been carried out, the
activities might not be individually compensable (e.g.
shipping cannot be reversed). However, the purchase
as a whole might be compensable in terms of another
transaction which ships the purchased goods back to
the seller.

Alternative Another desirable characteristic of a compen-
sation notation is to be able to specify alternative be-
haviour in case some behaviour fails. For example
consider a failed money transfer in the context of a
purchase. If the transfer fails, it might appropriate to
retry it some time later rather than proceeding to com-
pensate for the whole purchase transaction. Thus, the
“alternative” mechanism would provide the possibility
of stopping compensation execution (e.g. of the pur-
chase) and continuing with “normal” behaviour (e.g.
retrying the transfer).

There is much literature on notations supporting compensa-
tions [4] including flow languages [2, 3], process algebras [7,
9], automata [8] and pictorial representations [1]. Consider-
ing the desirable characteristic of an unstructured notation
only the latter two (automata [8] and BPMN [1]) are poten-
tial candidates. However, in [8], the unstructured nature of
automata is only used to encode compensation patterns (in-
deed, compensations are not first class elements of these au-
tomata) while the programmer is limited to using a number
of patterns to program transactions with compensations. As
regards BPMN, the language is a generic language for busi-
ness modelling which goes way beyond our need of a concise
compensation-centred notation.

Based on these observations, we propose compensating au-
tomata in which compensations are first class elements and
provide automatic activation of compensations. The next
section gives examples showing how compensating automata
can be used to model realistic scenarios involving compen-
sations.

3. COMPENSATING AUTOMATA
To illustrate the suitability of compensating automata for
expressing systems with compensations, we use examples
based on our experience on real-life financial transactions
control systems. Consider a simplified system which allows
users to login, load money from their bank accounts onto
their cards, transfer money from one card to another, and
use their money to pay third parties for purchases. These
activities (except logging in) must all have corresponding
banking transactions — unless the actions succeed at the
bank (externally), the system cannot proceed (internally).

Money load transaction Consider the load procedure (Fig-
ure 3), consisting of three activities which are expected
to be carried out in sequence: decrease an external ac-
count balance, increase external card balance, increase
internal actual and available balances. Each of these
activities have a corresponding compensation (the sec-
ond label on each transition). If all the activities suc-
ceed, then the success state is reached (the state with
the dot). Otherwise, if something goes wrong along
the way, the error state is reached (the state with a
cross). In this case, we must also reverse the success-
ful parts of the load. This is automatically handled
by the compensating automaton which keeps track of
the sequence of compensating activities of traversed
transitions. For example, if attempting to increase the
internal balances fails, then the external card balance
should be decreased to its original amount and the ex-
ternal account balance should be increased, charging
a fee to cover bank charges. Through this example
we show that compensating automata provide a clear
correspondence between activities and their compen-
sations while they automatically maintain and activate
compensations.

fail

dec−ext−acc

/inc−ext−acc−fee
inc−int−acc−bals

/dec−int−acc−bals

trans−refused

trans−refused

inc−crd−bal

/dec−crd−bal

Figure 3: A compensating automaton modelling a
load transaction.

Purchase transaction Identical activities may have dif-
ferent compensations depending on their context. For
example in a purchase transaction (see Figure 4), the
compensation for decreasing the external available bal-
ance does not entail a fee as in the case of the load.
The rationale is that for a purchase the user would
have already paid a commission and the cancellation
of the purchase might arise from the seller’s and not the
buyer’s side. Furthermore, note that after the settle-
ment is received, control goes through a compensation
deviation. Intuitively, this means that an alternative
path of execution is provided in case of reaching the
error state later on. In this case, if a failure occurs
after the settlement had been received (a highly un-
likely event), then, instead of compensating further,
the operator is notified of the issue. Therefore, if an
error state is reached after successfully decreasing the

actual card balance, the latter is compensated but sub-
sequently, instead of executing other compensations,
the operator is notified to rectify the situation.

 not−opr

/inc−crd−avl−bal
dec−crd−act−bal

/inc−crd−act−bal

dec−int−act−bal
/inc−int−act−bal

dec−int−avl−bal
/inc−int−avl−bal rec−settl

user−canc, fail

 fail

user−canc, fail

user−canc, fail

dec−crd−avl−bal

Figure 4: A compensating automaton modelling a
purchase transaction.

User life-cycle Life-cycle properties are common in trans-
action systems. In this case, we are essentially moni-
toring a user session cycle from login till logout. Fig-
ure 5 shows a property which also includes the previ-
ous two example properties as nested automata (not
fully shown in the diagram). Note that each nested
automaton may have another automaton as its com-
pensation. This is depicted as an automaton in the
bottom half of a state with nested automata. For ex-
ample the compensation of money loading is to freeze
the card involved. The reason for choosing not to re-
verse the load is that the involved money might be
the result of a fraud and would be needed for inves-
tigation purposes. The approach is similar for money
transfer but two (source and destination) cards have
to be frozen in this case. For a purchase, we assume
that there is no compensation to carry out once it has
completed.

Purch

frz−crd

/logout
login

purch

load

trans logout

frz−crd1 frz−crd2

repeat

Load

Trans

Figure 5: A compensating automaton modelling the
user life-cycle.

While expressing compensations as shown above can be use-
ful for specifying systems with compensations, our main aim
is to use these specifications to synchronise a system with a
monitor upon a late violation detection. The next section
explains how compensating automata can be integrated with
cLarva.

4. INTEGRATING COMPENSATING
AUTOMATA IN CLARVA

As shown in the proposed architecture (Figure 2), the com-
pensation manager receives two dedicated signals from the
main manager (apart from events): compensate and end of
buffer (EoB). The former indicates that the monitor has
detected a problem while the latter indicates that the sys-
tem has stopped (i.e. no more system events will be forth-
coming) and is waiting to receive compensation instructions.
These two signals are crucial in deciding the compensations
to be executed. In what follows, we give two examples to
show how these signals can be used within compensating
automata to program the compensation manager.

Excessive loads Figure 6 shows a compensating automa-
ton which accumulates compensations for a sequence
of money loads following the receipt of the comp signal
from the monitor. Note that the automaton is essen-
tially a part of the user life-cycle automaton (of Fig-
ure 5) which ignores all activities except money loads.
When the monitor detects that the limit of money
loading has been violated, the compensation manager
would receive the comp signal and starts accumulating
compensation while consuming the events remaining
in the buffer. Upon receiving the EoB signal, i.e. all
events in the buffer have been processed, the compen-
sating automaton would reach an error state (note that
all states lead to an error state upon an EoB signal).
At this point, the compensation manager starts exe-
cuting the accumulated compensation — reversing all
the loads which contributed to the excess. It is signif-
icant that the compensation in this case is the reverse
of a load while in the life-cycle example it consisted of
freezing the card. The reason for this choice is that the
life-cycle example is intended to accumulate compen-
sations for fraud detection while in this example we
are interested in simply reversing any loads through
which a user exceeded the stipulated limit.

Rev−Load

Load
comp load

EoB

repeat

EoB

EoB

Figure 6: A load compensation automaton which
listens for the comp and EoB signals.

User life-cycle Figure 7 shows how the payment gateway
life-cycle example can be incorporated into the com-
pensation manager. There are three main modifica-
tions from the specification shown in Figure 5:

• While going through each life-cycle activity, the
automaton listens for the EoB signal. If such a
signal is received then the automaton reaches an
error state and starts compensating.

• After user logout, the compensation monitor does
not go into a successful final state, but instead
waits for a possible EoB signal. The reason for
this decision is that since we are trying to detect
fraudulent users, then, any activity carried out
by such user should be compensated whether or

not such activities occurred after the monitor de-
tected that the user is fraudulent. For this reason,
the compensate signal is ignored in this example
since the point at which the monitor detects the
problem is irrelevant to the resulting compensa-
tion.

• Upon taking the logout transition, a deviation is
traversed which denotes that compensation should
be stopped at that point. Through this feature
the compensating automaton would suggest that,
since the user has logged out, instead of going
through all of the compensations, it would be suf-
ficient to freeze the user’s account.

Load

frz−crd

/logout
login

purch

load

trans logout

frz−crd1 frz−crd2

EoB
EoB

frz−usr

repeat

EoB

EoB

Trans

Purch

Figure 7: A modified user life-cycle automaton
which listens for the EoB signal.

5. CONCLUSIONS AND FUTURE WORK
Monitoring asynchronously is particularly convenient for check-
ing systems with peak-load periods during which resources
cannot be compromised. However, asynchronous monitor-
ing would usually delay the detection of violations and thus
limits the possibility of the monitor taking any corrective
action. To this end, we have presented compensating au-
tomata which enable a user to specify to the monitoring
architecture how to effectively synchronise the system with
the monitor. This approach enables the monitor to gener-
ally run asynchronously whilst switching to synchrony when
there is a high probability of violation detection. Compen-
sating automata facilitate the specification of rich compen-
sation notions such as context-sensitive compensations, pro-
grammable scope compensations and the specification of al-
ternative behaviour in case of failure.

To showcase compensating automata, we have presented re-
alistic examples of a system handling financial transactions
whereupon the monitor detecting a violation, the compen-
sation manager automatically executes appropriate compen-
sation. Admittedly, we have only discussed the semantics of
compensating automata informally in this paper. In view
that such automata will be used for monitoring purposes,
we are currently looking at their formal semantics and prov-
ing them sound.

Using compensating automata, we have delegated the com-
pensation logic for system-monitor synchronisation to the
monitor (rather than the system). In the future, we aim to
take this approach further and explore monitoring-oriented
compensation programming where compensations (not only
those used for monitor synchronisation) can be programmed

independently of a system’s logic, delegating the choice of
compensations to a monitor. This would alleviate the sys-
tem code from catering for compensations, while gaining
more confidence that compensations are programmed cor-
rectly due to the use of a formal notation.

6. REFERENCES
[1] Business process model and notation, v2.0, 2011.

Available at:
http://www.omg.org/spec/BPMN/2.0/PDF/ (Last
accessed: 2012-01-7).

[2] R. Bruni, H. Melgratti, and U. Montanari. Theoretical
foundations for compensations in flow composition
languages. In Principles of programming languages
(POPL), pages 209–220. ACM, 2005.

[3] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace
semantics for long-running transactions. In 25 Years
Communicating Sequential Processes, Lecture Notes in
Computer Science, pages 133–150. Springer, 2004.

[4] C. Colombo and G. Pace. Recovery within long running
transactions. ACM Computing Surveys, 2012. to
appear.

[5] C. Colombo and G. J. Pace. Safer asynchronous
runtime monitoring using compensations. Formal
Methods in System Design, 2012. to appear.

[6] C. Colombo, G. J. Pace, and P. Abela.
Compensation-aware runtime monitoring. In Runtime
Verification (RV), volume 6418 of Lecture Notes in
Computer Science, pages 214–228. Springer, 2010.

[7] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and
G. Zavattaro. SOCK: A calculus for service oriented
computing. In International Conference on
Service-Oriented Computing (ICSOC), volume 4294 of
Lecture Notes in Computer Science, pages 327–338.
Springer, 2006.

[8] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and
A. Troina. Modeling long-running transactions with
communicating hierarchical timed automata. In Formal
Methods for Open Object-Based Distributed Systems
(FMOODS), volume 4037 of Lecture Notes in
Computer Science, pages 108–122. Springer, 2006.

[9] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for
orchestration of web services. In Programming
Languages and Systems (ESOP), volume 4421 of
Lecture Notes in Computer Science, pages 33–47.
Springer, 2007.

