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Nonbonding Orbitals in Fullerenes: Nuts and Cores in Singular Polyhedral Graphs
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A zero eigenvalue in the spectrum of the adjacency matrix of the graph representing an unsaturated carbon
framework indicates the presence of a nonbondiraybital (NBO). A graph with at least one zero in the
spectrum isingular, nonzero entries in the corresponding zero-eigenvalue eigenveckan(sgleigenvectors)

identify the core vertices. Anut graph has a single zero in its adjacency spectrum with a corresponding
eigenvector for which all vertices lie in the cof®alancedand uniform trivalent (cubic) nut graphs are
defined in terms of €2, +1, +1) patterns of eigenvector entries around all vertices. In balanced nut graphs
all vertices have such a pattern up to a scale factor; uniform nut graphs are balanced with scale factor one
for every vertex. Nut graphs are rare among small fullerenes (41 of the 10 190 782 fullerene isomers on up
to 120 vertices) but common among the small trivalent polyhedra (62 043 of the 398 383 nonbipartite
polyhedra on up to 24 vertices). Two constructions are described, one that is conjectured to yield an infinite
series of uniform nut fullerenes, and another that is conjectured to yield an infinite series of cubic polyhedral
nut graphs. All hypothetical nut fullerenes found so far have some pentagon adjacencies: it is proved that
all uniform nut fullerenes must have such adjacencies and that the NBO is totally symmetric in all balanced
nut fullerenes. A single electron placed in the NBO of a uniform nut fullerene gives a spin density distribution
with the smallest possible (4:1) ratio between most and least populated sites for an NBO. It is observed
that, in all nut-fullerene graphs found so far, occupation of the NBO would require the fullerene to carry at
least 3 negative charges, whereas in most carbon cages based on small nut cubic polyhedra, the NBO would
be the highest occupied molecular orbital (HOMO) for the uncharged system.

1. INTRODUCTION as they represent cases where the molecule (with some
particular total charge) would be predicted to tolerate both
removal and addition of electrons, and the form of the NBO
then gives information about the spin distribution in the
derived radicals. From this point of view, the NBO is of
most interest when it is either the HOMO or the LUMO of

a fullerene with small or zero total charge. In the chemical
context? the presence of NBOs in some fullerenes and related
polyhedra has been rationalized by relating the orbital
patterns to the four basic nonbonding combinations on the

Graph theory gives tools for the classification of the
structures and electronic properties of the all-carbon fullerene
molecules, G In particular, diagonalization of the adjacency
matrix yieldszr orbital energies (eigenvalues) andnolec-
ular orbitals (eigenvectors) within the kel approximations,
from which chemically useful conclusions may often be
drawn. For example, Hikel theory predicts the characteristic
electron deficiency of the typical fullereheand gives
systematic rules for the occurrence among the fullerenes of . . S . . .
properly closed-shelt configurations (those with bonding graphite sheet, in a pictorial version of the zqne-foldmg
highest occupied molecular orbital (HOMO) and antibonding argument used for nanotubes and polyhextori.
or nonbonding lowest unoccupied molecular orbital (LU- In a mathematical context, an equivalent question has been
MO).2 Closed shells of this type are rare among the smaller Posed about arbitrary graph$Which particular structural
fullerenes: fom < 112 the known closed shells are confined features does a singular graph possess? Graphs with exactly
to 35 leapfrog and 3 cylindrical isomérgut of 4 032 334 one zero eigenvalue & were considered firstas for this

fullerenes, of which 8093 have disjoint pentagdn&or n case there is no masking of the effect of one eigenvector by
> 112, a third sparse class, the so-caligmbradic closed another in the same eigenspace. Graphs of this kind for which
shells, also appeafs. the eigenvector corresponding to the zero eigenvalue (the

Also comparatively rare are fullerenes with one or more kernelvector) has no zero entries aret graphs For graphs
exactly nonbonding orbitals (NBO), i.e., with one or more with more than one zero eigenvalue, it was concluded that,
zero eigenvalues of the adjacency mafixA fullerene, or in a basis where the total number of nonzero entries of the
any graph, with at least one zero eigenvalue is said to bebasis vectors is a minimum, the vectors determine specific
singular. Nonbonding orbitals in generally electron-deficient Subgraphsrfinimal configurations This earlier work on

molecules such as fullerenes are of direct chemical interestarbitrary graphs prompted the present study of the nullity
properties of some polyhedral chemical graphs, in which the

* Corresponding author e-mail: P.W.Fowler@sheffield.ac.uk. guestions addressed are as follows: (1) Can fullerenes and
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Table 1. Singular Fullerenes for n < 120 with Pentagon Adjacencies, Listed by Nullifyand Labeled by Their Place in Full Spiral

Lexicographic Ordér

20:1(9¢)

24:1(13¢)
42:45(22)
60:1374(31)
72:11182(37%)
96:65052(4%;)

28:1(15,16)
40:39(22,20)
44:75(23,24)
50:43(27,28)
52:435(28,32)
60:1247(32,52)
62:1799(32,44)
68:78(36,24%)
68:6015(36,48)
76:8871(39,64)
80:168(42,28*)
84:1064(44,52)
86:46893(45,60)
88:25976(46,60)
92:1623(48,56)
92:59039(48,62)
96:170895(50,94)
98:19394(51,34%)
100:282237(52,80)
104:401317(54,36%)
108:592297(56,106)
110:38292(57,38%)
110:691942(57,38%)
116:4675(60,72)
116:53462(60,40%)

36:5(19¢)
44:72(23)
60:1784(31)
74:2(38)
108:161702(5%)

32:5(18,12%)
44:13(24,16%)
44:83(24,32)
50:157(27,18%)
56:35(30,20%)
60:1782(32,48)
64:70(34,58)
68:405(36,40)
68:6140(36,36)
76:8879(40,64)
80:3246(42,28%)
84:7375(44,52)
84:51545(44,64)
88:81605(46,72)
92:7044(48,32%)
92:125179(48,72)
96:171222(50,90)
98:221835(51,76)
104:559(54,36*)
104:401325(54,36%)
110:19095(57,38%)
110:155290(57,78)
112:815346(58,96)
116:4679(60,72)
116:54322(60,40%)

n=4

n=2
36:13(19)
44:80(23)
68:2189(35)
84:22660(48)
110:3(56)
n=1
36:9(20,20)
44:24(24,24)
48:160(25,44)
52:376(28,46)
56:393(30,20%)
60:1805(32,40)
64:1268(34,48)
68:409(36,40)
68:6331(36,24*)
76:12651(40,48)
80:5306(42,28%)
84:18295(43,68)
86:47231(45,60)
90:536(47,72)
92:13153(48,32%)
92:126025(48,32%)
96:187896(50,72)
98:226396(51,34*)
104:14414(54,36*)
106:9071(55,80)
110:36041(57,38%)
110:625591(57,76)
112:840551(58,84)
116:27417(60,40%)
116:56855(60,40*)

36:15(18)
48:189(85,

72:6414(30),
86:20964(44)

120:362261(64),

38:12(20,24)
44:55(23,32)
48:175(26,44)
52:431(28,32)
58:1137(30,30)
60:1810(31,40)
64:1801(33,58)
68:1158(36,24%)
74:1979(39,26%)
76:19143(40,52)
80:31908(41,78)
86:4586(45,30%)
86:63338(45,48)
90:82841(47,82)
92:13188(48,32%)
92:126154(48,62)
98:9622(51,34%)
100:112387(52,64)
104:30233(54,36%)
106:467835(55,60)
110:36076(57,38%)
110:625628(57,76)
112:856010(58,92)
116:50288(60,40%)
116:60468(60,40%)

38:2(20)

56:3(29)

72:8049(37)
92:3(47)

40:38(22,24)
44:61(23,38)
48:186(26,24)
52:432(28,32)
60:221(32,36)
62:629(33,22%)
64:3331(34,60)
68:1980(36,64)
74:2962(39,26%)
78:23791(40,48)
82:37768(43,48)
86:18225(45,60)
86:63512(45,30%)
92:304(48,32%)
92:13426(48,32*)
92:126311(48,32%)
98:18465(51,34%)
100:112388(52,64)
104:398924(54,36*)
108:3318(56,68)
110:37610(57,38%)
110:681160(57,76)
116:923(60,40)
116:52313(60,40%)
116:704703(59,112)

116:1143730(60,40%) 116:1195823(60,72)

@ Nut fullerenes also havg = 1 but are listed separately (Table 3). Fpr 1, the number in parenthesespis the number of strictly positive
eigenvalues in the adjacency spectrum, and a symldicates that the fullerene is a core; fip= 1, the first number i9., and the second is
the number of nonzero entries in the null eigenvector, marked by a star in cases where the core is an independent set.

; ; ~ Table 2. Isolated-Pentagon Singular Fullerenesf@ n < 150
Ozthz.CheTr:C?lth relevan:]trlvalent p0|yhedrtar'] be nuttgraphi. Listed by Nullity » and Labeled by Their Place in Isolated-Pentagon
(2) Given that they can, how common are these nut grap S.Spiral Lexicographic Order

and how can they be constructed?

Some of the mathematical aspects of these questions have n=3
been considered elsewhéfHere we consider the chemical 84:24(42)
description and implications of these questions about nullity 70:1(35,40) 87‘7;6%43 64) 04:134(48,54)
in fullerenes and related objects. 100:1(50,60) 100:438(52,96) 104:822(54,60)
To answer these questions, graphs for generat C 104:823(54,60) 110:518(56,72) 120:10606(60,72)

fullerenes f < 120), isolated-pentagon (IP),Efullerenes
(n < 150), and trivalent polyhedra (< 24) were generated
using the spiral aIgor_itth‘or the fullerenes .and the plantr aNo nut fullerenes are found within this set. FppF 1, the number
prograni® _for small trlval_ent p.olyhedr.a. Ad]acency SPeCtra in parentheses ig;, the number of strictly posiﬁve eigénvalues in the
were obtained by numerical diagonalization of the adjacency adjacency spectrum; for = 1, the first number i;, and the second
matrix for each graph, and where singular graphs were found,is the number of nonzero entries in the null eigenvector.
the eigenvector(s) with zero eigenvalue were analyzed for
various patterns in the signs and magnitudes of their entries.fullerenes and show that some of them are indeed nut graphs.
Material obtained from these computer searches is collectedWe give some statistics and observations on singular and
in Tables -4 toward the middle and end of the paper, but nut graphs among the,Efullerenes fom < 120, fullerenes
specific examples are sometimes quoted in advance or showrwith isolated pentagons for < 150 (in section 3), and the
in earlier figures, in order to help with the introduction of cubic polyhedral graphs far < 24 (section 4). For example,
the various concepts. by inspecting the kernel eigenvector entries, we identify three
The structure of the paper is as follows. First, section 2 classes of nut graphs. For two of them we find regularities
recalls definitions and notation, makes the connection in vertex count. For one class we find a method of
between molecules and graphs, and defines the substructuresonstructing infinite series of conjectural fullerene nut graphs.
(minimal configuration, core, periphery) that go to make up In the section on nut graphs based on the more general
a singular graph. In section 3, we investigate singular singular cubic polyhedra (section 4), another construction is

130:1(65,80)
140:75226(72,84)

130:37423(66,78)
144:71038(74,96)

136:18743(69,96)
148:268934(76,120)
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Table 3. Nut Fullerenes gfor n < 120

isomern:m 2 p+ r uniform? N,
36:14 D 1 2 4 7 9 10 12 13 14 16 18 20 20 & u(2) 12
42:12t G 1 2 3 4 7 11 16 18 19 20 21 22 22 & N (10) 12
44:14 C 1 2 3 4 7 11 14 18 21 22 23 24 24 a N (14) 14
48:16 D2 1 2 3 4 7 10 18 21 23 24 25 26 26 a u(2) 14
48:169 D, 1 2 4 7 9 13 17 19 21 23 25 26 26 a B (3) 8
52:313 Dy 1 2 3 10 14 15 18 19 21 23 27 28 28 b N (8) 12
52:335  C 1 2 4 7 9 13 19 20 23 24 25 27 28 b N (32) 7
60:43 D 1 2 3 4 7 10 23 26 29 30 31 32 32 a u(2) 14

60:1169 C; 1 2 4 7 9 19 22 23 26 28 29 32 32 a N (15) 7
60:1196 D2 1 2 4 7 10 14 20 24 27 30 31 32 32 a u(2) 10
60:1197 D3 1 2 4 7 10 14 25 26 28 29 30 32 32 a u@) 10
60:12791 G 1 2 4 7 12 16 18 22 25 28 31 32 31 a N (5) 6
60:1621 D3 1 2 4 12 13 14 18 25 26 28 30 32 32 a u@) 8

72:97 D 1 2 3 4 7 10 29 32 35 36 37 38 38 a u(2) 14
72:9897 Dy 1 2 4 15 18 22 23 26 29 30 32 35 38 a u(2) 8
82:25969 C; 1 2 4 12 19 26 28 31 34 35 36 39 43 a N (72) 4
84:197 D> 1 2 3 4 7 10 36 39 41 42 43 44 44 a U(2) 14
84:19272 D, 1 2 4 7 10 14 33 36 37 40 42 44 44 a u@) 10
84:22788 D 1 2 4 8 11 12 31 39 40 42 43 44 44 a u(2) 10
84:28619 Do 1 2 4 12 13 14 34 35 36 40 43 44 44 a4 u@) 8
84:28620 D 1 2 4 12 13 14 34 36 40 41 43 44 44 gy u(2) 8
84:38210 D 1 2 4 15 21 26 32 33 37 39 40 41 44 @« u(2) 8
84:41799 D 1 2 4 18 22 23 28 29 33 36 37 44 44 a u(2) 8
84:51548 Doy 1 2 12 17 19 21 25 27 34 39 42 44 44 a4 N (8) 2
96:367 D 1 2 3 4 7 10 41 44 47 48 49 50 50 a u(2) 14

96:114148 D 1 2 4 15 26 31 38 43 44 46 47 48 50 a u(2) 8

96:134237 D 1 2 4 22 23 28 34 39 40 43 49 50 50 a u(2) 8

96:137750 Doy 1 2 4 28 32 36 37 38 41 42 46 a7 50 a u@) 8

96:139895 D 1 2 7 23 24 25 30 31 32 44 48 50 50 a u(2) 8

108:634 Dy 1 2 3 4 7 10 47 50 53 54 55 56 56 a u(2) 14

108:140651 D 1 2 4 7 10 14 44 48 51 54 55 56 56 a u(2) 10

108:140652 D, 1 2 4 7 10 14 49 50 52 53 54 56 56 a u(2) 10

108:202011 D 1 2 4 12 13 14 43 49 50 52 54 56 56 a u(2) 8

108:277775 D 1 2 4 15 26 34 38 42 46 52 53 55 56 a u(2) 8

108:337625 D 1 2 4 18 28 29 34 45 48 49 50 54 56 a u(2) 8

108:345562 Dy 1 2 4 22 23 34 39 42 43 44 50 51 56 a u(2) 8

120:1069 D; 1 2 3 4 7 10 54 57 59 60 61 62 62 a u(2) 14

120:603082 D> 1 2 4 15 26 38 45 52 56 57 61 62 62 a u(2) 8

120:756134 D, 1 2 4 18 28 29 46 47 48 59 60 61 62 a u(2) 8

120:779562 Dy 1 2 4 22 23 34 42 50 53 54 60 62 62 a u(2) 8

120:1653993 Dy 1 2 19 22 26 29 35 38 42 45 59 62 62 & N(5) 4

alsomers are labeled by position in full spiral lexicographic order, point graup, pentagon positions in the face spiral, number of strictly
positive eigenvaluesp(), irreducible representation of the unique zero eigenvedtpraharacterization as uniform (U), balanced (B), or neither
(N), with numbers of distinct eigenvector entries, and number of pentagon adjaceMgiedefo is eigenvalue/2 + 2 in the two cases marked
T, otherwisen/2 + 3.

Table 4. Statistics for Singular Trivalent Polyhedra with< 24 Vertices

n=1

n polyhedra bipartite n=0 all nuts=U+ B+ N 2 3 4 5

4 1 0 0 0 0 0 0 0 o0

6 1 0 1 0 0 1(0) 0 0 0

8 2 1 0 0 0 0 0 0 o0
10 5 0 1 1 0 0 0 0 0
12 14 1 11 2 2=2+0+0 7(0) 0 21) o0
14 50 1 8 7 0 1(0) 0 0 o0
16 233 2 70 67 0 1(0) 2 0 0
18 1249 2 613 322 285 235+ 38+ 12 280(1) 1 1000 O
20 7595 8 1225 1123 0 99(1) 2 1 0
22 49 566 8 11330 10548 0 623(3) 158 100 O
24 339 722 32 120628 81127 620435632+ 14022+12389  37567(10) 945  987(20) 2

given for an open-ended series of non-fullerene nut or core 2. DEFINITIONS

graphs. We end (section 5) by commenting on the relevance

of these results to the chemistry of fullerenes. In the 2.1. Graphs.A graphG(7; &) having a vertex set’(G)
appropriate charge state, a nut-graph fullerene with a half- = {v1, v2, ..., v} and a set” of m(G) edges joining distinct
occupied NBO would be predicted to have nonzero spin pairs of vertices is said to be ofder n(G) (= n) andsize
density at all sites and so would have markedly different m(G) (= m). The valencyof a vertexv is the number of
reactivity from the more usual types of radical, where the edges incident te. A p-regular graph is one for which the
spin density at some sites vanishes. valency isp for each vertex; a 3-regular graph is known as
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Figure 1. Stages in the idealization of an unsaturated molecule as
a graph (left to right) from a molecular structure as illustrated for )
benzene, tor system, to graph. @ (ii) (iii) (@iv)

Figure 2. lllustrations of the possible types of electronic config-
cubic in mathematics anttivalentin chemistry. A subset  uration in ax system. Shown, left to right, are the positions with
of 7’is said to beindependentn G if there are no edges  'eSpect to the nonbonding level € a, 1 = 0) of the eigenvalues

S . o : . at positiong/2 andn/2 + 1 in open, properly closed, pseudoclosed,
joining pairs of distinct vertices; thedependence number and meta-closed shells. In the properly closed shell, eigenvalue

o(G) is the maximum order of such a subset. A subset'of 2 41 may be either antibonding as shown or strictly nonbonding.
taken together with those edgesadrthat join members of

this subset, defines anduced subgrapbf G. Thecomplete  orhital on that center to the delocalized MO. The eigenvalue
graphK, hasn vertices and an edge between every pair of /1 corresponding ta gives the energy of thex MO through

distinct vertices. Theycle G, hasn vertices, is connected, = o + A wherea is the Coulomb integral (measuring

and the valency of each vertex is two. The gré&i(X, Y, ¢) the energy of ar electron h a p orbital on an isolated C

is bipartite if there is a partition of its vertex set into disjoint  center) andf is the resonance integral (measuring the

setsX andY such that each edge ijoins a vertex ofX to strength ofr interaction between two-bonded neighboring

a vertex ofY. C centers). Botloe and 5 are negative (binding) energies,
2.2. Chemical Graphs.In a molecular graph of an all-  and so/ can be taken as a dimensionless indicator of the

carbon or hydrocarbon system, vertices stand for unsaturatedO energy, with positivel denoting bonding.
C atoms and so have valency at most three, and edges stand |f the eigenvalues oA are arranged in nonincreasing order,
for the underlying carboncarbono bonds (Figure 1). two of particular interest are those of the HOMO (highest
A fullereneis an all-carbon molecule which, like polycy-  occupied molecular orbital) and LUMO (lowest unoccupied
clic aromatic hydrocarbons and graphite, is built of-sp molecular orbital), which for an uncharged system with
hybridized atoms, linked by bonds, each carbon center centers (whera is even) and hence with z-electrons, are
donating one electron and one atomic p orbital to an those occurring at positiong2 andn/2 + 1 in the order of
unsaturatedr system. The molecular graph of a fullerene is  eigenvalues, respectively. Their importance lies in the
cubic and has a planar embedding. In 3D it can be realizedsignificance of a nonzero HOMELUMO gap as an indica-
as a pseudospherical polyhedral framework, its faces consisttor of kinetic stability and of the sum of eigenvalues up to
ing of pentagons and hexagons only, each C atom forming and including the HOMO as an indicator of totalenergy
o bonds to three nearest neighbors. From the Euler relationand hence thermodynamic stability.
for spherical polyhedra, it follows that a fullerene has exactly  Positive eigenvalues correspond to bonding and negative
12 pentagonal faces and has an even number of C atoms, eigenvalues to antibonding orbitals, and each orbital has a
= 20+ 2h, whereh is the number of hexagonal facds= maximum capacity of two electrons. Electrons are assigned
0 or h > 1! Fullerenes are denoted by their chemical to orbitals in decreasing order of bonding energy (the Aufbau
formula G, and, when it is necessary to distinguish between Principle), up to two electrons per orbital (the Pauli Exclusion
isomers, by their place in the order of generation by the spiral Principle), adding the second electron to any one orbital only
algorithm? so that, e.g., &:5 is the fifth isomer in the set  after all others at that energy have received at least one
of six possible fullerenes on 32 vertices. (Depending on electron (Hund’s Rule of Maximum Multiplicity). Fullerene
context, the ordering used may be the full spiral order of 5 configurations are classified as follows (see Figuré[2).
general fullerene isomers, or the order of isolated-pentagonthe eigenvalues,, and 1,+1 are equal, then the configu-
fullerenes only, so that, e.g., the experimental isomeregf C  ration isopen-shel(case (i)). If, converselyl, is strictly
in the isolated-pentagon series known asC may also be  greater tham,.+1, then three possibilities arise. X has
referred to as €2:1812 in the context of general fullerenes.) exactlyn/2 positive eigenvalues,y, > 0, Ay2+1 < 0, then

Theadjacency matriXA(G) (or simplyA) of a graphG is the neutral carbon framework haspeoperly closed-shell
ann x n symmetric matrix §;] such thata; = 1 if i and] configurationin which all n/2 bonding orbitals are doubly
are connected by an edge and 0 otherwise. This desd&ibes occupied (case (ii)). flwz > Anz+1 > 0, then the neutral
completely (up to isomorphism). A graph is singular if carbon framework has g@seudoclosedshell where all
A(G) has an eigenvalue zero. There exj$6) (or simply electrons are in doubly occupied orbitals, but some bonding
n) linearly independent nonzero vectaxs called kernel orbitals are still empty (case (iii)). The final possibility 20
eigenvectorsin the nullspaces, of A, satisfyingAx = 0. An2 > Anot1, IS the meta-closedshell, where all electrons
The multiplicity (in chemical language, the degeneragy) are in doubly occupied orbitals of which some are nonbond-
of the zero eigenvalue oA(G) is the nullity of A and ing or even antibonding (case (iv)). Meta-closed shells have
corresponds to the number of NBO predicted iricki not so far been encountered for neutral fullerenes, although

Theory for thex system of the molecule with molecular open shells with partial occupation of formally antibonding
graphG. The rank of G, denoted byr(G), is the rank of orbitals are predicted for some large tetrahedrally symmetric
A(G), which isn(G) — 5(G). fullerene graph&?

Each eigenvectox corresponds in Hekel Theory? to a 2.3. Singular Graphs.A graphG is acore graphif G is
m molecular orbital (MO) of the carbon framework, with a singular graph of nullity at least one, having a kernel
the entry on vertex giving the contribution of the local p  eigenvector with each entry being nonzero.
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0

+a -a
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Figure 3. The path on three vertices is the smallest connected
singular graph. Entries in the uniqgue nonbonding eigenvector are
shown next to the corresponding vertex, and core vertices are
denoted by circles, the single periphery vertex by a dot. In this
case,F, = 2K;.

-1

0 0 -1

+1 0 +1

n=2 n=1
Figure 4. The cycleC, is a core of nullity 2 (with the two
independent kernel vectors as shown). The minimal configuration

is obtained by adding a single vertex to yield a graph of nullity 1,
retaining the nonzero entries of the core in the kernel eigenvector.

0 +1

+1

Let xo be a kernel eigenvector of a singular graplof
ordern > 3. A subgraph ofG induced by the vertices
corresponding to the nonzero entriexgfs acore Ko with
respect toxo. In the literature, the core is sometimes called
the ‘support’ of the kernel eigenvector and can also be
denoted byF,, wherep is the number of vertices of the core,
called thecore order

A singular graphG of ordern = 3, having core~, and
periphery 2 := 7/(G) — 7/(Fp), is said to be aminimal
configuration, of core order p if the following three
conditions are all satisfied: (5 is singular, with nullity
one: 17(G) = 1, (ii) the periphery is either empty or is a set
of pairwise nonadjacent vertice$’| = 0 (no vertices) or
“induces a graph with no edges, and (4ijFp) = 1 +
| 2.

This three-stage definition is motivated by the wish to
construct extensions of a core graph that will progressively
reduce the nullity and will ultimately result in a connected
graph of nullity one.

Vertices that carry a zero entry all kernel eigenvectors
are said to beore-forbiddeni.e., there is no core db that
contains any of these vertices.7if= 1 the core-forbidden
vertices are simply those of the periphery. In chemical terms,

core-forbidden vertices are those C centers that do not acquire

extra charge from occupation of the complete set of non-
bonding orbitals. Figure 3 shows the smallest singular
connected graph, the path on three vertices, which in
chemical terms is a model for the allyl radical, and illustrates
the core and periphery for this simple case. Figure 4 shows
an example of how a core (in this case, the cycle on four
vertices) may be extended to a minimal configuration by
adding a vertex of”.

It may be possible to extend a given cd¥gto one or
more distinct minimal configurations by drawing edges to
vertices of the core from a periphery consisting of indepen-
dent vertice$.1t is an open question whether extension to a
minimal configuration of any given core can always be made.

Some remarks following from the definitions are as
follows:® (a) A minimal configuration is always connected
and can be considered to be a graph of nullity one with a
minimal number of edges and vertices f@r** (b) The core
of a graph of nullity one is unique, although there may be
more than one distinct, and even nonisomorphic, minimal
configuration which is a subgraph (see Figure 5). (c) A
minimal configuration is ‘grown’ from the corg, by adding

J. Chem. Inf. Model., Vol. 47, No. 5, 2001767

*

ig 35 59

Figure 5. The singular fullerene £:5 hasy = 1. The core vertices
are independent (spanningKld and are denoted by filled and
empty circles to show the opposite signs of entries in the zero-
eigenvalue eigenvector. The remaining 20 vertices form the
periphery and occur as tw, 3 ‘stars’ of four vertices plus si®,
pairs. In this projection, chosen to exhibit the threefold symmetry
of the fullerene, one vertex, marked with an asterisk, lies at infinity.
Three possible minimal configurations are shown, including (center)
P, the path of 23 vertices.

n(Fp) — 1 pairwise nonadjacent vertices. (d) The condition
(i) from above requires that the nullity of a minimal
configuration decreases by one with each additiofof

a vertex of 215 (e) For minimum configurations, the core
order is a maximum when(F) = 1 andn(G) = p, whenG

is said to be a nut graph. It is a minimum whef,) = p,
and the core is the edgeless graph, Fg= (K). () If ais
the independence number @&, then K, is an induced
subgraph ofG. By interlacing, if the nullity ofG is 7, then
pr + 7 =2 candp- + 7 = a, p. being the number of
positive (negative) eigenvalues G counted including all
repetitions (see page 19 of ref 16).

2.4. Nut Graphs. The central concept of interest in the
present paper is that of the nut graph. A singular graps
said to be anut graph if each entry of every kernel
eigenvector ofG is nonzero.

A nut graph is a minimal configuration with= 0 and,
as the name is intended to suggest, is equal to its core, so
that the core order is maximun=(n(G)). The definition
implies thaty = 1 for a nut graph. (Proof: i of some nut
graphG were greater than 1, then we could take two linearly
independent kernel eigenvectors@fvo = (ay, oy, ...)' and
vi = (1, B2, -..)F and formfBivo — ouvi1 = 0: this would be
a kernel eigenvector with first entry zero, a contradiction.)
Figure 6 shows the three smallest nut graphs, all on 7
vertices, with 8, 11, and 12 edges, respectively.

The term ‘nut graph’ is also used in journalism to signify
the paragraph containing the essentials of an article; our use
of the term here conveys a similar idea in that the whole of
the graph is essential in the description of the null eigen-
vector.

Fullerenes are nonbipartite graphs (they contain odd
cycles). We remark that no bipartite cubic polyhedron can
be a nut graph, as the pairing of eigenvalues impliesshat
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Figure 6. The three connected nut graphs are of smallest order,
all on 7 vertices. Filled and empty circles denote positive and
negative entries (in these cases, respectively) in the unique zero-
eigenvalue adjacency eigenvector in each case.

is even. A bipartite cubic polyhedron can, however, be a
core.

3. RESULTS

3.1. Singular Fullereneslt has already been observed in
the chemical literature that singular fullerenes are mathemati-
cally possible, and indeed the second most abundant fullerene
produced in experiment, £&; is singular. Spiral data for

singular fullerene graphs with < 60 vertices (general Figure 7. The smallest singular fullerenel. A set of cores for

fullerenes) aneh < 100 vertices (isolated-pentagon fullerenes) the four zero-eigenvalue eigenvectors are shown: two independent
are listed in Table 1 of ref 4. Chemical rationalizations for sets of order 8 (shown as filled circles) and two cycles of order 12

the occurrence of an NBO in some series of fullerenes have(shown by bold edges of the dodecahedral graph). The extra edges
been presented:* Here we will connect these considerations N the minimal configurations grown from these four cores are
to the language of cores and minimal configurations. indicated on the diagrams by dotted lines.

The results of our survey of the statistics of occurrence of
singular fullerenes in the range are given in Tables3,1
Whlch I|§t qll the smgglar fullerenes |dent|f|ed by the trivalent polyhedra.
diagonalization calculations. The calculations employed , . i
Jacobi's method Although more efficient algorithms exist, The smallest possible fullerene.4>is singular, with
this method has the advantages of simplicity, robustness in"ullity 4. lts graph is that of the regular pentagonal
the presence of multiplicity, and high (and tunable) numerical dodecahedron, and the four NBO can be given a particularly
accuracy. Based on numerical experiments, our estimate ofSYmMmetrical ‘equidistributive’ form by representing them as
the precision of the eigenvalues obtained for fullerenes in Vectors of quaternionS.The dodecahedral graph is a core,
our range is that it is better than 16, i.e., several orders of ~ SINCe every vertex carries a nonzero entry in some kemel

magnitude smaller than is needed to distinguish reliably €i9envector. As the nullity of the graph is 4, we can find

between small nonzero and true zero eigenvalues in graphdur minimal configurations as subgraphs (not necessarily
of this size. (In the range af that we consider, the smallest induced), by the following method: find a set of four linearly

‘small’ nonzero eigenvalues have magnitudes of510r independent kernel eigenvectors of the gdjacency mALrix
more.) take them as the rows of a 4 20 matrix B, and apply

Table 1 gives the singular adjacent-pentagon fullerenes S@ussian elimination to redugfirst to row-echelon form
C. (20 < n < 120), other than nut fullerenes, listed by nuliity 2nd then to a matri by row operations only, so thal
and identified by spiral number. The number of strictly has as many zero entries as possible. The rovis afe the

positive eigenvalues is given, from which the position in the VECtOrs of a minimal basis @; the nonzero entries in each
spectrum of they null eigenvalues follows, and foy = 1 row define a distinct core, and each core can be grown into

the order of the core is listed. In many cases (those marked® Minimal configuratiori. The four minimal configurations
with an asterisk in Table 1), the core consists entirely of °Ptained in this way have core orders 8, 8, 12, and 12. One
disjoint vertices. Many of the singular fullerenes wijh> choice of the four cores is illustrated in Figure 7, together

1 are themselves cores. Table 2 gives similar information with their extensions to minimal configurations of orders 15,
for isolated-pentagon fuflerenesl @0 < n < 150) 15, 13, and 13: thus, two of the minimal configurations are

In many of the singular fullerenes of Table 1, the core Pis With coreKg, and the others are copies of a bicyclic
consists of pairwise nonadjacent vertices, i.e., it is an 9raph comprising a cycl€;, and an additional independent
independent set. These cases are marked with an asterisk i¥ertex joined to two vertices of the cof@..
the table, and, of course, the core-order is then strictly less The chemically realizable fullerenes confirmed to date
thann/2, as the fullerenes are nonbipartite polyhedra with satisfy the isolated-pentagon rule (IPR): no two pentagonal
independence numbers at mo& — 2 (achieved only if all faces share a common edge. The smallest IPR fullerene is
12 pentagons contain 2 and alk — 10 hexagons contain  Ceo:1, with the graph of the truncated icosahedron, which
3 independent vertices: counting vertices face-by-face we has no NBO. However, by introducing a cyclic chain of
have [12x 2 + (n/2 — 10) x 3]/3 = n/2 — 2). In fact, it hexagons between the two caps af,,Ghe graph of the
appears from the table that in the range of fullerenes studied,smallest singular IPR fullerene ;& is obtained. ThiDs,-
whenever the core-order is below?2, the core is an  symmetric fullerene has one NBO, characterized by a core
independent set. It also appears from Tables 1 and 2 thatthat is the union of two disjoint cycle<2,. EachCy cycle

the core-order of a singular fullerene with= 1 is always
even However, in general, the core-order can be odd for
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> equatorial vertices of 1 carry zero entries in all cores,
i.e., are core-forbidden.

The generic nondegenerate NBO in the two series of
> ‘carbon cylinders’ has been rationalized in terms of nodal
patterns for cylindrical harmonidé Each was shown to have
nonzero entries on disjoin€,y or Cy4 subgraphs of the
o> > fullerene cylinder, each cycle carrying entries with paired
signs ...+ + — — + + ..., the cycles being separated from
one another by belts of vertices carrying zero entries in the
null eigenvector. The polygons at the ‘poles’ of the cylinder
(pentagons for the series 030k, hexagons for 84 36Kk)
and their direct neighbors also carry zero entries. This
description based on chemical/physical analogy has an exact
counterpart in the core/minimal configuration picture, as we
have seen.

3.2. Nut Fullerenes An interesting aspect of the fullerene
class, apparently unremarked before these studies §égan,
is that it includes nut graphs. Thus, we can answer in the
affirmative the first question posed in the Introduction.

Table 3 lists data on the 41 nut graphs found among the
Figure 8. The smallest singular IPR fullerene;£1, showing the 10 190 782 fullerenes in the range 20n < 120. All have
unique zero-eigenvalue eigenvector and two noncospectral choicegpentagon adjacencies. Isolated-pentagon fullerenes, which
of minimal configuration (with core @z). include all those that have been physically characterized,
were checked up ta < 150, and no nut graph or core of
nullity more than one was found among them. For each
adjacent-pentagon nut fullerene, a lexicographically minimal
spiral is listed, together with the point group symmetry of

hasny = 2, and to grow the core of@y, into a minimal
configuration, three vertices must be added in such a way
that the total nullity decreases by one at each vertex

addition: the minimal configuration is thus of order 43. As the fullerene, symmetry of the unique null eigenvector,

N(Cro.1) = 70 > 43, there is some freedom in the choice of number of positive eigenvalues, and a characterization (to

minimal configurz_ati_ons. AS re_mark_ed earlier, the subgraphs be discussed below) of the type of eigenvector as ‘uniform’
that serve as minimal configurations are not necessarlly,balanced, or ‘other’ '

isomorphic. In the present case, they are not even cospectral )
SpectrumThe nut-fullerenes show a pattern in the number

see Figure 8).

( The %onstrzjction can be continued indefinitélyAn of positive eigenvaluepy; in all _but two of the Iisted_nut

infinite family of tubular fullerenes, § with hemi-Go fullerenes (42:12 and 60:1279), is equal ton/2 + 2, which

caps and nullity one, has membersiat 70 + 30m, (m = is also the number. of facc_—:-s in the fuIIerene_. The fact phat

0, 1, 2, ...) with overall 5-fold symmetry. The core of each > V2 iS compatible with the observation of electron
deficiency in fullerene molecules: most fullerenes (singular

consists of the disjoint union @h + 2 copies ofCy cycles.
In each case, a minimal configuration is a subgraph of the O Not) have pseudoclosed shells and therefore have a

fullerene with 20(n + 2) + [2(m + 2) — 1] = 22m + 43 capacity for accepting electrons over and above the neutral

vertices. The fullerenes-g1, Cios1, and Gagl in Table 2 electron count. The NBO is at positiov2 + 2 orn/2 + 3
belong to this class and, as the entries in the table confirm,for all the nut fullerenes found so far. Thus the NBO would

have the 35, 50, and 65 strictly positive eigenvalues neededtyPically be the HOMO of ¢ or Ci”. Alternatively, it

for a properly closed shell and the 40, 60, and 80 nonzerowould be the LUMO of ¢~ or C,". In particular,p; is
entries in their zero-eigenvalue eigenvectors consistentequal ton/2 + 2 for all the nut fullerenes labeled ‘uniform’
with the description of the core as multiple disjoint copies in the table. In other words, the number of strictly positive
of Cyo. eigenvalues exceeds the number of strictly negative eigen-

A second family has membersmt= 84 + 36m, (m= 0, values by 5 in these cases. In the neutral molecule, the
1, 2, ...), with hemi-G; caps, overall 6-fold symmetry and uniform nut fullerenes of Table 3 all have pseudoclosed shell
nullity one form > 0. Form > 0, the core consists of the €lectronic configurations with two empty bonding orbitals
disjoint union of m + 2 copies ofC, and a minimal ~ below a nonbonding LUM®?2.

configuration is a subgraph of the fullerene with 24 2) SymmetryAll but one of the nut-graph fullerenes found
+ [2(m + 2) — 1] = 24m + 51 vertices. Table 2 includes in the search have &, symmetry element (42:12 is the
the member of the series with= 1, C,,0:10 606. Then = exception), and, in fact, most ha® symmetry, signaling

0 member of the series fullereng1 has an accidental the presence of three mutually perpendicWlaraxes. The
degeneracy of the zero eigenvalue and has nullity 3. A Dz, and Dy supergroups oD,, where the symmetries are
minimal basis for the nullspace has three linearly independentaugmented by three orthogonal mirror planes, or by two
kernel eigenvectors, each of which corresponds to a coreorthogonal mirror planes and a fourfold axis of improper
that can be extended to a subgraph which is a minimal rotation, respectively, also appear in the list of nut-fullerene
configuration. One of the cores oL, for the eigenvector  point groups. Figure 9 shows the three-dimensional structures
generic to then = 84 + 36m series, is 4, but asy > 1, of the first 24 nut fullerenes, drawn from their topological
the graph of @41 has other cores in addition. Only the 12 coordinateg?
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36:14 42:12 44:14 48:16

Figure 10. Pencil-and-paper approach to determining nullity,
illustrated for the 4-cycleC,. Assigna, —a to the neighbors of 1
and then assigh, —b to the neighbors of 2. Now all vertices carry

a value. Check that 3 and 4 obey the zero-sum rule. As they do,
there are two independent parameters, so the nullity of the 4-cycle
is 7 = 2, in agreement with the well-known result for the
antiaromatic #4-cycles.

48:169 52:313 52:335 60:43

sum of the others, then choose another (nearby) vertex, make
the assignment of its unassigned neighbors, and in this way
work around the graph, assigning new parameters as neces-
sary, until all vertices carry a value, and then finally eliminate
redundant parameters by invoking the zero sum rule at every
vertex that has not so far been used. The number of
independent parameters remaining after this elimination is
7n(G), the nullity of the graph. A simple example of the
construction is shown in Figure 10.

This reasoning also provides the basis for a classification
of kernel eigenvectors in trivalent polyhedra such as fullerenes.
Assign labels, b, andc to the three entries on the neighbors
of a typical vertex. Three independent, normalized combina-

tions of three quantities are one totally symmetric combina-
84:28619 tion

@ sz%(a+b+c)

and a pair that are symmetric/antisymmetric with respect to
an imagined mirror plane containing both the vertex with
entrya and the central vertex and passing betwie@mdc:

1
Ss=—=(2a—b—c)
G
Figure 9. Structures of the first 24 nut fullerenes. Fullerenes are 1
listed by vertex count and position in the general spiral order. S,=—=((b-0)
Symmetry and spectral properties are listed in Table 3. ﬁ

60:1169 60:1196 60:1197

84:51548

The irreducible representations of the NBO eigenvector < vanishes at every vertex, by definition of a null vector.
are listed in Table 3 (columr™). It is notable that within ~ Thus, around any vertex of a trivalent nut graph, the pattern
their respective point groups, all but two of the nut fullerenes (&, b, ¢) can be characterized by the local valuesSgfand
found in the search have totally symmetric NBO eigenvectors Sta
(i.e., with representation; in Dz, ag in D2, @ in Dy, and

" 21 i i 2 1 1
C,, & in Cy).#* Every operation of the point group permutes g — \/\;} S, b= \/(:5 S+ \/; S

vertices that carry equal coefficients in such a vector. The

totally symmetric nature of the NBO in a wide class of nut 1 1

trivalent polyhedra can be proved, as will be seen below. c=- 6 Sis 2 Sia
3.2.1. Balanced and Uniform Nut FullerenesFurther

insight into the structure of the null eigenvectors in nut graphs With the constraint thaks may not be zero, since cannot

can be gained by looking at the possible patterns of entriesvanish in a nut graph, thoughi. may take value zero or

and signs in such vectors. The construction of nonbonding any value other thas: +/(1/3)S..

orhitals inzz-systems has a long history in chemis#§3The Consider the case whe&, can be made zero favery
eigenvalue conditiodx = Ax for eigenvaluel implies that vertex, by appropriate ordering @f b, andc, i.e., in the
the entries for any zero-eigenvalue eigenvecter, { x}, of unique null eigenvector every vertex has equal entries

the (trivalent) grap!G should obeyy x; = 0 for alli (i = 1, c on two of its neighbors, cancelled by an erdrys —2b on

... N), where the summation runs over all (three) neighbors the third. The numerical value af may be different for

j of a vertexi. The nullity of a given graph may therefore different central vertices. We call a trivalent nut graph with
be established by a simple construction, without the need tothis property anut-balancedor simply abalancedgraph.
obtain the full spectrum: begin with any vertex, assign If furthermore, every vertex has thsame triple of
parameters for the entries on all but one of its neighbors, neighboring entries (up to ordering), then a balanced graph
define the entry for the last neighbor as the negative of theis called nut-uniformor simply uniform In a uniform nut
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(a) normalization) in the sefl, —2, 4, -8, ...,-2), ..}, for
integerr. If k is the largest integer that appears in the
coefficients (2) of x, thenall the integers from 0 tdk
appear in the coefficients; i.e. the entriesxadire 1,—2, 4,
..., (—2)%, possibly with repetitions. A proof of this statement
is as follows: If there existg 0 < j < k, such that{-2)1is
missing from the coefficients of, then for a suitable labeling
of G

x=(1,..1,=2,..=2, ., €2 (-2
2", 2T L 2K L2

wherei > 0. Thus, two linearly independent kernel eigen-
vectors can be found, namely

(b)

x,=1,..1,-2,..-2, ..., 2% .2y} 0,..0)
and
X,=(0,...0, 2)", (27, L2 ... (-2)9

andG is not a nut. Therefore the sequence of powers Bf
cannot have a gap.

Various relations hold between the numbers of entries for
different powers of two. Letn;, n—,, ..., N2« denote,
respectively, the number of coefficients42, ..., -2)¢that
appear inx. Then

©

N =20 ,+4n,— .+ (=2)N =0 (%)

This result follows by straightforward counting: etdenote
the number of vertices with first neighbors having

coefficients 1, 1,—2, and leth_, the number with first
neighbors having-coefficients—2, —2, 4, and so on. Then

n, = 2h,

n_,=h,+2h_,

Figure 11. Patterns of coefficients in the null eigenvectors of the n.=h .+ 2h
smallest nut fullerenes of each type: (a) the smallest uniform nut 4 —2 4
fullerene 36:14; (b) the smallest balanced but not uniform nut
fullerene 48:169; and (c) a nut fullerene that is neither uniform
nor balanced 52:313.

n(_z)k—1 = h(_z)k—z + 2h(—2)k—1

graph, every vertex has the same neighboring entries in the

ratio 1:1=2 in the unique zero-eigenvalue eigenvector, with N2y = h(f2)k*l
2n/3 vertices bearing coefficient /2n and n/3 bearing Multiplying the rth equation by €2) for 0 < r < k and
~ 2/¥2n in the normalized vector. adding all the equations, the sum rube)(follows.

Figure 11 shows the pattern of coefficients in the null  3.2.3. Allowed Orders of Balanced Cubic Nut Graphs.
eigenvectors for small examples of uniform, balanced and The same reasoning can be used to show that the vertex count
general nut fullerenes. In the rangerte= 120, there isonly  of any balanced cubic nut graph is a multiple of six. The
one fullerene that is balanced but not uniform (48:169).  proof is an immediate consequence of the preceding: given

The chemical significance of the definition of the uniform that when the vertices of each type are all counted we recover
nut fullerene is that these have the smallest ratio betweenn, the total number of vertices i®, we have
magnitudes of smallest and largest entries in the null
eigenvector and thus would have the ‘smoothest’ distribution
of spin density in a radical where the NBO was the singly
occupied HOMO.

3.2.2. Eigenvector Entries of Balanced Cubic Nut
Graphs. Consideration of the way that the zero-sum condi- n=3Mh,+h_,+h,+..+ h(fz)H)
tion propagates through a trivalent graph shows that balanced
trivalent nut graphs are the generalization of uniform nut and as for a 3-regular graph is even, the vertex count of a
graphs in which the kernel eigenvector has entries (apart frombalanced trivalent nut polyhedron is divisible by 6. Specif-

ntn,+n+..+n_x=n

and summation of the individual expressions listed above
gives
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(@ For nut graphs that are neither uniform nor balanced, the
kernel eigenvector may have one of several nondegenerate
symmetries, and the entries inmay take general integer
values (as for any eigenvector corresponding to an integer
eigenvalue).

3.2.5. Nut Fullerenes and Pentagon AdjacencyOne
striking feature of the nut fullerenes found within the scope
of the search is that all of them have some pentagon
pentagon adjacencies. The numbers of pentagemtagon
edges K) listed in Table 3 range from 2 to 14.

Itis straightforward to show that amyniformnut fullerene
must have some pentagon adjacencies, and more precisely
that every pentagon of a uniform nut fullerene must be
adjacent to at least one other, so that the number of
adjacencies id\, = 6 for such fullerenes. The proof is
pictorial. A fullerene in which at least one pentagon is fully
isolated from all others contains the ‘corannulene’ structural
motif shown in Figure 13. If the fullerene is a uniform nut

; ; graph, then this motif can be decorated consistently with the
Figure 12. The null eigenvector of a balanced (and uniform) nut {—2,+1} entries of the unique null eigenvector. The central
fullerene, 36:14. lllustrations of (a) the null eigenvector pattern of pentagon may carry zero, one, or two entries equat 29

—2 (black-filled circles) and+1 (white-filled circles); (b) the  and if two such entries are present, then they must be on

spanning of a nut fullerene graph By n/6 disjoint motifs consisting ; ; .
of a (~2. —2) edge with its four neighboring-2, +1) edges: and adjacent vertices; all other cases are ruled out by the

(b)

(©)

(c) the subgraph induced by the2 and thet1 entries of the null requirement that no \{er'FeX has tw@ neighbors. As Figure
eigenvector; the first graph is a union of pairs, and the second is a13 shows, all three distributions on the central pentagon lead
union of cycles. to a contradiction of the assumed uniformity of the nut

fullerene. Thus, no uniform nut fullerene may contain a fully

ically, therefore, all balanced nut fullerenes (and hence alsoisolated pentagon. Therefore, all uniform nut fullerenes
uniform nut fullerenes) have vertex counts-24q for some contain at least six pentagepentagon edges.
a. 3.2.6. Infinite Families of Singular Fullereneslnspection

In a uniform trivalent polyhedron the entries occumés of the pictures (Figure 9) and spiral codes (Table 3) of the
disjoint pairs 2, —2), 2n/3 pairs (2, +1), and 2V/3 pairs early nut fullerenes suggests some recurring patterns.
(+1,+1). The graph of the uniform nut fullerene is therefore  As the vertex count increases, cylindrical nut fullerenes
spanned by/6 disjoint motifs consisting of a{2, —)-edge occur and can be grouped into families according to their
with its four neighboring {2, +1)-edges. The graph induced six-pentagon caps. Thus, for example, uniform nut fullerenes
by the —2 entries is the disjoint union df, pairs, and the  with the spiral
graph induced by the-1 entries is a union of cycles (Proof:
every+1 has two+1 neighbors, and every2 has one-2 1,2,3,4,7,10n/2—6—6,n/2— 3 — 0,

neighbor.) Figure 12 shows these graphs for the smallest nut n2—-1,n2,n/2+1,n/2+ 2
fullerene, Gg:14.
3.2.4. Symmetry of the Zero-Eigenvalue VectorAs where the parametér cycles through 0, 1, 1 can be seen in

Table 3 shows, most (32 out of 41) of the nut fullerenes Table 3 at 48:16, 60:43, 72:97, 84:197, 96:367, 108:634, and
found in the range are balanced, and in fact all but one of 120:1069. This is a family of tubular fullerenes, each with a
the balanced nut fullerenes are uniform. The table also showscap of six pentagons and two hexagons, circumscribed by
that all the balanced nut fullerenes have a totally symmetric successive rings of six hexagons and ending with the same
null eigenvector, i.e., a vector that transforms into itself under cap. As Figure 14 shows, a kernel eigenvector with entries
all operations of the point group. Just two instances of {—2, +1, +1} can be propagated uniformly, with the same
nontotally symmetric zero eigenvectors are seen in the tablecyclic sequence on all intermediate perimeters, to terminate
(52:313 and 52:335). smoothly on the other cap. The pattern of coefficients is
From the special form of the entries in the unique kernel compatible with insertion of any number of extra layers of
eigenvector of a balanced nut trivalent polyhedron, it is six hexagons in the startings£structure, so that we have
straightforward to show that this vectenust be totally an infinite series of singular fullerenes, with predictable spiral
symmetric. Additionally, an eigenvectarof A is said to be codes. All members of the series are cores. Although we
equidistributie if the entries ofx have the same absolute have no formal proof that the multiplicity of the zero
value on equivalent vertices (i.e., vertices in the same dfbit). eigenvalue remains at one after each stage of the expansion,
A vector composed of the squared entries of an equidis- the null eigenvector in each member of the series is found
tributive vector would be totally symmetric; all nondegen- to remain unique at least for afl < 1000, and it appears
erate eigenvectors are therefore equidistributive, and inplausible that we have an infinite family of not only core
particular, as the unique kernel eigenvector of a nut graph fullerenes but also uniform-nut fullerenes.
is of multiplicity one, it must be equidistributive. For Other series can also be found, some with multiple isomers
balanced nut graphs, this vector is not only equidistributive arising from relative rotation of the end caps and with more
but totally symmetric. complicated sequences of perimeters. Two examples are



NONBONDING ORBITALS IN FULLERENES

(@ A

-~

O

(®) B

©

Figure 13. Pictorial proof that no uniform nut fullerene can have
a fully isolated pentagonal face. White-filled circles stand-fdr
entries in the null eigenvector, black-filled circles stand fe2
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Figure 14. An expansion construction for uniform nut fullerenes.
The example is the expansion of one of the two identical caps of
48:16. Working out from the central motif of six pentagons,
preservation of the uniform pattern ef2 and+1 entries around
each vertex (black- and white-filled circles) in the null eigenvector
demands the pattern-@, —2, +1, +1, +1, +1)? on the outer
perimeter of each circuit of added six hexagons, which then repeats
until closure by a similar cap.

(a) (b)

Figure 15. Caps from which an infinite series of uniform nut

entries. The five entries on the pentagon determine, among othersfullerenes can be constructed. (a) The six-pentagon snake cap of
the entries on radiating edges, shown as large circles. (a) The centrathe D,; series 36:14, 60:1196, 60:1197, 84:19272, 108:140 651,

pentagon carries no entry2. Begin assigning the remaining
vertices at A: its—2 neighbor implies a neighberl, which implies
a—2 as indicated by the arrows; B then has tw® neighbors, in
contradiction of the uniform nut property. (b) The central pentagon
carries a single entry-2. Begin assigning the remaining vertices
at A: its —2 neighbor implies a+ 1, then a—2, therefore giving

B two —2 neighbors, in contradiction of the uniform nut property.
(c) The central pentagon carries two entri€d The—2 entries on
the pentagon determine, among others, the (small citeledntries

on their second neighbors. The entry at A may be chosen without

loss of generality as-2, leading to—2 at B and C. As every ring
of the fullerene is either a pentagon or a hexagitherB is joined

to C by an edge, in which case C has tw@ neighborspr B is
joined to C through an intermediate vertex that itself has i
neighbors, in both cases contradicting the uniform nut property.

shown in Figure 15. Expansion of the cap shown in Figure

108:140 652, ... . The cap is filled out with hexagons, then
circumscribed with hexagon strips presenting perimeters of type
(-2,-2,+1,+1),and 2, +1, +1, +1),, and can be terminated
consistently with a (rotated) copy of the same cap, to give a uniform
null-eigenvector. (b) A six-pentagon that can also be built up by
circumscribing, in this case with perimeters consisting of either
+1 entries only, or of £2, —2, +1, +1) units, and terminated
consistently with a (rotated) copy of the same cap.

in this range: ah = 12, 11 of the 14 cubic polyhedra are
singular, and, overall about a third (133 887) of the 398 438
cubic polyhedra on up to 24 vertices are singular, 93 197 of
them withy = 1. The numbers of bipartite cubic polyhedra
in this range are small, but, for example, 30 of the 32 cases
with n = 24 are singular, witly = 2 ory = 4. Nut graphs

are found ain = 12, 18, and 24, including almost one in

15(a) is particularly straightforward, with face spirals gener- fiye of the cubic polyhedra with these numbers of vertices.
ated by adding multiples of 24 hexagons between the sixth oyer half are uniform, but the balanced and general nut
and seventh pentagons in the face spirals of the parent cagegraphs are also represented. Interestingly, no nut graphs with
60:1196, 60:1197, and 84:19 272 (see Table 3). Again all b ot divisible by 6 are found in this range, although we

members of the series with< 1000 have been checked to
be uniform nut fullerenes. It is an open question whether
such tubular extensions can be found éoery uniform nut
fullerene and whether families might also exist for the
nonuniform nut fullerenes. Similar constructions may be
expected for non-fullerene trivalent graphs.

4. GENERAL TRIVALENT POLYHEDRA

To give some context to the results for nut fullerenes, a

know from the fullerene results (Table 3) that nonbalanced
cubic polyhedral nuts with such vertex counts do exist.

Figure 16 shows the smallest examples of singular cubic
polyhedra withy = 1, 2, 3, 4, 5. Figure 17 shows the two
smallest nut-graph cubic polyhedra, each uniform, one with
C, and one with the triviaC; symmetry, and also shows an
example of a cubic polyhedron that is an unbalanced nut
graph.

These results can be extended. Figure 18 illustrates a

survey was made of nut graphs among small general cubicconstruction that can be used to generate arbitrarily large
polyhedra. Table 4 gives statistical data on the general cubicsingular non-fullerene cubic polyhedra, starting from any
polyhedra on up to 24 vertices. Singular graphs are commonsingular cubic polyhedral graph. An adjacency eigenvector
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(@ () © preserves the balanced nature amaypreserve the uniform
nature of a null eigenvector. The half-cube construction
accounts at least partly for the rapid growth in the number

of nut graphs in Table 3. The two original 12-vertex nut
graphs generate-6 12 nonisomorphic 18-vertex nut graphs,

® and these then generate a total of 228 distinct nut graphs
@ (103 uniform and 125 balanced) at= 24. Large, and

(d (e)

symmetrical, singular polyhedra can be constructed using
the half-cube construction: expansion of the dodecahedron
(n = 4) on all 20 of the original vertices, for example, gives
a 140-vertex cubic polyhedron with full, symmetry, 60
4-gonal and 12 15-gonal faces, and wijtk= 4 andn/2 — 1
positive eigenvalues.

5. CONCLUDING REMARKS

It has been shown that some fullerenes are nut graphs
Figure 16. The smallest singular cubic polyhedra with nulligy graphs with a single null eigenvector in which all e””.'es
=1-5. The polyhedra are numbered according to their vertex count &€ nonzero. All examples found so far have multiple
n, position in the order of generation by the plantri progfaand pentagon adjacencies, and it was proved that no uniform nut
point symmetry group. (a) = 1 (10:1,Cy); (b) 7 = 2 (6:1,Day); fullerene contains isolated pentagons. In the examples found
(€) 7 = 3 (16:69,Cy); (d) 7 = 3 (16:206,C2.); (€) 7 = 4 (1215, 50 far, occupation of the single nonbonding orbital requires
ga(h%h(fz);; 552 1512)2-14,Dzd), (9) 7 =5 (24:2356180n); (h) n = an excess negative charge on the fullerene. However, some
' ’ fullerenes, though not qualifying as nut graphs, may be
considered as in some sense near to nut graphs. For instance,
there are ten singular isolated-pentagon fullerenes far
120, all of nullity one except §&isomer 24 which has nullity
2 three. None of them are nut graphs, thoughs@nd G14, as
‘sporadic’ closed shell fullerenégpproach ‘nut graph status’
as they each have an eigenvalue very close to but not exactly
-1 2 1 i zero. Another measure of proximity to nut graphs might be
Figure 17. Small cubic polyhedral nut graphs and their null the size of the core in the kernel eigenvector of a graph with
eigenvectors. The smallest cubic polyhedra with nut graphs asy = 1. Examples of such near-nut graphs are 96:170 895,
skeletons are (a) 12:Z¢) and (b) 12:6 €,). Both are uniform nut \ith 94 nonzero entries, and the isolated-pentagon fullerene

graphs. (c) Cubic polyhedral nut graphs that are neither uniform . . . .
nor balanced occur first at 24 vertices. An example (24:64) in which 100:285 901100:438), with 96 nonzero-entries.

the spin density would span a ratio of 100:1 is shown here. From the chemical point of view, small polyhedra may
seem unlikely models for carbon cages because they include
small rings, with consequent angle strain, but explorations
of the sets of isomeric possibilities with 20 and 24 vertices
suggest that many, if not all, occupy at least local minima
on the potential energy surfaces for these numbers of carbon
atoms?* Interestingly, for most of the nut graphs among these
polyhedra, as listed in Table 4, the null eigenvalue is at
positionn/2, i.e., it would be the doubly occupied HOMO

(a) +1 (b) +1

o

Figure 18. An expansion of cubic graphs that preserves null f the 7 system of the neutral cage, and in the singly charged
eigenvectors. The central vertex carries erdgryand in a null ’

eigenvector the entries on its neighbors tdtai ¢ + d = 0. radical cation the nut nature Qf the graph would b_e predicted
Expansion of the central vertex to a half-cube, as shown on the t0 lead to nonzero spin density on all atoms. This contrasts
right, can be achieved without disruption of the null eigenvector if with nut fullerenes, where, as discussed in section 3.2,
new eigenvector entries are assigned as shown. Clearly, if the parenpccupation of the NBO requires a high negative charge. The
graph is a uniform nut graph ared= + 1, then the derived vector two nut graphs witi = 12, some 262 of the nut graphs

is uniform, but ifa= —2, then the derived vector is only balanced. . - L .
Conversely, if the parent vector is only balanced, then so is the With n= 18, and 54 699 of those with= 24 have adjacency

derived vector. spectra with the requisite/2 — 1) positive andv/2 negative
eigenvalues.
corresponding to a zero eigenvalue oframertex trivalent Finally, it may be interesting to note that although chemical

graph can be converted to an eigenvector with the samefullerenes have planar graphs, nut graphs are not confined
eigenvalue for ar( + 6)-vertex trivalent graph by an to those of genus zero. Analogues of the fullerenes can be
expansion that raises a half-cube on any one of the originaldefined among nonplanar grapfighose that can be embed-
vertices. Iteration leads to an infinite series of singular cubic ded in the projective plane are constructed by collapsing
graphs, each with at least the nullity of its parent. Barring antipodal vertices of centrosymmetric conventional fullerenes,
accidents that introduce new possibilities for zero eigenval- relying on the fact that the sphere is a double cover of the
ues, this construction generates nut graphs from nut-graphprojective plane. The eigenvectors of the projective-plane
parents. As illustrated in the figure, the expansaways graph follow by collapse of thgeradeeigenvectors of the
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spherical fullerene, preserving the eigenvalue. As the kernel(11) Grinbaum, B.; Motzkin, T. S. The number of hexagons and the

eigenvector of any balanced nut fullerene is totally sym-

simplicity of geodesics on certain polyhed@an. J. Math.1963 15,
744-751.

metric, antipodal collapse of a centrosymmetric balanced NUt(19) See, e.g., Streitwieser, Aolecular orbital theory for organic

fullerene leads to a projective-plane fullerene that is also a
balanced nut graph. The centrosymmetric nut fullerenes with

n < 100 are 84:28 6190, uniform) and 84:51 5480,
neither uniform nor balanced), and both yield 42-vertex
projective-plane nut fullerenes on antipodal collapse. Col-
lapse of a centrosymmetric fullerene wigh> 1 could also
conceivably lead to a nut graph.
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