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A zero eigenvalue in the spectrum of the adjacency matrix of the graph representing an unsaturated carbon
framework indicates the presence of a nonbondingπ orbital (NBO). A graph with at least one zero in the
spectrum issingular; nonzero entries in the corresponding zero-eigenvalue eigenvector(s) (kerneleigenvectors)
identify the core vertices. Anut graph has a single zero in its adjacency spectrum with a corresponding
eigenvector for which all vertices lie in the core.Balancedand uniform trivalent (cubic) nut graphs are
defined in terms of (-2, +1, +1) patterns of eigenvector entries around all vertices. In balanced nut graphs
all vertices have such a pattern up to a scale factor; uniform nut graphs are balanced with scale factor one
for every vertex. Nut graphs are rare among small fullerenes (41 of the 10 190 782 fullerene isomers on up
to 120 vertices) but common among the small trivalent polyhedra (62 043 of the 398 383 nonbipartite
polyhedra on up to 24 vertices). Two constructions are described, one that is conjectured to yield an infinite
series of uniform nut fullerenes, and another that is conjectured to yield an infinite series of cubic polyhedral
nut graphs. All hypothetical nut fullerenes found so far have some pentagon adjacencies: it is proved that
all uniform nut fullerenes must have such adjacencies and that the NBO is totally symmetric in all balanced
nut fullerenes. A single electron placed in the NBO of a uniform nut fullerene gives a spin density distribution
with the smallest possible (4:1) ratio between most and least populated sites for an NBO. It is observed
that, in all nut-fullerene graphs found so far, occupation of the NBO would require the fullerene to carry at
least 3 negative charges, whereas in most carbon cages based on small nut cubic polyhedra, the NBO would
be the highest occupied molecular orbital (HOMO) for the uncharged system.

1. INTRODUCTION

Graph theory gives tools for the classification of the
structures and electronic properties of the all-carbon fullerene
molecules, Cn. In particular, diagonalization of the adjacency
matrix yieldsπ orbital energies (eigenvalues) andπ molec-
ular orbitals (eigenvectors) within the Hu¨ckel approximations,
from which chemically useful conclusions may often be
drawn. For example, Hu¨ckel theory predicts the characteristic
electron deficiency of the typical fullerene1 and gives
systematic rules for the occurrence among the fullerenes of
properly closed-shellπ configurations (those with bonding
highest occupied molecular orbital (HOMO) and antibonding
or nonbonding lowest unoccupied molecular orbital (LU-
MO).2 Closed shells of this type are rare among the smaller
fullerenes: forn < 112 the known closed shells are confined
to 35 leapfrog and 3 cylindrical isomers2 (out of 4 032 334
fullerenes, of which 8093 have disjoint pentagons3). For n
g 112, a third sparse class, the so-calledsporadicclosed
shells, also appears.2

Also comparatively rare are fullerenes with one or more
exactly nonbondingπ orbitals (NBO), i.e., with one or more
zero eigenvalues of the adjacency matrixA. A fullerene, or
any graph, with at least one zero eigenvalue is said to be
singular. Nonbonding orbitals in generally electron-deficient
molecules such as fullerenes are of direct chemical interest

as they represent cases where the molecule (with some
particular total charge) would be predicted to tolerate both
removal and addition of electrons, and the form of the NBO
then gives information about the spin distribution in the
derived radicals. From this point of view, the NBO is of
most interest when it is either the HOMO or the LUMO of
a fullerene with small or zero total charge. In the chemical
context,4 the presence of NBOs in some fullerenes and related
polyhedra has been rationalized by relating the orbital
patterns to the four basic nonbonding combinations on the
graphite sheet, in a pictorial version of the ‘zone-folding’
argument used for nanotubes and polyhex tori.5

In a mathematical context, an equivalent question has been
posed about arbitrary graphs:6,7 Which particular structural
features does a singular graph possess? Graphs with exactly
one zero eigenvalue ofA were considered first,6 as for this
case there is no masking of the effect of one eigenvector by
another in the same eigenspace. Graphs of this kind for which
the eigenvector corresponding to the zero eigenvalue (the
kernelvector) has no zero entries arenut graphs. For graphs
with more than one zero eigenvalue, it was concluded that,
in a basis where the total number of nonzero entries of the
basis vectors is a minimum, the vectors determine specific
subgraphs (minimal configurations). This earlier work on
arbitrary graphs prompted the present study of the nullity
properties of some polyhedral chemical graphs, in which the
questions addressed are as follows: (1) Can fullerenes and* Corresponding author e-mail: P.W.Fowler@sheffield.ac.uk.
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other chemically relevant trivalent polyhedra be nut graphs?
(2) Given that they can, how common are these nut graphs,
and how can they be constructed?

Some of the mathematical aspects of these questions have
been considered elsewhere.8,9 Here we consider the chemical
description and implications of these questions about nullity
in fullerenes and related objects.

To answer these questions, graphs for general Cn-
fullerenes (n e 120), isolated-pentagon (IP) Cn-fullerenes
(n e 150), and trivalent polyhedra (n e 24) were generated
using the spiral algorithm2 for the fullerenes and the plantri
program10 for small trivalent polyhedra. Adjacency spectra
were obtained by numerical diagonalization of the adjacency
matrix for each graph, and where singular graphs were found,
the eigenvector(s) with zero eigenvalue were analyzed for
various patterns in the signs and magnitudes of their entries.
Material obtained from these computer searches is collected
in Tables 1-4 toward the middle and end of the paper, but
specific examples are sometimes quoted in advance or shown
in earlier figures, in order to help with the introduction of
the various concepts.

The structure of the paper is as follows. First, section 2
recalls definitions and notation, makes the connection
between molecules and graphs, and defines the substructures
(minimal configuration, core, periphery) that go to make up
a singular graph. In section 3, we investigate singular

fullerenes and show that some of them are indeed nut graphs.
We give some statistics and observations on singular and
nut graphs among the Cn-fullerenes forn e 120, fullerenes
with isolated pentagons forn e 150 (in section 3), and the
cubic polyhedral graphs forn e 24 (section 4). For example,
by inspecting the kernel eigenvector entries, we identify three
classes of nut graphs. For two of them we find regularities
in vertex count. For one class we find a method of
constructing infinite series of conjectural fullerene nut graphs.
In the section on nut graphs based on the more general
singular cubic polyhedra (section 4), another construction is

Table 1. Singular Fullerenes Cn for n e 120 with Pentagon Adjacencies, Listed by Nullityη and Labeled by Their Place in Full Spiral
Lexicographic Ordera

η ) 4
20:1(9,c)

η ) 2
24:1(13,c) 36:5(19,c) 36:13(19) 36:15(19,c) 38:2(20)
42:45(22) 44:72(23) 44:80(23) 48:189(25,c) 56:3(29)

60:1374(31,c) 60:1784(31,c) 68:2189(35) 72:6414(37,c) 72:8049(37)
72:11182(37,c) 74:2(38) 84:22660(43,c) 86:20964(44) 92:3(47)
96:65052(49,c) 108:161702(55,c) 110:3(56) 120:362261(61,c)

η ) 1
28:1(15,16) 32:5(18,12*) 36:9(20,20) 38:12(20,24) 40:38(22,24)

40:39(22,20) 44:13(24,16*) 44:24(24,24) 44:55(23,32) 44:61(23,38)
44:75(23,24) 44:83(24,32) 48:160(25,44) 48:175(26,44) 48:186(26,24)
50:43(27,28) 50:157(27,18*) 52:376(28,46) 52:431(28,32) 52:432(28,32)

52:435(28,32) 56:35(30,20*) 56:393(30,20*) 58:1137(30,30) 60:221(32,36)
60:1247(32,52) 60:1782(32,48) 60:1805(32,40) 60:1810(31,40) 62:629(33,22*)
62:1799(32,44) 64:70(34,58) 64:1268(34,48) 64:1801(33,58) 64:3331(34,60)
68:78(36,24*) 68:405(36,40) 68:409(36,40) 68:1158(36,24*) 68:1980(36,64)

68:6015(36,48) 68:6140(36,36) 68:6331(36,24*) 74:1979(39,26*) 74:2962(39,26*)
76:8871(39,64) 76:8879(40,64) 76:12651(40,48) 76:19143(40,52) 78:23791(40,48)
80:168(42,28*) 80:3246(42,28*) 80:5306(42,28*) 80:31908(41,78) 82:37768(43,48)
84:1064(44,52) 84:7375(44,52) 84:18295(43,68) 86:4586(45,30*) 86:18225(45,60)

86:46893(45,60) 84:51545(44,64) 86:47231(45,60) 86:63338(45,48) 86:63512(45,30*)
88:25976(46,60) 88:81605(46,72) 90:536(47,72) 90:82841(47,82) 92:304(48,32*)
92:1623(48,56) 92:7044(48,32*) 92:13153(48,32*) 92:13188(48,32*) 92:13426(48,32*)

92:59039(48,62) 92:125179(48,72) 92:126025(48,32*) 92:126154(48,62) 92:126311(48,32*)
96:170895(50,94) 96:171222(50,90) 96:187896(50,72) 98:9622(51,34*) 98:18465(51,34*)
98:19394(51,34*) 98:221835(51,76) 98:226396(51,34*) 100:112387(52,64) 100:112388(52,64)

100:282237(52,80) 104:559(54,36*) 104:14414(54,36*) 104:30233(54,36*) 104:398924(54,36*)
104:401317(54,36*) 104:401325(54,36*) 106:9071(55,80) 106:467835(55,60) 108:3318(56,68)
108:592297(56,106) 110:19095(57,38*) 110:36041(57,38*) 110:36076(57,38*) 110:37610(57,38*)
110:38292(57,38*) 110:155290(57,78) 110:625591(57,76) 110:625628(57,76) 110:681160(57,76)

110:691942(57,38*) 112:815346(58,96) 112:840551(58,84) 112:856010(58,92) 116:923(60,40*)
116:4675(60,72) 116:4679(60,72) 116:27417(60,40*) 116:50288(60,40*) 116:52313(60,40*)

116:53462(60,40*) 116:54322(60,40*) 116:56855(60,40*) 116:60468(60,40*) 116:704703(59,112)
116:1143730(60,40*) 116:1195823(60,72)

a Nut fullerenes also haveη ) 1 but are listed separately (Table 3). Forη > 1, the number in parentheses isp+, the number of strictly positive
eigenvalues in the adjacency spectrum, and a symbolc indicates that the fullerene is a core; forη ) 1, the first number isp+, and the second is
the number of nonzero entries in the null eigenvector, marked by a star in cases where the core is an independent set.

Table 2. Isolated-Pentagon Singular Fullerenes Cn for n e 150
Listed by Nullity η and Labeled by Their Place in Isolated-Pentagon
Spiral Lexicographic Ordera

η ) 3
84:24(42)

η ) 1
70:1(35,40) 84:16(43,64) 94:134(48,54)

100:1(50,60) 100:438(52,96) 104:822(54,60)
104:823(54,60) 110:518(56,72) 120:10606(60,72)

130:1(65,80) 130:37423(66,78) 136:18743(69,96)
140:75226(72,84) 144:71038(74,96) 148:268934(76,120)

a No nut fullerenes are found within this set. Forη > 1, the number
in parentheses isp+, the number of strictly positive eigenvalues in the
adjacency spectrum; forη ) 1, the first number isp+, and the second
is the number of nonzero entries in the null eigenvector.
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given for an open-ended series of non-fullerene nut or core
graphs. We end (section 5) by commenting on the relevance
of these results to the chemistry of fullerenes. In the
appropriate charge state, a nut-graph fullerene with a half-
occupied NBO would be predicted to have nonzero spin
density at all sites and so would have markedly different
reactivity from the more usual types of radical, where the
spin density at some sites vanishes.

2. DEFINITIONS

2.1. Graphs.A graphG(V, E ) having a vertex setV (G)
) {V1, V2, ..., Vn} and a setE of m(G) edges joining distinct
pairs of vertices is said to be oforder n(G) () n) andsize
m(G) () m). The Valencyof a vertexV is the number of
edges incident toV. A F-regular graph is one for which the
valency isF for each vertex; a 3-regular graph is known as

Table 3. Nut Fullerenes Cn for n e 120a

isomern:m G p+ Γ uniform? Np

36:14 D2d 1 2 4 7 9 10 12 13 14 16 18 20 20 a1 U(2) 12
42:12† Cs 1 2 3 4 7 11 16 18 19 20 21 22 22 a′ N (10) 12
44:14 C2 1 2 3 4 7 11 14 18 21 22 23 24 24 a N (14) 14
48:16 D2 1 2 3 4 7 10 18 21 23 24 25 26 26 a U(2) 14

48:169 D2 1 2 4 7 9 13 17 19 21 23 25 26 26 a B (3) 8
52:313 D2d 1 2 3 10 14 15 18 19 21 23 27 28 28 b2 N (8) 12
52:335 C2 1 2 4 7 9 13 19 20 23 24 25 27 28 b N (32) 7
60:43 D2 1 2 3 4 7 10 23 26 29 30 31 32 32 a U(2) 14

60:1169 C2 1 2 4 7 9 19 22 23 26 28 29 32 32 a N (15) 7
60:1196 D2 1 2 4 7 10 14 20 24 27 30 31 32 32 a U(2) 10
60:1197 D2 1 2 4 7 10 14 25 26 28 29 30 32 32 a U(2) 10

60:1279† C2 1 2 4 7 12 16 18 22 25 28 31 32 31 a N (5) 6
60:1621 D2 1 2 4 12 13 14 18 25 26 28 30 32 32 a U(2) 8

72:97 D2 1 2 3 4 7 10 29 32 35 36 37 38 38 a U(2) 14
72:9897 D2 1 2 4 15 18 22 23 26 29 30 32 35 38 a U(2) 8

82:25969 C2 1 2 4 12 19 26 28 31 34 35 36 39 43 a N (72) 4
84:197 D2 1 2 3 4 7 10 36 39 41 42 43 44 44 a U(2) 14

84:19272 D2 1 2 4 7 10 14 33 36 37 40 42 44 44 a U(2) 10
84:22788 D2 1 2 4 8 11 12 31 39 40 42 43 44 44 a U(2) 10
84:28619 D2h 1 2 4 12 13 14 34 35 36 40 43 44 44 ag U(2) 8
84:28620 D2h 1 2 4 12 13 14 34 36 40 41 43 44 44 a1 U(2) 8
84:38210 D2d 1 2 4 15 21 26 32 33 37 39 40 41 44 a1 U(2) 8
84:41799 D2 1 2 4 18 22 23 28 29 33 36 37 44 44 a U(2) 8
84:51548 D2h 1 2 12 17 19 21 25 27 34 39 42 44 44 ag N (8) 2

96:367 D2 1 2 3 4 7 10 41 44 47 48 49 50 50 a U(2) 14
96:114148 D2 1 2 4 15 26 31 38 43 44 46 47 48 50 a U(2) 8
96:134237 D2 1 2 4 22 23 28 34 39 40 43 49 50 50 a U(2) 8
96:137750 D2d 1 2 4 28 32 36 37 38 41 42 46 47 50 a1 U(2) 8
96:139895 D2 1 2 7 23 24 25 30 31 32 44 48 50 50 a U(2) 8

108:634 D2 1 2 3 4 7 10 47 50 53 54 55 56 56 a U(2) 14
108:140651 D2 1 2 4 7 10 14 44 48 51 54 55 56 56 a U(2) 10
108:140652 D2 1 2 4 7 10 14 49 50 52 53 54 56 56 a U(2) 10
108:202011 D2 1 2 4 12 13 14 43 49 50 52 54 56 56 a U(2) 8
108:277775 D2 1 2 4 15 26 34 38 42 46 52 53 55 56 a U(2) 8
108:337625 D2 1 2 4 18 28 29 34 45 48 49 50 54 56 a U(2) 8
108:345562 D2 1 2 4 22 23 34 39 42 43 44 50 51 56 a U(2) 8

120:1069 D2 1 2 3 4 7 10 54 57 59 60 61 62 62 a U(2) 14
120:603082 D2 1 2 4 15 26 38 45 52 56 57 61 62 62 a U(2) 8
120:756134 D2 1 2 4 18 28 29 46 47 48 59 60 61 62 a U(2) 8
120:779562 D2 1 2 4 22 23 34 42 50 53 54 60 62 62 a U(2) 8

120:1653993 D2d 1 2 19 22 26 29 35 38 42 45 59 62 62 a1 N(5) 4

a Isomers are labeled by position in full spiral lexicographic order, point group (G ), pentagon positions in the face spiral, number of strictly
positive eigenvalues (p+), irreducible representation of the unique zero eigenvector (Γ), characterization as uniform (U), balanced (B), or neither
(N), with numbers of distinct eigenvector entries, and number of pentagon adjacencies (Np). Zero is eigenvaluen/2 + 2 in the two cases marked
†, otherwisen/2 + 3.

Table 4. Statistics for Singular Trivalent Polyhedra withn e 24 Vertices

η ) 1

n polyhedra bipartite η * 0 all nuts) U + B + N 2 3 4 5

4 1 0 0 0 0 0 0 0 0
6 1 0 1 0 0 1(0) 0 0 0
8 2 1 0 0 0 0 0 0 0

10 5 0 1 1 0 0 0 0 0
12 14 1 11 2 2) 2 + 0 +0 7(0) 0 2(1) 0
14 50 1 8 7 0 1(0) 0 0 0
16 233 2 70 67 0 1(0) 2 0 0
18 1249 2 613 322 285) 235+ 38 + 12 280(1) 1 10(0) 0
20 7595 8 1225 1123 0 99(1) 2 1 0
22 49 566 8 11 330 10 548 0 623(3) 158 1(0) 0
24 339 722 32 120 628 81 127 62 043) 35 632+ 14 022+ 12 389 37 567(10) 945 987(20) 2
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cubic in mathematics andtriValent in chemistry. A subset
of V is said to beindependentin G if there are no edges
joining pairs of distinct vertices; theindependence number
R(G) is the maximum order of such a subset. A subset ofV,
taken together with those edges inε that join members of
this subset, defines aninduced subgraphof G. Thecomplete
graphKn hasn vertices and an edge between every pair of
distinct vertices. Thecycle Cn hasn vertices, is connected,
and the valency of each vertex is two. The graphG(X, Y, ε)
is bipartite if there is a partition of its vertex set into disjoint
setsX andY such that each edge inε joins a vertex ofX to
a vertex ofY.

2.2. Chemical Graphs.In a molecular graph of an all-
carbon or hydrocarbon system, vertices stand for unsaturated
C atoms and so have valency at most three, and edges stand
for the underlying carbon-carbonσ bonds (Figure 1).

A fullereneis an all-carbon molecule which, like polycy-
clic aromatic hydrocarbons and graphite, is built of sp2-
hybridized atoms, linked byσ bonds, each carbon center
donating one electron and one atomic p orbital to an
unsaturatedπ system. The molecular graph of a fullerene is
cubic and has a planar embedding. In 3D it can be realized
as a pseudospherical polyhedral framework, its faces consist-
ing of pentagons and hexagons only, each C atom forming
σ bonds to three nearest neighbors. From the Euler relation
for spherical polyhedra, it follows that a fullerene has exactly
12 pentagonal faces and has an even number of C atoms,n
) 20 + 2h, whereh is the number of hexagonal faces,h )
0 or h > 1.11 Fullerenes are denoted by their chemical
formula Cn, and, when it is necessary to distinguish between
isomers, by their place in the order of generation by the spiral
algorithm,2 so that, e.g., C32:5 is the fifth isomer in the set
of six possible fullerenes on 32 vertices. (Depending on
context, the ordering used may be the full spiral order of
general fullerene isomers, or the order of isolated-pentagon
fullerenes only, so that, e.g., the experimental isomer of C60,
in the isolated-pentagon series known as C60:1, may also be
referred to as C60:1812 in the context of general fullerenes.)

Theadjacency matrixA(G) (or simplyA) of a graphG is
an n × n symmetric matrix [aij] such thataij ) 1 if i and j
are connected by an edge and 0 otherwise. This describesG
completely (up to isomorphism). A graphG is singular if
A(G) has an eigenvalue zero. There existη(G) (or simply
η) linearly independent nonzero vectorsx, called kernel
eigenVectors in the nullspaceε0 of A, satisfyingAx ) 0.
The multiplicity (in chemical language, the degeneracy)η
of the zero eigenvalue ofA(G) is the nullity of A and
corresponds to the number of NBO predicted in Hu¨ckel
Theory for theπ system of the molecule with molecular
graphG. The rank of G, denoted byr(G), is the rank of
A(G), which isn(G) - η(G).

Each eigenvectorx corresponds in Hu¨ckel Theory12 to a
π molecular orbital (MO) of the carbon framework, with
the entry on vertexi giving the contribution of the local p

orbital on that center to the delocalized MO. The eigenvalue
λ corresponding tox gives the energyε of theπ MO through
ε ) R + λâ whereR is the Coulomb integral (measuring
the energy of aπ electron in a p orbital on an isolated C
center) andâ is the resonance integral (measuring the
strength ofπ interaction between twoσ-bonded neighboring
C centers). BothR and â are negative (binding) energies,
and soλ can be taken as a dimensionless indicator of the
MO energy, with positiveλ denoting bonding.

If the eigenvalues ofA are arranged in nonincreasing order,
two of particular interest are those of the HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied
molecular orbital), which for an uncharged system withn
centers (wheren is even) and hence withn π-electrons, are
those occurring at positionsn/2 andn/2 + 1 in the order of
eigenvalues, respectively. Their importance lies in the
significance of a nonzero HOMO-LUMO gap as an indica-
tor of kinetic stability and of the sum of eigenvalues up to
and including the HOMO as an indicator of totalπ-energy
and hence thermodynamic stability.

Positive eigenvalues correspond to bonding and negative
eigenvalues to antibonding orbitals, and each orbital has a
maximum capacity of two electrons. Electrons are assigned
to orbitals in decreasing order of bonding energy (the Aufbau
Principle), up to two electrons per orbital (the Pauli Exclusion
Principle), adding the second electron to any one orbital only
after all others at that energy have received at least one
electron (Hund’s Rule of Maximum Multiplicity). Fullerene
π configurations are classified as follows (see Figure 2).2 If
the eigenvaluesλn/2 andλn/2+1 are equal, then the configu-
ration isopen-shell(case (i)). If, conversely,λn/2 is strictly
greater thanλn/2+1, then three possibilities arise. IfA has
exactlyn/2 positive eigenvalues,λn/2 > 0, λn/2+1 e 0, then
the neutral carbon framework has aproperly closed-shell
configurationin which all n/2 bonding orbitals are doubly
occupied (case (ii)). Ifλn/2 > λn/2+1 > 0, then the neutral
carbon framework has apseudoclosedshell where all
electrons are in doubly occupied orbitals, but some bonding
orbitals are still empty (case (iii)). The final possibility, 0g
λn/2 > λn/2+1, is the meta-closedshell, where all electrons
are in doubly occupied orbitals of which some are nonbond-
ing or even antibonding (case (iv)). Meta-closed shells have
not so far been encountered for neutral fullerenes, although
open shells with partial occupation of formally antibonding
orbitals are predicted for some large tetrahedrally symmetric
fullerene graphs.13

2.3. Singular Graphs.A graphG is acore graphif G is
a singular graph of nullity at least one, having a kernel
eigenvector with each entry being nonzero.

Figure 1. Stages in the idealization of an unsaturated molecule as
a graph (left to right) from a molecular structure as illustrated for
benzene, toπ system, to graph.

Figure 2. Illustrations of the possible types of electronic config-
uration in aπ system. Shown, left to right, are the positions with
respect to the nonbonding level (ε ) R, λ ) 0) of the eigenvalues
at positionsn/2 andn/2 + 1 in open, properly closed, pseudoclosed,
and meta-closed shells. In the properly closed shell, eigenvalue
n/2 + 1 may be either antibonding as shown or strictly nonbonding.
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Let x0 be a kernel eigenvector of a singular graphG of
order n g 3. A subgraph ofG induced by the vertices
corresponding to the nonzero entries ofx0 is acore Fx0 with
respect tox0. In the literature, the core is sometimes called
the ‘support’ of the kernel eigenvector and can also be
denoted byFp, wherep is the number of vertices of the core,
called thecore order.

A singular graphG of ordern g 3, having coreFp and
periphery P :) V (G) - V (Fp), is said to be aminimal
configuration, of core order p, if the following three
conditions are all satisfied: (i)G is singular, with nullity
one: η(G) ) 1, (ii) the periphery is either empty or is a set
of pairwise nonadjacent vertices:|P | ) 0 (no vertices) or
P induces a graph with no edges, and (iii)η(Fp) ) 1 +
|P |.

This three-stage definition is motivated by the wish to
construct extensions of a core graph that will progressively
reduce the nullity and will ultimately result in a connected
graph of nullity one.

Vertices that carry a zero entry inall kernel eigenvectors
are said to becore-forbidden, i.e., there is no core ofG that
contains any of these vertices. Ifη ) 1 the core-forbidden
vertices are simply those of the periphery. In chemical terms,
core-forbidden vertices are those C centers that do not acquire
extra charge from occupation of the complete set of non-
bonding orbitals. Figure 3 shows the smallest singular
connected graph, the path on three vertices, which in
chemical terms is a model for the allyl radical, and illustrates
the core and periphery for this simple case. Figure 4 shows
an example of how a core (in this case, the cycle on four
vertices) may be extended to a minimal configuration by
adding a vertex ofP.

It may be possible to extend a given coreFp to one or
more distinct minimal configurations by drawing edges to
vertices of the core from a periphery consisting of indepen-
dent vertices.6 It is an open question whether extension to a
minimal configuration of any given core can always be made.

Some remarks following from the definitions are as
follows:6 (a) A minimal configuration is always connected
and can be considered to be a graph of nullity one with a
minimal number of edges and vertices forx0.14 (b) The core
of a graph of nullity one is unique, although there may be
more than one distinct, and even nonisomorphic, minimal
configuration which is a subgraph (see Figure 5). (c) A
minimal configuration is ‘grown’ from the coreFp by adding

η(Fp) - 1 pairwise nonadjacent vertices. (d) The condition
(iii) from above requires that the nullity of a minimal
configuration decreases by one with each addition toFp of
a vertex ofP.15 (e) For minimum configurations, the core
order is a maximum whenη(Fp) ) 1 andn(G) ) p, whenG
is said to be a nut graph. It is a minimum whenη(Fp) ) p,
and the core is the edgeless graph, i.e.,Fp ) (Kp). (f) If R is
the independence number ofG, then KR is an induced
subgraph ofG. By interlacing, if the nullity ofG is η, then
p+ + η g R and p- + η g R, p( being the number of
positive (negative) eigenvalues ofG, counted including all
repetitions (see page 19 of ref 16).

2.4. Nut Graphs. The central concept of interest in the
present paper is that of the nut graph. A singular graphG is
said to be anut graph if each entry of eVery kernel
eigenvector ofG is nonzero.

A nut graph is a minimal configuration withP ) 0 and,
as the name is intended to suggest, is equal to its core, so
that the core order is maximum () n(G)). The definition
implies thatη ) 1 for a nut graph. (Proof: ifη of some nut
graphG were greater than 1, then we could take two linearly
independent kernel eigenvectors ofG, v0 ) (R1, R2, ...)T and
v1 ) (â1, â2, ...)T and formâ1v0 - R1v1 * 0: this would be
a kernel eigenvector with first entry zero, a contradiction.)
Figure 6 shows the three smallest nut graphs, all on 7
vertices, with 8, 11, and 12 edges, respectively.

The term ‘nut graph’ is also used in journalism to signify
the paragraph containing the essentials of an article; our use
of the term here conveys a similar idea in that the whole of
the graph is essential in the description of the null eigen-
vector.

Fullerenes are nonbipartite graphs (they contain odd
cycles). We remark that no bipartite cubic polyhedron can
be a nut graph, as the pairing of eigenvalues implies thatη

Figure 3. The path on three vertices is the smallest connected
singular graph. Entries in the unique nonbonding eigenvector are
shown next to the corresponding vertex, and core vertices are
denoted by circles, the single periphery vertex by a dot. In this
case,F2 ) 2K1.

Figure 4. The cycle C4 is a core of nullity 2 (with the two
independent kernel vectors as shown). The minimal configuration
is obtained by adding a single vertex to yield a graph of nullity 1,
retaining the nonzero entries of the core in the kernel eigenvector.

Figure 5. The singular fullerene C32:5 hasη ) 1. The core vertices
are independent (spanning 12K1) and are denoted by filled and
empty circles to show the opposite signs of entries in the zero-
eigenvalue eigenvector. The remaining 20 vertices form the
periphery and occur as twoK1,3 ‘stars’ of four vertices plus sixP2
pairs. In this projection, chosen to exhibit the threefold symmetry
of the fullerene, one vertex, marked with an asterisk, lies at infinity.
Three possible minimal configurations are shown, including (center)
P23, the path of 23 vertices.
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is even. A bipartite cubic polyhedron can, however, be a
core.

3. RESULTS

3.1. Singular Fullerenes.It has already been observed in
the chemical literature that singular fullerenes are mathemati-
cally possible, and indeed the second most abundant fullerene
produced in experiment, C70, is singular. Spiral data for
singular fullerene graphs withn e 60 vertices (general
fullerenes) andn e 100 vertices (isolated-pentagon fullerenes)
are listed in Table 1 of ref 4. Chemical rationalizations for
the occurrence of an NBO in some series of fullerenes have
been presented.17,4Here we will connect these considerations
to the language of cores and minimal configurations.

The results of our survey of the statistics of occurrence of
singular fullerenes in the range are given in Tables 1-3,
which list all the singular fullerenes identified by the
diagonalization calculations. The calculations employed
Jacobi’s method.18 Although more efficient algorithms exist,
this method has the advantages of simplicity, robustness in
the presence of multiplicity, and high (and tunable) numerical
accuracy. Based on numerical experiments, our estimate of
the precision of the eigenvalues obtained for fullerenes in
our range is that it is better than 10-12, i.e., several orders of
magnitude smaller than is needed to distinguish reliably
between small nonzero and true zero eigenvalues in graphs
of this size. (In the range ofn that we consider, the smallest
‘small’ nonzero eigenvalues have magnitudes of 10-5 or
more.)

Table 1 gives the singular adjacent-pentagon fullerenes
Cn (20e n e 120), other than nut fullerenes, listed by nullity
and identified by spiral number. The number of strictly
positive eigenvalues is given, from which the position in the
spectrum of theη null eigenvalues follows, and forη ) 1
the order of the core is listed. In many cases (those marked
with an asterisk in Table 1), the core consists entirely of
disjoint vertices. Many of the singular fullerenes withη >
1 are themselves cores. Table 2 gives similar information
for isolated-pentagon fullerenes Cn (60 e n e 150).

In many of the singular fullerenes of Table 1, the core
consists of pairwise nonadjacent vertices, i.e., it is an
independent set. These cases are marked with an asterisk in
the table, and, of course, the core-order is then strictly less
than n/2, as the fullerenes are nonbipartite polyhedra with
independence numbers at mostn/2 - 2 (achieved only if all
12 pentagons contain 2 and alln/2 - 10 hexagons contain
3 independent vertices: counting vertices face-by-face we
have [12× 2 + (n/2 - 10) × 3]/3 ) n/2 - 2). In fact, it
appears from the table that in the range of fullerenes studied,
whenever the core-order is belown/2, the core is an
independent set. It also appears from Tables 1 and 2 that

the core-order of a singular fullerene withη ) 1 is always
eVen. However, in general, the core-order can be odd for
trivalent polyhedra.

The smallest possible fullerene, C20, is singular, with
nullity 4. Its graph is that of the regular pentagonal
dodecahedron, and the four NBO can be given a particularly
symmetrical ‘equidistributive’ form by representing them as
vectors of quaternions.19 The dodecahedral graph is a core,
since every vertex carries a nonzero entry in some kernel
eigenvector. As the nullity of the graph is 4, we can find
four minimal configurations as subgraphs (not necessarily
induced), by the following method: find a set of four linearly
independent kernel eigenvectors of the adjacency matrixA,
take them as the rows of a 4× 20 matrix B, and apply
Gaussian elimination to reduceB first to row-echelon form
and then to a matrixC by row operations only, so thatC
has as many zero entries as possible. The rows ofC are the
vectors of a minimal basis ofA; the nonzero entries in each
row define a distinct core, and each core can be grown into
a minimal configuration.7 The four minimal configurations
obtained in this way have core orders 8, 8, 12, and 12. One
choice of the four cores is illustrated in Figure 7, together
with their extensions to minimal configurations of orders 15,
15, 13, and 13: thus, two of the minimal configurations are
P15 with core K8, and the others are copies of a bicyclic
graph comprising a cycleC12 and an additional independent
vertex joined to two vertices of the coreC12.

The chemically realizable fullerenes confirmed to date
satisfy the isolated-pentagon rule (IPR): no two pentagonal
faces share a common edge. The smallest IPR fullerene is
C60:1, with the graph of the truncated icosahedron, which
has no NBO. However, by introducing a cyclic chain of
hexagons between the two caps of C60, the graph of the
smallest singular IPR fullerene, C70, is obtained. ThisD5h-
symmetric fullerene has one NBO, characterized by a core
that is the union of two disjoint cycles 2C20. EachC20 cycle

Figure 6. The three connected nut graphs are of smallest order,
all on 7 vertices. Filled and empty circles denote positive and
negative entries (in these cases(1, respectively) in the unique zero-
eigenvalue adjacency eigenvector in each case.

Figure 7. The smallest singular fullerene C20:1. A set of cores for
the four zero-eigenvalue eigenvectors are shown: two independent
sets of order 8 (shown as filled circles) and two cycles of order 12
(shown by bold edges of the dodecahedral graph). The extra edges
in the minimal configurations grown from these four cores are
indicated on the diagrams by dotted lines.
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has η ) 2, and to grow the core of 2C20 into a minimal
configuration, three vertices must be added in such a way
that the total nullity decreases by one at each vertex
addition: the minimal configuration is thus of order 43. As
n(C70:1) ) 70 > 43, there is some freedom in the choice of
minimal configurations. As remarked earlier, the subgraphs
that serve as minimal configurations are not necessarily
isomorphic. In the present case, they are not even cospectral
(see Figure 8).

The construction can be continued indefinitely.17 An
infinite family of tubular fullerenes, Cn, with hemi-C60

caps and nullity one, has members atn ) 70 + 30m, (m )
0, 1, 2, ...) with overall 5-fold symmetry. The core of each
consists of the disjoint union ofm + 2 copies ofC20 cycles.
In each case, a minimal configuration is a subgraph of the
fullerene with 20(m + 2) + [2(m + 2) - 1] ) 22m + 43
vertices. The fullerenes C70:1, C100:1, and C130:1 in Table 2
belong to this class and, as the entries in the table confirm,
have the 35, 50, and 65 strictly positive eigenvalues needed
for a properly closed shell and the 40, 60, and 80 nonzero
entries in their zero-eigenvalue eigenvectors consistent
with the description of the core as multiple disjoint copies
of C20.

A second family has members atn ) 84 + 36m, (m ) 0,
1, 2, ...), with hemi-C72 caps, overall 6-fold symmetry and
nullity one for m > 0. For m > 0, the core consists of the
disjoint union of m + 2 copies ofC24, and a minimal
configuration is a subgraph of the fullerene with 24(m + 2)
+ [2(m + 2) - 1] ) 24m + 51 vertices. Table 2 includes
the member of the series withm ) 1, C120:10 606. Them )
0 member of the series fullerene C84:1 has an accidental
degeneracy of the zero eigenvalue and has nullity 3. A
minimal basis for the nullspace has three linearly independent
kernel eigenvectors, each of which corresponds to a core
that can be extended to a subgraph which is a minimal
configuration. One of the cores of C84:1, for the eigenvector
generic to then ) 84 + 36m series, is 2C24, but asη > 1,
the graph of C84:1 has other cores in addition. Only the 12

equatorial vertices of C84:1 carry zero entries in all cores,
i.e., are core-forbidden.

The generic nondegenerate NBO in the two series of
‘carbon cylinders’ has been rationalized in terms of nodal
patterns for cylindrical harmonics.17 Each was shown to have
nonzero entries on disjointC20 or C24 subgraphs of the
fullerene cylinder, each cycle carrying entries with paired
signs ...+ + - - + + ..., the cycles being separated from
one another by belts of vertices carrying zero entries in the
null eigenvector. The polygons at the ‘poles’ of the cylinder
(pentagons for the series 70+ 30k, hexagons for 84+ 36k)
and their direct neighbors also carry zero entries. This
description based on chemical/physical analogy has an exact
counterpart in the core/minimal configuration picture, as we
have seen.

3.2. Nut Fullerenes.An interesting aspect of the fullerene
class, apparently unremarked before these studies began,8,9

is that it includes nut graphs. Thus, we can answer in the
affirmative the first question posed in the Introduction.

Table 3 lists data on the 41 nut graphs found among the
10 190 782 fullerenes in the range 20e n e 120. All have
pentagon adjacencies. Isolated-pentagon fullerenes, which
include all those that have been physically characterized,
were checked up ton e 150, and no nut graph or core of
nullity more than one was found among them. For each
adjacent-pentagon nut fullerene, a lexicographically minimal
spiral is listed, together with the point group symmetry of
the fullerene, symmetry of the unique null eigenvector,
number of positive eigenvalues, and a characterization (to
be discussed below) of the type of eigenvector as ‘uniform’,
‘balanced’, or ‘other’.

Spectrum. The nut-fullerenes show a pattern in the number
of positive eigenvaluesp+; in all but two of the listed nut
fullerenes (42:12 and 60:1279),p+ is equal ton/2 + 2, which
is also the number of faces in the fullerene. The fact thatp+

> n/2 is compatible with the observation of electron
deficiency in fullerene molecules: most fullerenes (singular
or not) have pseudoclosedπ shells and therefore have a
capacity for accepting electrons over and above the neutral
electron count. The NBO is at positionn/2 + 2 or n/2 + 3
for all the nut fullerenes found so far. Thus the NBO would
typically be the HOMO of Cn

4- or Cn
6-. Alternatively, it

would be the LUMO of Cn
2- or Cn

4-. In particular,p+ is
equal ton/2 + 2 for all the nut fullerenes labeled ‘uniform’
in the table. In other words, the number of strictly positive
eigenvalues exceeds the number of strictly negative eigen-
values by 5 in these cases. In the neutral molecule, the
uniform nut fullerenes of Table 3 all have pseudoclosed shell
electronic configurations with two empty bonding orbitals
below a nonbonding LUMO+2.

Symmetry. All but one of the nut-graph fullerenes found
in the search have aC2 symmetry element (42:12 is the
exception), and, in fact, most haveD2 symmetry, signaling
the presence of three mutually perpendicularC2 axes. The
D2h and D2d supergroups ofD2, where the symmetries are
augmented by three orthogonal mirror planes, or by two
orthogonal mirror planes and a fourfold axis of improper
rotation, respectively, also appear in the list of nut-fullerene
point groups. Figure 9 shows the three-dimensional structures
of the first 24 nut fullerenes, drawn from their topological
coordinates.20

Figure 8. The smallest singular IPR fullerene, C70:1, showing the
unique zero-eigenvalue eigenvector and two noncospectral choices
of minimal configuration (with core 2C20).
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The irreducible representations of the NBO eigenvector
are listed in Table 3 (column ‘Γ’). It is notable that within
their respective point groups, all but two of the nut fullerenes
found in the search have totally symmetric NBO eigenvectors
(i.e., with representationa1 in D2d, ag in D2h, a in D2, and
C2, a′ in Cs).21 Every operation of the point group permutes
vertices that carry equal coefficients in such a vector. The
totally symmetric nature of the NBO in a wide class of nut
trivalent polyhedra can be proved, as will be seen below.

3.2.1. Balanced and Uniform Nut Fullerenes.Further
insight into the structure of the null eigenvectors in nut graphs
can be gained by looking at the possible patterns of entries
and signs in such vectors. The construction of nonbonding
orbitals inπ-systems has a long history in chemistry.22,23The
eigenvalue conditionAx ) λx for eigenvalueλ implies that
the entries for any zero-eigenvalue eigenvector,x ) {xi}, of
the (trivalent) graphG should obey∑xj ) 0 for all i (i ) 1,
... n), where the summation runs over all (three) neighbors
j of a vertexi. The nullity of a given graph may therefore
be established by a simple construction, without the need to
obtain the full spectrum: begin with any vertex, assign
parameters for the entries on all but one of its neighbors,
define the entry for the last neighbor as the negative of the

sum of the others, then choose another (nearby) vertex, make
the assignment of its unassigned neighbors, and in this way
work around the graph, assigning new parameters as neces-
sary, until all vertices carry a value, and then finally eliminate
redundant parameters by invoking the zero sum rule at every
vertex that has not so far been used. The number of
independent parameters remaining after this elimination is
η(G), the nullity of the graph. A simple example of the
construction is shown in Figure 10.

This reasoning also provides the basis for a classification
of kernel eigenvectors in trivalent polyhedra such as fullerenes.
Assign labelsa, b, andc to the three entries on the neighbors
of a typical vertex. Three independent, normalized combina-
tions of three quantities are one totally symmetric combina-
tion

and a pair that are symmetric/antisymmetric with respect to
an imagined mirror plane containing both the vertex with
entrya and the central vertex and passing betweenb andc:

S0 vanishes at every vertex, by definition of a null vector.
Thus, around any vertex of a trivalent nut graph, the pattern
(a, b, c) can be characterized by the local values ofS1s and
S1a

with the constraint thatS1s may not be zero, sincea cannot
vanish in a nut graph, thoughS1a may take value zero or
any value other than( x(1/3)S1s.

Consider the case whereS1a can be made zero foreVery
vertex, by appropriate ordering ofa, b, and c, i.e., in the
unique null eigenvector every vertex has equal entriesb )
c on two of its neighbors, cancelled by an entrya ) -2b on
the third. The numerical value ofa may be different for
different central vertices. We call a trivalent nut graph with
this property anut-balancedor simply abalancedgraph.

If furthermore, every vertex has thesame triple of
neighboring entries (up to ordering), then a balanced graph
is callednut-uniformor simply uniform. In a uniform nut

Figure 9. Structures of the first 24 nut fullerenes. Fullerenes are
listed by vertex count and position in the general spiral order.
Symmetry and spectral properties are listed in Table 3.

Figure 10. Pencil-and-paper approach to determining nullity,
illustrated for the 4-cycle,C4. Assigna, -a to the neighbors of 1
and then assignb, -b to the neighbors of 2. Now all vertices carry
a value. Check that 3 and 4 obey the zero-sum rule. As they do,
there are two independent parameters, so the nullity of the 4-cycle
is η ) 2, in agreement with the well-known result for the
antiaromatic 4n-cycles.

S0 ) 1

x3
(a + b + c)

S1s ) 1

x6
(2a - b - c)

S1a ) 1

x2
(b - c)

a ) x2
3

S1s, b ) x1
6

S1s + x1
2

S1a,

c ) - x1
6

S1s - x1
2

S1a
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graph, every vertex has the same neighboring entries in the
ratio 1:1:-2 in the unique zero-eigenvalue eigenvector, with
2n/3 vertices bearing coefficient 1/x2n and n/3 bearing
- 2/x2n in the normalized vector.

Figure 11 shows the pattern of coefficients in the null
eigenvectors for small examples of uniform, balanced and
general nut fullerenes. In the range ton ) 120, there is only
one fullerene that is balanced but not uniform (48:169).

The chemical significance of the definition of the uniform
nut fullerene is that these have the smallest ratio between
magnitudes of smallest and largest entries in the null
eigenvector and thus would have the ‘smoothest’ distribution
of spin density in a radical where the NBO was the singly
occupied HOMO.

3.2.2. Eigenvector Entries of Balanced Cubic Nut
Graphs. Consideration of the way that the zero-sum condi-
tion propagates through a trivalent graph shows that balanced
trivalent nut graphs are the generalization of uniform nut
graphs in which the kernel eigenvector has entries (apart from

normalization) in the set{1, -2, 4, -8, ...,(-2)r, ...}, for
integer r. If k is the largest integerr that appears in the
coefficients (-2)r of x, then all the integers from 0 tok
appear in the coefficients; i.e. the entries ofx are 1,-2, 4,
..., (-2)k, possibly with repetitions. A proof of this statement
is as follows: If there existsj, 0 e j e k, such that (-2) j is
missing from the coefficients ofx, then for a suitable labeling
of G

wherei > 0. Thus, two linearly independent kernel eigen-
vectors can be found, namely

and

andG is not a nut. Therefore the sequence of powers of-2
cannot have a gap.

Various relations hold between the numbers of entries for
different powers of two. Letn1, n-2, ..., n(-2)k denote,
respectively, the number of coefficients 1,-2, ..., (-2)k that
appear inx. Then

This result follows by straightforward counting: leth1 denote
the number of vertices with first neighbors havingx-
coefficients 1, 1,-2, and leth-2 the number with first
neighbors havingx-coefficients-2, -2, 4, and so on. Then

Multiplying the rth equation by (-2)r for 0 e r e k and
adding all the equations, the sum rule (f) follows.

3.2.3. Allowed Orders of Balanced Cubic Nut Graphs.
The same reasoning can be used to show that the vertex count
of any balanced cubic nut graph is a multiple of six. The
proof is an immediate consequence of the preceding: given
that when the vertices of each type are all counted we recover
n, the total number of vertices inG, we have

and summation of the individual expressions listed above
gives

and asn for a 3-regular graph is even, the vertex count of a
balanced trivalent nut polyhedron is divisible by 6. Specif-

Figure 11. Patterns of coefficients in the null eigenvectors of the
smallest nut fullerenes of each type: (a) the smallest uniform nut
fullerene 36:14; (b) the smallest balanced but not uniform nut
fullerene 48:169; and (c) a nut fullerene that is neither uniform
nor balanced 52:313.

x ) (1, ... 1,-2, ...-2, ..., (-2)j-1, ... (-2)j-1,

(-2)j+i, ...(-2)j+i, ..., (-2)k, ... (-2)k)

x1 ) (1, ... 1,-2, ...-2, ..., (-2)j-1, ... (-2)j-1, 0, ... 0)

x2 ) (0, ... 0, (-2)j+i, ... (-2)j+i, ... (-2)k, ... (-2)k)

n1 - 2n-2 + 4n4 - ... + (-2)kn(-2)k ) 0 (f)

n1 ) 2h1

n-2 ) h1 + 2h-2

n4 ) h-2 + 2h4

l

n(-2)k-1 ) h(-2)k-2 + 2h(-2)k-1

n(-2)k ) h(-2)k-1

n1 + n-2 + n4 + ... + n(-2)k ) n

n ) 3(h1 + h-2 + h4 + ... + h(-2)k-1)
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ically, therefore, all balanced nut fullerenes (and hence also
uniform nut fullerenes) have vertex counts 24+ 6q for some
q.

In a uniform trivalent polyhedron the entries occur asn/6
disjoint pairs (-2, -2), 2n/3 pairs (-2, +1), and 2n/3 pairs
(+1, +1). The graph of the uniform nut fullerene is therefore
spanned byn/6 disjoint motifs consisting of a (-2, -)-edge
with its four neighboring (-2, +1)-edges. The graph induced
by the-2 entries is the disjoint union ofK2 pairs, and the
graph induced by the+1 entries is a union of cycles (Proof:
every+1 has two+1 neighbors, and every-2 has one-2
neighbor.) Figure 12 shows these graphs for the smallest nut
fullerene, C36:14.

3.2.4. Symmetry of the Zero-Eigenvalue Vector.As
Table 3 shows, most (32 out of 41) of the nut fullerenes
found in the range are balanced, and in fact all but one of
the balanced nut fullerenes are uniform. The table also shows
that all the balanced nut fullerenes have a totally symmetric
null eigenvector, i.e., a vector that transforms into itself under
all operations of the point group. Just two instances of
nontotally symmetric zero eigenvectors are seen in the table
(52:313 and 52:335).

From the special form of the entries in the unique kernel
eigenvector of a balanced nut trivalent polyhedron, it is
straightforward to show that this vectormust be totally
symmetric. Additionally, an eigenvectorx of A is said to be
equidistributiVe if the entries ofx have the same absolute
value on equivalent vertices (i.e., vertices in the same orbit).19

A vector composed of the squared entries of an equidis-
tributive vector would be totally symmetric; all nondegen-
erate eigenvectors are therefore equidistributive, and in
particular, as the unique kernel eigenvector of a nut graph
is of multiplicity one, it must be equidistributive. For
balanced nut graphs, this vector is not only equidistributive
but totally symmetric.

For nut graphs that are neither uniform nor balanced, the
kernel eigenvector may have one of several nondegenerate
symmetries, and the entries inx may take general integer
values (as for any eigenvector corresponding to an integer
eigenvalue).

3.2.5. Nut Fullerenes and Pentagon Adjacency.One
striking feature of the nut fullerenes found within the scope
of the search is that all of them have some pentagon-
pentagon adjacencies. The numbers of pentagon-pentagon
edges (Np) listed in Table 3 range from 2 to 14.

It is straightforward to show that anyuniformnut fullerene
must have some pentagon adjacencies, and more precisely
that every pentagon of a uniform nut fullerene must be
adjacent to at least one other, so that the number of
adjacencies isNp g 6 for such fullerenes. The proof is
pictorial. A fullerene in which at least one pentagon is fully
isolated from all others contains the ‘corannulene’ structural
motif shown in Figure 13. If the fullerene is a uniform nut
graph, then this motif can be decorated consistently with the
{-2, +1} entries of the unique null eigenvector. The central
pentagon may carry zero, one, or two entries equal to-2,
and if two such entries are present, then they must be on
adjacent vertices; all other cases are ruled out by the
requirement that no vertex has two-2 neighbors. As Figure
13 shows, all three distributions on the central pentagon lead
to a contradiction of the assumed uniformity of the nut
fullerene. Thus, no uniform nut fullerene may contain a fully
isolated pentagon. Therefore, all uniform nut fullerenes
contain at least six pentagon-pentagon edges.

3.2.6. Infinite Families of Singular Fullerenes.Inspection
of the pictures (Figure 9) and spiral codes (Table 3) of the
early nut fullerenes suggests some recurring patterns.

As the vertex count increases, cylindrical nut fullerenes
occur and can be grouped into families according to their
six-pentagon caps. Thus, for example, uniform nut fullerenes
with the spiral

where the parameterδ cycles through 0, 1, 1 can be seen in
Table 3 at 48:16, 60:43, 72:97, 84:197, 96:367, 108:634, and
120:1069. This is a family of tubular fullerenes, each with a
cap of six pentagons and two hexagons, circumscribed by
successive rings of six hexagons and ending with the same
cap. As Figure 14 shows, a kernel eigenvector with entries
{-2, +1, +1} can be propagated uniformly, with the same
cyclic sequence on all intermediate perimeters, to terminate
smoothly on the other cap. The pattern of coefficients is
compatible with insertion of any number of extra layers of
six hexagons in the starting C48 structure, so that we have
an infinite series of singular fullerenes, with predictable spiral
codes. All members of the series are cores. Although we
have no formal proof that the multiplicity of the zero
eigenvalue remains at one after each stage of the expansion,
the null eigenvector in each member of the series is found
to remain unique at least for alln e 1000, and it appears
plausible that we have an infinite family of not only core
fullerenes but also uniform-nut fullerenes.

Other series can also be found, some with multiple isomers
arising from relative rotation of the end caps and with more
complicated sequences of perimeters. Two examples are

Figure 12. The null eigenvector of a balanced (and uniform) nut
fullerene, 36:14. Illustrations of (a) the null eigenvector pattern of
-2 (black-filled circles) and+1 (white-filled circles); (b) the
spanning of a nut fullerene graph Cn by n/6 disjoint motifs consisting
of a (-2, -2) edge with its four neighboring (-2, +1) edges; and
(c) the subgraph induced by the-2 and the+1 entries of the null
eigenvector; the first graph is a union of pairs, and the second is a
union of cycles.

1, 2, 3, 4, 7, 10,n/2 - 6 - δ, n/2 - 3 - δ,
n/2 - 1, n/2, n/2 + 1, n/2 + 2
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shown in Figure 15. Expansion of the cap shown in Figure
15(a) is particularly straightforward, with face spirals gener-
ated by adding multiples of 24 hexagons between the sixth
and seventh pentagons in the face spirals of the parent cages
60:1196, 60:1197, and 84:19 272 (see Table 3). Again all
members of the series withn e 1000 have been checked to
be uniform nut fullerenes. It is an open question whether
such tubular extensions can be found foreVery uniform nut
fullerene and whether families might also exist for the
nonuniform nut fullerenes. Similar constructions may be
expected for non-fullerene trivalent graphs.

4. GENERAL TRIVALENT POLYHEDRA

To give some context to the results for nut fullerenes, a
survey was made of nut graphs among small general cubic
polyhedra. Table 4 gives statistical data on the general cubic
polyhedra on up to 24 vertices. Singular graphs are common

in this range: atn ) 12, 11 of the 14 cubic polyhedra are
singular, and, overall about a third (133 887) of the 398 438
cubic polyhedra on up to 24 vertices are singular, 93 197 of
them withη ) 1. The numbers of bipartite cubic polyhedra
in this range are small, but, for example, 30 of the 32 cases
with n ) 24 are singular, withη ) 2 or η ) 4. Nut graphs
are found atn ) 12, 18, and 24, including almost one in
five of the cubic polyhedra with these numbers of vertices.
Over half are uniform, but the balanced and general nut
graphs are also represented. Interestingly, no nut graphs with
n not divisible by 6 are found in this range, although we
know from the fullerene results (Table 3) that nonbalanced
cubic polyhedral nuts with such vertex counts do exist.

Figure 16 shows the smallest examples of singular cubic
polyhedra withη ) 1, 2, 3, 4, 5. Figure 17 shows the two
smallest nut-graph cubic polyhedra, each uniform, one with
C2 and one with the trivialC1 symmetry, and also shows an
example of a cubic polyhedron that is an unbalanced nut
graph.

These results can be extended. Figure 18 illustrates a
construction that can be used to generate arbitrarily large
singular non-fullerene cubic polyhedra, starting from any
singular cubic polyhedral graph. An adjacency eigenvector

Figure 13. Pictorial proof that no uniform nut fullerene can have
a fully isolated pentagonal face. White-filled circles stand for+1
entries in the null eigenvector, black-filled circles stand for-2
entries. The five entries on the pentagon determine, among others,
the entries on radiating edges, shown as large circles. (a) The central
pentagon carries no entry-2. Begin assigning the remaining
vertices at A: its-2 neighbor implies a neighbor+1, which implies
a -2 as indicated by the arrows; B then has two-2 neighbors, in
contradiction of the uniform nut property. (b) The central pentagon
carries a single entry-2. Begin assigning the remaining vertices
at A: its -2 neighbor implies a+ 1, then a-2, therefore giving
B two -2 neighbors, in contradiction of the uniform nut property.
(c) The central pentagon carries two entries-2. The-2 entries on
the pentagon determine, among others, the (small circle)+1 entries
on their second neighbors. The entry at A may be chosen without
loss of generality as-2, leading to-2 at B and C. As every ring
of the fullerene is either a pentagon or a hexagon,eitherB is joined
to C by an edge, in which case C has two-2 neighbors,or B is
joined to C through an intermediate vertex that itself has two-2
neighbors, in both cases contradicting the uniform nut property.

Figure 14. An expansion construction for uniform nut fullerenes.
The example is the expansion of one of the two identical caps of
48:16. Working out from the central motif of six pentagons,
preservation of the uniform pattern of-2 and+1 entries around
each vertex (black- and white-filled circles) in the null eigenvector
demands the pattern (-2, -2, +1, +1, +1, +1)2 on the outer
perimeter of each circuit of added six hexagons, which then repeats
until closure by a similar cap.

Figure 15. Caps from which an infinite series of uniform nut
fullerenes can be constructed. (a) The six-pentagon snake cap of
the D2+ series 36:14, 60:1196, 60:1197, 84:19272, 108:140 651,
108:140 652, ... . The cap is filled out with hexagons, then
circumscribed with hexagon strips presenting perimeters of type
(-2, -2, +1, +1)4 and (-2, +1, +1, +1)4, and can be terminated
consistently with a (rotated) copy of the same cap, to give a uniform
null-eigenvector. (b) A six-pentagon that can also be built up by
circumscribing, in this case with perimeters consisting of either
+1 entries only, or of (-2, -2, +1, +1) units, and terminated
consistently with a (rotated) copy of the same cap.
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corresponding to a zero eigenvalue of ann-vertex trivalent
graph can be converted to an eigenvector with the same
eigenvalue for a (n + 6)-vertex trivalent graph by an
expansion that raises a half-cube on any one of the original
vertices. Iteration leads to an infinite series of singular cubic
graphs, each with at least the nullity of its parent. Barring
accidents that introduce new possibilities for zero eigenval-
ues, this construction generates nut graphs from nut-graph
parents. As illustrated in the figure, the expansionalways

preserves the balanced nature andmaypreserve the uniform
nature of a null eigenvector. The half-cube construction
accounts at least partly for the rapid growth in the number
of nut graphs in Table 3. The two original 12-vertex nut
graphs generate 6+ 12 nonisomorphic 18-vertex nut graphs,
and these then generate a total of 228 distinct nut graphs
(103 uniform and 125 balanced) atn ) 24. Large, and
symmetrical, singular polyhedra can be constructed using
the half-cube construction: expansion of the dodecahedron
(η ) 4) on all 20 of the original vertices, for example, gives
a 140-vertex cubic polyhedron with fullIh symmetry, 60
4-gonal and 12 15-gonal faces, and withη ) 4 andn/2 - 1
positive eigenvalues.

5. CONCLUDING REMARKS

It has been shown that some fullerenes are nut graphss
graphs with a single null eigenvector in which all entries
are nonzero. All examples found so far have multiple
pentagon adjacencies, and it was proved that no uniform nut
fullerene contains isolated pentagons. In the examples found
so far, occupation of the single nonbonding orbital requires
an excess negative charge on the fullerene. However, some
fullerenes, though not qualifying as nut graphs, may be
considered as in some sense near to nut graphs. For instance,
there are ten singular isolated-pentagon fullerenes forn e
120, all of nullity one except C84 isomer 24 which has nullity
three. None of them are nut graphs, though C106 and C114, as
‘sporadic’ closed shell fullerenes,2 approach ‘nut graph status’
as they each have an eigenvalue very close to but not exactly
zero. Another measure of proximity to nut graphs might be
the size of the core in the kernel eigenvector of a graph with
η ) 1. Examples of such near-nut graphs are 96:170 895,
with 94 nonzero entries, and the isolated-pentagon fullerene
100:285 901 ()100:438), with 96 nonzero-entries.

From the chemical point of view, small polyhedra may
seem unlikely models for carbon cages because they include
small rings, with consequent angle strain, but explorations
of the sets of isomeric possibilities with 20 and 24 vertices
suggest that many, if not all, occupy at least local minima
on the potential energy surfaces for these numbers of carbon
atoms.24 Interestingly, for most of the nut graphs among these
polyhedra, as listed in Table 4, the null eigenvalue is at
positionn/2, i.e., it would be the doubly occupied HOMO
of theπ system of the neutral cage, and in the singly charged
radical cation the nut nature of the graph would be predicted
to lead to nonzero spin density on all atoms. This contrasts
with nut fullerenes, where, as discussed in section 3.2,
occupation of the NBO requires a high negative charge. The
two nut graphs withn ) 12, some 262 of the nut graphs
with n ) 18, and 54 699 of those withn ) 24 have adjacency
spectra with the requisite (n/2 - 1) positive andn/2 negative
eigenvalues.

Finally, it may be interesting to note that although chemical
fullerenes have planar graphs, nut graphs are not confined
to those of genus zero. Analogues of the fullerenes can be
defined among nonplanar graphs:25 those that can be embed-
ded in the projective plane are constructed by collapsing
antipodal vertices of centrosymmetric conventional fullerenes,
relying on the fact that the sphere is a double cover of the
projective plane. The eigenvectors of the projective-plane
graph follow by collapse of thegeradeeigenvectors of the

Figure 16. The smallest singular cubic polyhedra with nullityη
) 1-5. The polyhedra are numbered according to their vertex count
n, position in the order of generation by the plantri program10 and
point symmetry group. (a)η ) 1 (10:1,C2); (b) η ) 2 (6:1,D3h);
(c) η ) 3 (16:69,C3); (d) η ) 3 (16:206,C2V); (e) η ) 4 (12:5,
D6h); (f) η ) 4 (12:14,D2d); (g) η ) 5 (24:235 618,Oh); (h) η )
5 (24:272 254,D2).

Figure 17. Small cubic polyhedral nut graphs and their null
eigenvectors. The smallest cubic polyhedra with nut graphs as
skeletons are (a) 12:2 (C2) and (b) 12:6 (C1). Both are uniform nut
graphs. (c) Cubic polyhedral nut graphs that are neither uniform
nor balanced occur first at 24 vertices. An example (24:64) in which
the spin density would span a ratio of 100:1 is shown here.

Figure 18. An expansion of cubic graphs that preserves null
eigenvectors. The central vertex carries entrya and in a null
eigenvector the entries on its neighbors totalb + c + d ) 0.
Expansion of the central vertex to a half-cube, as shown on the
right, can be achieved without disruption of the null eigenvector if
new eigenvector entries are assigned as shown. Clearly, if the parent
graph is a uniform nut graph anda ) + 1, then the derived vector
is uniform, but ifa ) -2, then the derived vector is only balanced.
Conversely, if the parent vector is only balanced, then so is the
derived vector.
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spherical fullerene, preserving the eigenvalue. As the kernel
eigenvector of any balanced nut fullerene is totally sym-
metric, antipodal collapse of a centrosymmetric balanced nut
fullerene leads to a projective-plane fullerene that is also a
balanced nut graph. The centrosymmetric nut fullerenes with
n e 100 are 84:28 619 (D2h, uniform) and 84:51 548 (D2h,
neither uniform nor balanced), and both yield 42-vertex
projective-plane nut fullerenes on antipodal collapse. Col-
lapse of a centrosymmetric fullerene withη > 1 could also
conceivably lead to a nut graph.
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