
An Architecture Supporting Compensation-Aware
Monitoring∗

Christian Colombo
Dept. of Computer Science

University of Malta
christian.colombo@

um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Patrick Abela
Ixaris Ltd

Malta
patrick.abela@ixaris.com

ABSTRACT
To avoid large overheads induced by runtime monitoring,
the use of asynchronous log-based monitoring is sometimes
adopted — even though this implies that the system may
proceed further despite having reached an anomalous state.
Any actions performed by the system after the error occur-
ring are undesirable, since for instance, an unchecked ma-
licious user may perform unauthorized actions. Since stop-
ping such actions is not feasible, in this paper we investigate
the use of compensations to enable the undoing of actions,
thus enriching asynchronous monitoring with the ability to
restore the system to the original state in which the anomaly
occurred. Furthermore, we show how allowing the monitor
to adaptively synchronise and desynchronise with the system
is also possible and report on the use of the approach on an
industrial case study of a financial transaction system.

1. INTRODUCTION
The need for correctness of systems has driven research in
different validation and verification techniques. One of the
more attractive approaches is the use of monitors on systems
to verify their correctness at runtime. The main advantage
in the use of runtime verification over other approaches, is
that it is a relatively lightweight approach and scales up to
large systems — guaranteeing the observation of abnormal
behaviour.

Even though monitoring of properties is usually computa-
tionally cheap when compared to the actual computation
taking place, the monitors induce an additional overhead,
which is not always desirable in real-time, reactive systems.
In transaction processing systems, the additional overhead
induced by each transaction can limit throughput and can
cripple the user-experience at peak times of execution. One
approach usually adopted in such circumstances, is that of

∗The research work disclosed in this publication is funded
by the Malta National Research and Innovation (R&I) Pro-
gramme 2008 project number 052.

evaluating the monitors asynchronously with the system,
possibly on a separate address space. The overhead is re-
duced to the cost of logging events of the system, which
will be processed by the monitors. However, by the time
the monitor has identified a problem, the system may have
proceeded further.

In this paper, we adopt the use of the notion of compen-
sations from long-lived transactions in our setting to en-
able the undoing of system behaviour when an asynchronous
monitor discovers a problem late, thus enabling the system
to rollback to a sane state. We propose an architecture to
enable loosely-coupled execution of monitors with the sys-
tem, typically running synchronously, but allowing for de-
synchronisation when required and re-synchronisation when
desired.

2. COMPENSATIONS
Two major changes occurred which rendered traditional data-
bases inadequate in certain circumstances [4, 3]: on the one
hand there was the advent of the Internet, facilitating the
participation of heterogeneous systems in a single transac-
tion, and on the other hand, transactions became longer in
terms of duration (frequently, the latter being a consequence
of the former). These changes meant that it was possible for
a travel agency to automatically book a flight and a hotel
on behalf of a customer without any human intervention —
a process which may take time (mainly due to communica-
tion with third parties and payment confirmation) and which
may fail. These issues rendered the traditional mechanism
of resource locking for the whole duration of the transaction
impractical since it may cause severe availability problems,
and motivated the need for a more flexible way of handling
transactions amongst heterogeneous systems while at the
same time ensuring correctness. A possible solution is the
use of compensations [4, 3] which are able to deal with par-
tially committed long-lived transactions with relative ease.
Taking again the example of the flight and hotel booking,
if the customer payment fails, the agency might need to re-
verse the bookings. This can be done by first cancelling the
hotel reservation followed by the flight cancellation, giving
the impression that the bookings never occurred.

3. A COMPENSATION-AWARE MONITOR-
ING ARCHITECTURE

Larva [2] is a synchronous runtime verification architecture
supporting DATEs [2] as a specification language. A user
wishing to monitor a system using Larva must supply a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/153558128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Monitor System

 Events Player
 Log

 Compensate

 Stop

 Events

Figure 1: The asynchronous architecture with com-

pensations cLarva.

system (a Java program) and a set of specifications in the
form of a Larva script — a textual representation of DATEs.
Using the Larva compiler, the specification is transformed
into the equivalent monitoring code together with a number
of aspects which extract events from the system. Aspects are
generated in AspectJ, an aspect-oriented implementation for
Java, enabling automatic code injection without directly al-
tering the actual code of the system. When a system is
monitored by Larva generated code, the system waits for
the monitor before continuing further execution.

We propose an asynchronous compensation-aware monitor-
ing architecture, cLarva, with a controlled synchronous el-
ement. In cLarva, control is continually under the jurisdic-
tion of the system — never of the monitor. However, the
system exposes two interfaces to the monitor: (i) an inter-
face for the monitor to communicate the fact that a problem
has been detected and the system should stop; and (ii) an
interface for the monitor to indicate which actions should
be compensated. Therefore, the actual time of stopping and
how the indicated actions are compensated are left for the
system to decide.

Fig. 1 shows the four components of cLarva and the com-
munication links between them. The monitor receives sys-
tem events through the events player from the log, while
the system can continue unhindered. If the monitor detects
a fault, it communicates with the system so that the lat-
ter stops. Depending on the actions the system carried out
since the actual occurrence of the fault, the monitor indi-
cates these actions for compensation. It is important to
point out that the monitor can only compensate for actions
of which it is aware — the monitor can never alert the sys-
tem to compensate actions which have not been logged.

To support switching between synchrony and asynchrony,
a synchronisation manager component is added as shown
in Fig. 2. All connectors in the diagram are synchronous
with the system not proceeding after relaying an event until
it receives control from the manager. The following code
snippet shows the logic of the synchronisation manager:

c = ok ;set default control to ok
while (c != stop)
if (synch_mode)

e = in_event() ;read event from system
c = out_event(e) ;forward to monitor and get

its resulting state
out_control(c) ;relay control to system

else
par ;parallel execution

Compensate

 Manager
Events

SynDes

Stop/Cont
System Monitor

Events

Stop/Cont

Figure 2: The asynchronous architecture with syn-

chronisation and desynchronisation controls.

e1 = in_event() ;read from system
addToBuffer(e1) ;store in buffer
out_control(c) ;return control to system

with
e2 = readFromBuffer() ;read from buffer
c = out_event(e2) ;forward to monitor and get

its resulting state
end

The behaviour in which this architecture differs from cLarva

is that it can operate in both synchronous and asynchronous
modes and can switch between modes. Switching from syn-
chronous to asynchronous is trivial. The opposite requires
that the manager waits for the monitor to consume all the
events in the buffer and then allowing the system to proceed
further. So far this has not been implemented, but we aim
to implement it in the future as an improvement on cLarva.

In real-life scenarios it is usually undesirable to stop a whole
system if an error is found. However, in many cases it is not
difficult to delineate parts of the system to ensure that only
the relevant parts of the system are stopped. For example,
consider the case where a transaction is carried out without
necessary rights. In such a case, the transaction should be
stopped and compensated. However, if a user has managed
to illegally login and start a session, then user operations
during that session should be stopped and compensated.

4. CASE STUDY
We have applied cLarva on Entropay, an online prepaid
payment service offered by Ixaris Systems Ltd1. Entropay
users deposit funds through funding instruments (such as
their own personal credit card or through a bank transfer
mechanism) and spend such funds through spending instru-
ments (such as a virtual VISA card or a Plastic Mastercard).
The service is used worldwide and thousands of transactions
are processed on a daily basis.

We monitored four main types of properties: (i) life-cycle
properties (eg. a user may only perform monetary opera-
tions if s/he has been through registration, activation and
a successful login); (ii) real-time properties (eg. a user ac-
count which is inactive for more than six months should be
deactivated); (iii) rights properties (eg. a user cannot login
without a login right); and (iv) amount properties (eg. a
user cannot transfer more than X euros per day).

The case study was successfully executed on a database of
300,000 users with around a million credit cards. A number

1
www.ixaris.com

of issues have been detected through the monitoring system:
(i) certain logs were missing; (ii) some users were found to
be in a wrong state, eg. should be in a frozen state but
still active; (iii) the limit of the amount of money a user
can spend was in some cases exceeded. Monitoring of the
logs performed asynchronously ensured the identification of
issues, and through the compensation mechanism, identifi-
cation of actions to be taken to rollback the system to the
point where the violation occurred. At that point, one can
then either notify the operator of the issue, or trigger the
system’s own exception handling mechanism.

5. CONCLUSIONS
In this paper, we have presented an adaptive compensation-
aware monitoring architecture, and an implementation cLarva.
Combined with the notion of compensations where actions
of a system can be ‘undone’ to somewhat restore a previous
state, we reduce the effect of errors detected late (due to
asynchronous monitoring) by compensating for additional
events which the system may have performed in the mean-
time. We have demonstrated the use of this approach on a
financial transaction handling software. The advantage of
this case study is that compensations were already a well-
defined concept from the developers perspective.

This paper is an extended abstract of work which has been
accepted for publication [1].

6. REFERENCES
[1] C. Colombo, G. J. Pace, and P. Abela.

Compensation-aware runtime monitoring. In Runtime
Verification, 2010. To appear in Lecture Notes in
Computer Science, Springer.

[2] C. Colombo, G. J. Pace, and G. Schneider. Dynamic
event-based runtime monitoring of real-time and
contextual properties. In Formal Methods for Industrial
Critical Systems (FMICS), volume 5596 of Lecture
Notes in Computer Science, pages 135–149. Springer,
2008.

[3] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD
’87: Proceedings of the 1987 ACM SIGMOD
international conference on Management of data, pages
249–259. ACM, 1987.

[4] J. Gray. The transaction concept: Virtues and
limitations (invited paper). In Very Large Data Bases,
7th International Conference, Proceedings, pages
144–154. VLDB Endowment, 1981.

