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ABSTRACT. An algorithm is presented in which a polynomial 
deck, 'P D, consisting of m polynomiaTs of degree m - I, is anal­
ysed to check whether it is the deck of characteristic polynomi­
als of the one-vertex-deleted sub graphs of the line graph, H, of 
a triangle-free graph, G. We show that if two necessary condi­
tions on 'P D I identified by counting the edges and triangles in 
HI are satisfied, then one can construct potential triangle-free 
root graphs, G, and by comparing the polynomial decks of the 
line graph of each with 'P D I identify the root graph. 

1 Introduction 

The polynomial reconstruction conjecture was first posed in [2]. It is a vari­
ation of Ulam's and Kelly's reconstruction conjecture [3, 7] and states that 
the characteristic polynomial ¢(H) of a graph H can be reconstructed from 
PD(H), the polynomial deck (p~deck) of H consisting of the characteristic 
polynomials of the one-vertex-deleted subgraphs (with multiplicities). This 
conjecture is not settled yet but S. Simic proved it for connected graphs 
with the smallest eigenvalue bounded below by -2 [6]. These graphs in­
clude generalized line graphs. 

In [5], A. Schwenk calls the two problems of the reconstruction from the 
p-deck, PD(H), of the graph, H, and of the characteristic polynomial, 
4>(H), Problem B and Problem D respectively. 

In this article, we present an algorithm, Alg, in which a p-deck, P D, 
consisting of m polynomials of degree m - 1, is analysed and tested for 
the possibility of being the p-deck of characteristic polynomials of the one­
vertex-deleted subgraphs of the irregular line graph, H, of a triangle-free 
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graph, G. If either of two necessary conditions, PI and P2 , on P D, iden­
tified by counting the edges and triangles in H, fails, then P D does not 
correspond to the p-deck of the irregular line graph, H, of a triangle-free 
graph, G. Otherwise potential triangle-free root graphs, G, can be con­
structed and by comparing the p-decks of their line graphs with PD, the 
root graph can be identified. Because of the result in [61, this algorithm 
explicitely constructs the unique root graph, G and hence the character­
istic polynomial, 4>{LG), from the legitimate p-deck, P D, thus addressing 
Problem D for the line graph of a triangle-free graph. The way Alg is con­
structed is such as to find possible counter examples to problem B among 
the line graphs of triangle-free graphs. 

In section 2, we establish the conditions PI and P2, and show how the 
degree sequence of the root graph, G, of the irregular line graph, La, can be 
determined from a legitimate p-deck P D(La) provided that G is triangle­
free. In section 3, we present the algorithm and discuss its possible outputs. 
We conclude with an example showing the output of Alg in section 4. 

2 The Line Graph of a Triangle-Free Graph 

The graphs considered are finite and simple, i.e. without multiple edges 
or loops. The line graph of a root graph G (V{G), &(G)) is denoted 
by La, and its order is I&(G)I. For a graph, H, with adjacency matrix 
A(H) (= A) and vertex set V(H) {Wl,W2, ... ,wm }, the eigenvalues are 
the real numbers, .A, such that, if I is the identity matrix, .AI - A is not 
injective. The eigenvalues .AI, A2, ... , .Am, form the spectrum, Sp(H), of 
H. The characteristic polynomial 4>(A{H))(= 4>{H)) which is the product 
m m 

II (A - .Ai), is a polynomial L qi.Ai with integer coefficients qi and can 
i=l i=O 
be written as Det{Al A) = O. The coefficient qn 0, the constant term 
qo =Det(-A), -qn-2 is the number of edges and is the number of 
triangles in H. 

Definition 2.1 A Krausz partition K(H) of a line graph H = LG is the 
set of cliques (maximal complete subgraphs) such that every edge of LG is 
in exactly one clique and every vertex of LG is in exactly two cliques /4J. 

Two cliques, in K(H), of the line graph, H, of a triangle-free graph, have 
at most one vertex in common. Thus the set of vertices, adjacent to a given 
vertex in H, can be partitioned into no more than two complete subgraphs 
of H. 

It is well known that, from the p-deck of characteristic polynomials of 
vertex-deleted subgraphs of a graph H, one can readily determine, for each 
vertex Wi, the degree d;, and the number 11 of triangles through Wi. More­
over, if H is a line graph LG and u, v are adjacent vertices in G of degree 
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Xu. + 1, XtJ + 1 respectively then 
(i) the degree du.v of the edge uv in G as a vertex of H is Xu + Xv, Xu ~ X tJ ; 

and 
(ii) the number of triangles in H through the vertex uv is 

(1) 

where Tuv is the number of triangles in G containing edge uv. 

Lemma 2.1 For a two-partition into X, y E Z+ U {O} of P E Z+, the 

- integer T = ( ~ ) + ( ~ ) talces distinct values a8 x runs thro'l11Jh the 

values 0 to l~J. Moreover, T determines uniquely the couple (x, y), X ~ y. 

2 

Proof: Since x+y = p, then T x2_px+~ -~. Thus Tis a quadratic 
function in X and reaches its minimum value when x = ~. Furthermore T 
decreases steadily as x runs through the values 0 to L ~J . 0 

Remark: It is noted that only when (P, x) = (1,0) or when (p, x) = (2,1) 
is T = O. When p > 2, T > O. 

2.1 Two Conditions PI and P2 

Given P D and supposing it is the p-deck of characteristic polynomials of the 
one-vertex-deleted subgraphs of the line graph H of a triangle-free graph 
G, let {di }, 1::::; i .::; m, be the degree sequence of H and {11}, 1 ~ i .::; m, 
be the number of triangles in H through the vertices {Wi} of H. 

Definition 2.2 A p-deck P D is said to satisfy the condition P1 if for 
each i, 1 ::::; i ~ m, the equations 

(2) 

and 

(3) 

have a unique solution (Xi, Yi) of couples of non-negative integers with 
Xi ~ Yi· 

It is clear from Lemma 2.1 that for a p-deck that satisfies condition Pl 
there is a unique two-partition of each di • Also the p-deck of a line graph 
satisfies condition Pl. 
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Definition 2.3 Let 'P D satisfy condition PI with the appropriate set of 
two-partitions of the vertex degrees c4 = (Xi + Yi) for each i. Then, the 
end-edge-degree sequence of couples eed is {(Xi+ 11Yi+1): Xi ~ Yd. 

The sequence eed not only determines the two cliques that share a par­
ticular vertex in H = La but also K(H)1 the Krausz partition of H. It also 
determines the degrees of the end vertices of each edge in O. 

2.2 Extraction of the Root Graph 

Definition 2.4 The repeated degree sequence, dgr, is the list (with 
repetitions ) of the entries in each couple (Xi + 11 Yi + 1) of eed and is denoted 
by {(Zj + l)ti} where tj is the number of times Zj + 1 is repeated in dgr. 

Definition 2.5 A p-deck 'P D is said to satisfy condition P2 if for each 
distinct term Zj + 1 in dgr = {( Zj + 1 )t;}, there exists a positive integer mj 
such that tj = (Zj + l)mj. 

Remark: 

1. In the case when 'P D is the p-deck of the line graph of a triangle-free 
graph 0, then mj is equal to the number of edges with an end-vertex 
of degree Zj + 1 in O. 

2. When the partition of d;. is <h = 2Xi so that Xi = Yh the term Xi 

contributes twice to mj. 

Lemma 2.2 Let G be a triangle-free graph and let 'PD be the p-deck of 
its line graph. Let dgr {(Zj + l)ti} be derived from 'PD. If there exists 
mj E Z+ such that tj = (Zj + l)mj, then the root graph G of H has degree 
sequence dgg(G) = {(Zj + l)mi}. 

Proof: A vertex in II is shared by two cliques K X ;+l and KY;;+I in 
K(H) and contributes the couple (Xj + 1, Yj + 1) to eed. Each of the Zj + 1 
vertices of a clique K Zi+ 1 contributes the term Zj + 1 to dgr. So if the 
clique K zj+1 is repeated mj times in K(H), then the term Zj + 1 appears 
mj(zj + 1)(= tj) times in dgr. But the number of cliques K zj+1 in K(H) 
is the number of vertices of degree Zj + 1 in G. Thus Zj + 1 is repeated mj 

times in dgg. 0 
Remarks: 

1. That 'P D(LG) satisfies condition P2 follows from Lemma 2.2. 

2. The p-deck of La readily determines 1&( G) I but not the order of G. 
However, this is easily worked out from the sequence dgr( La). 
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Corollary 2.1 Let G be a triangle-free graph. Ijdgr(LG ) = {r~mi.ri)} then 
the order of G is L: mi. 

2.3 Conditions Nat Sufficient 

The condition PI alone is not enough to determine a line graph of a triangle­
free graph as shown by the graph shown in Figure 1. 

Figure 1. A Beineke Graph 

With care, one can construct a class of counter examples :F showing that 
not even the two conditions P1 and P2 together are sufficient to determine a 
line graph of a triangle-free graph. One such graph in:F, is F, of order 1162, 
shown in Figure 2. This is because at a vertex of degree 9, a decomposition 
into two cliques of order 6 and 5 gives the same number T of triangles as 
the decomposition, found in graph F, into three cliques of order 7, 3 and 2. 

Sj: ~ is denoted by ~ 
~ ~ 

-~ denotes 
~. 

F is the graph 

Figure 2. The Graph F 

Clearly graph F is not a line graph since the forbidden claw K 1.3 is an 
induced subgraph at every vertex of degree 9 but satisfies both conditions 
PI and P2 • 
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3 Recognition and Reconstruction 

Let H be a line graph of a triangle-free graph G. It is recalled that 

m 

4>'(H, A) L 4>(H - Wi, A). 
i=1 

By integrating, 4>(H) is determined, save for the constant term which is 
Det( -H). When a line graph, LG, is regular then its root graph, G, is 
either regular or semiregular bipartite [1], i.e. a bipartite graph in which 
the vertices in one part have degree k and those in the other part have 
degree j. The p-deck of a regular graph H immediately reveals the degree 
p of a vertex which is the largest eigenvalue of H so that 4>(p) = O. Thus 
Det( - A( H)) and hence 4>( H) is determined. 

For irregular graphs H (= LG), the algorithm Alg, which we now present, 
reconstructs, from a legitimate p-deck {4>( H - Wi, A)}, the characteristic 
polynomial 4>(H, A), provided G is a triangle-free graph. Though not suf­
ficient, conditions PI, P2 act as a filter to recognise the p-deck of the line 
graph of a triangle-free graph and the exceptional graphs in F. The al­
gorithm Alg is constructed in such a way that the root graph G is also 
identified. The exceptional graphs, denoted by the set F, are eliminated 
at the last stage of the algorithm when the p-deck of LG is compared with 
the original p-deck PD. 

8.1 The Algorithm Alg 

Given a p-deck P D {4>i} of m monic polynomials each of degree m - 1 
with the coefficient of xm - 2 being zero, Alg determines whether P D is the 
p-deck of the irregular line graph of order m of a triangle-free graph G and 
outputs 4>(LG ). 

Step 1: Let L: be the sum of all the polynomials in the p-deck. Then 
4> = J L: is determined. 

Step 2: The sequence dgl is {<4} where <4 is the difference in the coeffi­
cients of _Am - 2 in 4> and of _Am - 3 in 4>i' If di is a constant for all i, then 
the procedure is stopped since a possible La is not irregular. 

Step 3: The sequence Tri is {Ti} where 11 is half the difference in the 
coefficients of _Am - 3 in 4> and of _Am - 4 in 4>i. 

Step 4: IfP D does not satisfy condition PI! then it is not the legitimate p­
deck of the line graph of a triangle-free graph and the procedure is stopped. 
Otherwise the sequences eed and dgr are formed. The entries of a couple in 
eed give the degrees of the two end-vertices of an edge in G. So by running 
through the couples in eed, the function 'l/J is formed, defined by 'l/J( d) b, 
where b is the list of degrees of the vertices that would have a neighbour of 
degree din G provided that PD = PD(LG). 
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Step 5: If P D does not satisfy condition P2, then it is not the legiti­
mate p-deck of the line graph of a triangle-free graph and the procedure 
is stopped. Otherwise, a graph La (or perhaps an exceptional graph in 
:F) exists satisfying Pl and P2. If dgr is {(Zj + l)ti}, then dgg is derived 
from dgr. For each j, tj is divided by (Zj + 1) to give the multiplicity of 
the clique KZ;;+l in K,(La), which is equal to the mUltiplicity of the degree 
Zj + 1 in the degree sequence, dgg, of G. 

Step 6: By means of the function 'I/J and the degree sequence dgg, all 
possible root graphs G are constructed. For each possible root graph G, the 
set S(G) of characteristic polynomials of the one-vertex-deleted subgraphs 
of the line graph of each G, is calculated and compared with PD. 

Step 7: At this stage there are three possible results: 

Case 1: If S(G) = P D for exactly one graph G, then La and ¢(La) are 
determined uniquely. 

Case 2: If S( G) = P D for at least two non-isomorphic graphs G1 and G2 , then 
the two line graphs H1 = Lal and H2 = La2 are non-isomorphic since 
there exists a 1-1 mapping between a graph of o,rder greater than four 
and its line graph. In fact the only line graph that does not have a 
unique root graph is K3 whose root graphs are K 1,3 and K3 (the 
latter not being triangle- free). 

The pair of graphs Hl and H2 obtained would provide a counter 
example to the reconstruction problem B (which has already 
been proved false [5]). 

The constant terms Det( -A(Hl)) and Det( -A(H2)), which may be 
determined directly, are equal because according to [6], counter exam­
ples to the reconstruction problem D are not to be found among 
graphs with their smallest eigenvalue bounded below by -2, which 
include line graphs. This means that ¢(H) is unique. 

Case 3: Because Pi and P2 are not sufficient to recognize an irregular line 
graph of a tree it may happen that no element of the set S( G) is the 
same as P D so that the procedure is stopped. In this case, P D is a 
p-deck that satisfies conditions Pi and P2 but is not the p-deck of 
the line graph of a triangle-free graph. Either the p-deck P D is not 
legitimate or else we have a rare case when P D is the p-deck of a 
graph in :F, such as F of Figure 2. 

4 Example 

We tried Alg, using the software Mathematica, in programming mode, on 
several p-decks and most of them yielded one root graph. An example will 
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now be given to illustrate a case when more than one possible root graph 
is obtained. 

Example 4.1 

Let 'PD = {-I +6x2 5x4 + x6
, 

-1 +4x2 4x4 +x6 , 

-1 +4x2 _4x4 +x6 , 

2x + 4x2 - 2x3 5x4 + x6 , 

2x + 4x2 - 2x3 
- 5x4 + x6 , 

-1 + 2x + 7x2 - 2x3 
- 6x4 +x6, 

--1 + 2x + 7x2 - 2x3 
- 6x4 +x6

} 

Supposing that 'P D is the p-deck of a line graph H = LG , 

the degree sequence of H is dgl = {2, 3, 3,2,2,1,1}, 
the sequence of triangles through each vertex is Tri {I, 1, 1, 0, 0,0, O}, 
eed = {(I, 3), (2,3), (2,3), (2,2), (2,2), (1,2), (1, 2)}, 
dgr={1,1,1,2,2,2,2,2,2,2,2,3,3,3} {I3,28 ,33}, 

dgg = {13 , 24 J 31 }, 

JC = {3K b 4K2 , K3}. 

{ 

I ~ {2,2,3} 
'ljJ: 2 1-+ {3,3,2,2,2,2, I, I} 

3 ~ {2,2,1} 
If 'P D is the p-deck of the line graph of a triangle-free graph then there 

are two possible root graphs Gl, G2 shown in Figure 3. 

G, • L(GI) .. ;\ 
G2 l(G2 )" 1\ 
Figure 3. The graphs G}, G2 and their line graphs 

The p-deck of LG2 (= H) agrees with 'P D2 but that of LGI does not. 
So 'P D2 is the p-deck of the line graph of the triangle-free graph G2 with 
4>(H) = -2 - 5x + 4x2 + 12x3 

2X4 - 7x5 + x7
. 

For an irregular line graph H of a triangle-free graph G, this method 
proves to be a powerful tool to determine the root graph G, H itself and its 
characteristic polynomial, 4>(H), from a suitable p-deck PD. It is particu­
larly efficient when in the degree sequence of the triangle-free root graph, 
dgg, one or more terms larger than 1 have multiplicity one. Its efficiency 
is inversely proportional to the number of root graphs G whose degrees 
meet the constraints imposed by the sequence eed. Since this sequence 
determines the list of degrees of the neighbours of vertices of each distinct 
degree in the root graph G, it restricts very effectively the number of pos­
sible root graphs (very often to just one possibility). 
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