
A Simplified Model Of QuickCheck Automata∗

Kevin Falzon
University of Malta

kfal0002@um.edu.mt

Gordon J. Pace
University of Malta

gordon.pace@um.edu.mt

ABSTRACT
Placing guarantees on a program’s correctness is as hard as it is es-
sential. Several approaches to verification exist, with testing being
a popular, if imperfect, solution. The following is a formal de-
scription of QuickCheck finite state automata, which can be used
to model a system and automatically derive command sequences
over which properties can be checked. Understanding and describ-
ing such a model will aid in integrating this verification approach
with other methodologies, notably runtime verification.

1. INTRODUCTION
Verifying a program’s correctness is often non-trivial, and some-
times outright impossible. Several approaches towards verification
have been adopted over time, including testing [1] and runtime veri-
fication [3]. The aforementioned techniques are concerned with the
verification of a partial or full program with respect to a given prop-
erty, where a property characterises a set of expected behaviours in
some manner, as will be discussed shortly.

Testing always involves the observation and classification of a sam-
ple of executions [2]. One would typically provide a series of test
inputs, possibly generated automatically, which are then executed
and evaluated. Any discrepancies between the result of an exe-
cution and that which was expected indicate that there is a fault.
The expected output can be characterised by a property expressed
in several ways, such as through a list of input-output pairs or an
automaton describing the system’s behaviour. A common short-
coming of testing is that the test sample used is rarely exhaustive,
leaving certain code paths untested and leading to the persistence
of latent errors.

QuickCheck [5] is a automatic test case generation and execution
tool developed by QuviQ, which facilitates the testing of Haskell
or Erlang programs. In broad terms, QuickCheck ensures that a
property (a code block that returns true on success) holds over a
set of test cases. Test values are initialised using generator func-
tions, which allow a user to specify the structure of a property’s
input data. The randomness is derived from the distribution of val-
ues produced by the generators. QuickCheck also allows different
quantifiers to be used. For example, one could easily check a prop-
erty P (n) such that ∀n : N · P (n). Naturally, only a subset of
the possible values of n will be checked, meaning that the property

∗The research work disclosed in this publication is partially funded
by the Strategic Educational Pathways Scholarship (Malta). The
scholarship is part-financed by the European Union - European So-
cial Fund (ESF) under Operational Programme II - Cohesion Policy
2007-2013, “Empowering People for More Jobs and a Better Qual-
ity of Life”

will not be tested exhaustively over all inputs, yet confidence in the
system will increase as the number of analysed test cases grows.

QuickCheck also allows one to model a system as a finite-state au-
tomaton, from which different program execution paths can be de-
rived and tested automatically. This paper will focus on the defini-
tion and use of such automata, starting with a an informal descrip-
tion of their behaviour illustrated by a simple example, followed by
a formal definition of a simplified version of the automaton.

2. QUICKCHECK AUTOMATA
QuickCheck supports the creation of a class of finite-state automata
[5], henceforth abbreviated as QCFSA. A QCFSA describes some
aspect of the system by modelling a set of possible function call
sequences, or program traversals. Each QCFSA transition cor-
responds to a function call. QuickCheck traverses the automa-
ton, choosing arcs at random, and generates a sequence of calls
(a trace). The trace can then be executed, and its result may be
checked within a QuickCheck property.

Every arc has an associated precondition and postcondition func-
tion, which returns a boolean value. The precondition function is
used to limit the generation of certain traces, with a path not being
chosen whenever its precondition fails. A state may have multiple
outgoing arcs for the same function call, provided that not more
than one precondition returns true at that point in the traversal for
that call. The postcondition function is checked while a trace is be-
ing run, following the execution of the transition’s associated func-
tion. If the postcondition returns anything other than true, then the
trace is considered to be a failing test.

A QCFSA may also store state data, which can be updated during a
transition by associating a next state data function. This function is
invoked after a postcondition evaluates to true, and returns the next
state’s data based on the current state data and the result returned by
the function once it terminates. Additional auxiliary functionality,
namely the ability to weight transitions, will not be considered in
this exposition.

2.1 An Example
Consider a simple controller operating a light, which can either
be on or off. The light may be manipulated by calling one of
two functions, switch_on() and switch_off(), which re-
turn the light’s new state.

Assuming that the light is initially off, this system could be mod-
elled using a two-state automaton, as illustrated in Figure 1. This
automaton could be written as a QuickCheck automaton as follows:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/153558106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Light Switch FSA

• The initial state is off, and is specified as a return value

i n i t i a l _ s t a t e () −>
o f f .

• For clarity, the initial state data is defined as a tuple, relating the
current light’s status to a token. The state data could be any valid
Erlang data structure.

i n i t i a l _ s t a t e _ d a t a () −>
{ l i g h t , o f f } .

• Transitions are defined as functions of the form

S(D)→ [{S′, {call,Module, Function,Args}}].

where S and S′ are the current and next state, respectively. On per-
forming a transition, the system will invoke Function(Args)
within the specified Module. The transition function returns a list,
as one may define multiple outgoing transitions from a given state.
D is the current state data, and references to D may only be made
within the Args parameter. In the example under consideration,
the transitions are defined as

o f f (_D) −>
[{ on , { c a l l , ?LIGHT_MODULE, swi tch_on , [] } } ,

{ o f f , { c a l l , ?LIGHT_MODULE, s w i t c h _ o f f , [] } }] .

on (_D) −>
[{ on , { c a l l , ?LIGHT_MODULE, swi tch_on , [] } } ,

{ o f f , { c a l l , ?LIGHT_MODULE, s w i t c h _ o f f , [] } }] .

where ?LIGHT_MODULE is the name of the module implementing
the switching functions.

• A precondition from state S to S′ performing a Call with state
data D has the general signature

precondition(S, S′, D,Call)→ B

As all paths must be generated, including self-looping state transi-
tions, the precondition is set to return true for all possible transi-
tions. Thus,

p r e c o n d i t i o n (_ , _ , _ , _) −>
true .

• A postcondition from state S to S′ performing a Call with state
data D has the general signature

postcondition(S, S′, D,Call, Result)→ B

Postconditions can be expressed in several ways. One can opt to
specify the correct behaviours and default to false for undefined
behaviours. Conversely, one may define exceptions for incorrect
behaviours, as in the following

p o s t c o n d i t i o n (on , o f f , { l i g h t , on } , _ , R) −>
R == o f f ;

p o s t c o n d i t i o n (o f f , on , { l i g h t , o f f } , _ , R) −>
R == on ;

p o s t c o n d i t i o n (_ , _ , _ , _ , _) −>
true .

The postcondition ensures that the result returned matches the value
expected for that light-switch transition. The preconditions as de-
fined above fail to consider the result of executing a light-changing
function whilst remaining in the same state. Also, as only the func-
tion’s return value is relevant, the state data clause may be omitted.
The precondition should thus be generalised to consider any incom-
ing transition, as follows

p o s t c o n d i t i o n (_ , o f f , { l i g h t , _ } , _ , R) −>
R == o f f ;

p o s t c o n d i t i o n (_ , on , { l i g h t , _ } , _ , R) −>
R == on ;

p o s t c o n d i t i o n (_ , _ , _ , _ , _) −>
true .

• Similarly, the next state data function has a general signature of

next_state_data(S, S′, D,Result, Call)→ D′

In this case, on a successful transition, the next state should simply
be updated with the light’s new status. Thus,

n e x t _ s t a t e _ d a t a (_ , _ , _ , R , _) −>
{ l i g h t , R} .

2.2 Running Tests
The light switch model was tested extensively using the automa-
ton as defined previously. QuickCheck did not succeed in finding
an error-inducing counterexample, which suggests (but does not
prove) that the program correctly mirrors the model. So as to in-
duce an error, an invalid implementation of the switch_on()
function was tested. Instead of returning an on state, the function
was set to return an error. QuickCheck succeeded in finding a fail-
ing trace, represented symbolically as

[{set,{var,1},{call,light,switch_on,[]}},
{set,{var,2},{call,light,switch_off,[]}}]

This was then minimised to a single call, namely

[{set,{var,1},{call,light,switch_on,[]}}]

3. FORMALISING QCFSA
The following section presents a formal description of a simplified
model of QCFSAs. The model is simplified in that it assumes that
all operations are free from side-effects. It also assumes that func-
tions are invoked without any parameters, which in practical terms
would require that arguments are passed through a global state data
structure.

Throughout the text, the term “event” refers to a symbolic call cor-
responding to an implemented function in the system under test.
The automata being considered are assumed to be deterministic,
using the definition provided in Section 3.1.1.

3.1 The Model
If Θ represents a system state, a QCFSA Q is described by a tuple
〈Q, q0,Σ, θ0, run,→〉, where

Q is a set of states

q0 ∈ Q is the initial state

Σ is an alphabet of events representing functions in the system un-
der test

θ0 is the initial global system state containing all of the program’s
state variables, includingQ’s local state data

run ∈ Σ→ Θ→ Θ is a function which returns the updated sys-
tem state on executing a given event’s associated function
with the specified system state data

→⊆ Q× (2Θ × Σ× 2Θ ×Θ→ Θ)×Q is a transition relation

The transition relation → serves to associate the preconditions,
postconditions and state-changing actions to be performed on call-
ing an event. Pre- and postconditions are characterised by sets of
valid system states. Thus, a precondition is satisfied if the cur-
rent system state is a member of the defined set. Similarly, a post-
condition is satisfied if the system state entered after executing an
event’s associated function is a member of the set of valid postcon-
dition states. As mentioned previously, a transition may specify a
state-changing action, which is primarily used for updating the au-
tomaton’s private state data. This action is performed whenever a
postcondition executes successfully.

Moving from state q to q′ on event a with system state sets pre and
post and executing state-changing action α is denoted by

q
{pre} a {post}−−−−−−−−−→

α
q′

def
= (q, (pre, a, post, α), q′)

which is simply a more elegant way of representing a transition.

3.1.1 Determinism
The model describes automata that are deterministic. Given any
pair of transitions emanating from a state, either

• the transitions share the same state changing action, pre- and
postconditions and lead to the same state, implying that the
transitions are identical, or

• the transitions have non-intersecting preconditions, meaning
that for each event, only at most one transition can be pursued

Formally,

∀a, q′, q1, q2, pre1, pre2, post1, post2, α1, α2·
((q′, pre1, a, post1, α1, q1) ∈→ ∧
(q′, pre2, a, post2, α2, q2) ∈→) ⇒

((pre1 = pre2 ∧ post1 = post2 ∧ α1 = α2 ∧ q1 = q2)∨
(pre1

⋂
pre2 = ∅))

Example 3.1.1
The light-switch model described in Section 2.1 can be formalised
as

〈 Q, off,E, {(light, off)}, run,
{(S, (pre, e, {post}, λt · post), S′) |

pre ∈ 2Θ, θ ∈ 2Θ, S ∈ Q,S′ ∈ Q, e ∈ E,
post = run(e, θ) ∧ {(light, S′)} = post}〉

where
Q = {off, on},
E = {switch_on, switch_off},
run = λe, t·
| (e = switch_on)→ {(light, on)}
| (e = switch_off)→ {(light, off)}

3.2 Configurations
3.2.1 Single Events

The configuration of a QCFSA consists of a pair (q, θ), where q
is the current state and θ is the global system state at that point in
the execution. Performing a step from a configuration (q, θ) to a
valid configuration (q′, θ′) on executing an event a is denoted by
(q, θ)

a⇒ (q′, θ′), and is possible if

∃pre, post, α, θm·
q
{pre} a {post}−−−−−−−−−→

α
q′ ∧

θ ∈ pre ∧
θm =run(a, θ) ∧
θm ∈ post ∧
θ′ =α(θm)

A transition leads to a bad configuration if its postcondition is vio-
lated once an event is executed. As described earlier, a postcondi-
tion is violated if the new state is not part of the valid system state
set. Moving to a bad configuration under event a is thus defined as

(q, θ)
aZ⇒ ⊗ def

=
∃pre, post, α, q′·

q
{pre} a {post}−−−−−−−−−→

α
q′∧

θ ∈ pre ∧
run(α, θ) /∈ post

3.2.2 Event Sequences
Trivially, a configuration does not change if no event is executed.
Thus, if ε is the null event,

(q, θ)
ε⇒ (q′, θ′)

def
= q = q′ ∧ θ = θ′

Given a sequence of events a : s, where s can itself be another
sequence, moving from one configuration to another valid config-
uration whilst executing the sequence can be defined recursively
as

(q, θ)
a:s⇒ (q′, θ′)

def
=

∃q′′, θ′′ · (q, θ) a⇒ (q′′, θ′′) ∧ (q′′, θ′′)
s⇒ (q′, θ′)

This result assumes that any two consecutive steps can be combined
into a single step over a sequence. Conversely, a sequence can
be decomposed at any point into two sub-sequences. This can be
described formally using the equality

a1⇒;
a2⇒=

a1a2⇒ .

A system cannot move to a bad configuration on an empty event,
that is,

(q, θ)
ε

6Z⇒ ⊗

Moving to a bad configuration given a sequence of events is defined
as

(q, θ)
s++<a>Z=⇒ ⊗ def

=

∃q′, θ′ · (q, θ) s⇒ (q′, θ′)
aZ⇒ ⊗

with the last step leading to a bad configuration.

Example 3.2.1
With reference to the light-switch model described in Section 2.1,
the following expressions hold

(off, {light, off}) switch_on
=⇒ (on, {light, on})

If switch_on() is implemented incorrectly and does not return
on,

(off, {light, off}) switch_onZ=⇒ ⊗

3.3 Describing Traces
Using the aforementioned definitions, one may characterise two
important sets related to the traversal of an automaton Q, these
being the set of negative traces N(Q) and the set of testable traces
T (Q).

N(Q) is the set of traces which, starting from the automaton’s ini-
tial configuration, lead to a bad configuration. Thus,

N(Q)
def
= {w : Σ∗ | (q0, θ0)

wZ⇒ ⊗}

T (Q) refers to the set of traces with which the automaton is con-
cerned, that is, the traces which it tests. Thus,

T (Q)
def
= {w : Σ∗ | ∃q, θ · (q0, θ0)

w⇒ (q, θ)}
⋃
N(Q)

The task of checking whether or not a trace w is valid with respect
to a property described by an automaton Q can thus be reformu-
lated into a membership problem. Trace w would be valid as long
as w /∈ N(Q). In general, a program could be considered as be-
ing valid with respect toQ if it can never produce a trace in N(Q)
when starting from the initial conditions set byQ.

4. QUICKCHECK AND RUNTIME VERIFI-
CATION

By introducing the concept of the set of negative traces for an au-
tomaton Q, parallels can be drawn between QuickCheck automata
and runtime verification monitors. In simple terms, runtime veri-
fication is concerned with checking whether a given trace (partial
in the case of online monitoring) is a member of the set of valid
program behaviours, defined by one or more monitors [4]. Often,
a monitor describes the invalid program behaviours, and thus one
checks for non-membership. Thus, to translate a QCFSA Q into a
runtime monitor, one would have to define a monitor which recog-
nises N(Q).

Providing the ability to translate between QCFSA and runtime mon-
itors (and possibly back) would aid verification by allowing testing
to continue beyond the system’s development phase. It would also
allow one to test critical parts of a system exhaustively whilst de-
laying the verification of non-essential components until runtime.
Alternatively, one may switch between testing and verifying a com-
ponent at runtime based on the computing resources available, in-
creasing confidence in a system by testing it during lulls in pro-
cessor demand. The translation could also incorporate details or
statistics obtained during testing in order to guide runtime verifica-
tion and minimise the number of unnecessary or repeated checks.

Based on preliminary efforts in translating between QCFSA and
runtime verification monitors, it appears that most of the issues en-
countered stem from the fact that QuickCheck operates as a gener-
ator, whilst runtime verification listens on a stream of events that
is generated by an external entity. This may lead to problems re-
lated to non-determinism and the ordering of operations related to
a transition.

5. CONCLUSIONS AND FUTURE WORK
This paper has presented an overview of QuickCheck automata,
illustrating their operation through an example and providing a for-
mal description of a restricted automaton. It also defined the notion
of an automaton’s set of testable and negative traces.

The model detailed in this text is restricted primarily in that it is
deterministic and assumes that functions have no side-effects. A
global system state serves in preserving the model’s computational
capabilities whilst mitigating the problems that arise from a lack of
function arguments. Some of the model’s restrictions may have to
be lifted in order to facilitate the integration of this approach with
other testing techniques.

6. REFERENCES
[1] Paul Ammann and Jeff Offutt. Introduction to software

testing. Cambridge University Press, Cambridge, UK, 2008.
[2] Antonia Bertolino. Software testing research: Achievements,

challenges, dreams. In Future of Software Engineering, 2007.
FOSE ’07, pages 85–103, Washington, DC, USA, 2007. IEEE
Computer Society.

[3] Séverine Colin and Leonardo Mariani. Model-Based Testing
of Reactive Systems, chapter 18 Run-Time Verification, pages
525–555. Springer, 2005.

[4] Christian Colombo. Practical runtime monitoring with impact
guarantees of java programs with real-time constraints.
Master’s thesis, University Of Malta, 2008.

[5] Quviq AB. QuickCheck Documentation Version 1.191, March
2010.

