
Model Checking User Interfaces

Abigail Cauchi
Dept of Computer Science

University of Malta
acau0004@um.edu.mt

Gordon Pace
Dept of Computer Science

University of Malta
gordon.pace@um.edu.mt

Sandro Spina
Dept of Computer Science

University of Malta
sandro.spina@um.edu.mt

Abstract

User interfaces are crucial for the success of most
software projects. As software grows in complexity
there is a similar growth in the user interface com-
plexity which leads to bugs which may be difficult to
find by means of testing. In this paper we use the
method of automated model checking to verify user
interfaces with respect to a formal specification. We
present an algorithm for the automated abstraction
of the user interface model of a given system, which
uses asynchronous and interleaving composition of a
number of programs. This technique was successful at
verifying the user interface of case study and brings
us one step forward towards push button verification.

Index Terms

Model Checking, User Interfaces, Formal Verifica-
tion, Temporal Logic, Human Computer Interaction

1. Introduction

The human component of software systems is often
overlooked, but it is an extremely important factor in
the success of a software project. A good number of
system failures (60% to 90%) have been attributed the
lack of handling of possible erroneous human actions
which contribute to an unpleasant user experience [1].
Catering for avoiding the possibility of erroneous hu-
man actions is therefore crucial. One should also check
the user interface for bugs. As the user interface grows
larger, the possibility of introducing bugs, similarly
becomes larger, possibbly becoming more difficult to
find by means of testing.

From relevant work such as [2], [3], the missing
block is the automation of the abstraction process;
this is the main focus of this paper. In this paper we

present a technique which can be used to automati-
cally abstract the user interface of a given program
and modeling user behavior. The resulting model is
used for verification by model checking. Since we are
dealing with reactive systems, models are built using
a labeled transition system (LTS) and temporal logic
is used to for formal specification. We present a tool
which was implemented using this approach and show
how it can be used in a practical scenario.

2. Background

Two main tasks required for model checking are
building a formal model of the system to be verified
and formalizing a specification which the model should
satisfy. The model checking problem is whether the
model satisfies the specification. A model checker’s
output indicates whether the specification is satisfied or
not, and possibly generates a diagnostic to demonstrate
the result. The diagnostic may then be visualized to
help tracing a possible bug. The problem with model
checking is that the process is exponential, however,
implementing abstractions on a complex model might
still render the model checking process to be feasible.
This however, may introduce false positives, i.e. the
model checker may verify that the property does not
hold when it does.

User interfaces are reactive systems; these are de-
scribed as systems which continuously interact with
their environment and often do not terminate [4], [5].
Since termination is not guaranteed, we cannot reason
about the system’s input-output behavior, but we need
to reason about the system’s state which captures the
values of variables at a particular instance of time [4].
In order to model our system, we need to describe how
the state of the system changes when a particular action
occurs. These state transitions may be described by
transition relations between the state before an action
occurs and the state after the action occurs [4]. To

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/153558101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

formalize specifications about user interfaces, temporal
logic is ideal since models contain several states and it
has a dynamic notion of truth which allows a formula
to hold in some states and not hold in others.

The regular alternation free mu-calculus is a tem-
poral logic which allows us to specify safety, liveness
and fairness properties about labeled transition systems
(LTSs) [6]. The regular alternation free mu-calculus is
made up of three types of formulas: action formulas,
regular formulas and state formulas; the syntax in
BackusNaur form (BNF) of each is given below.

Action formulas are made up of action formulas,
labels and boolean operators. In the BNF below, A
is an action formula and a is a label in the LTS.
The boolean operators have the following semantics:
a label is always said to hold, a label satisfies ¬A
iff it does not satisfy A; it satisfies A1 ∨ A2 iff it
satisfies A1 or it satisfies A2; it satisfies A1 ∧ A2 iff
it satisfies both A1 and A2; it satisfies A1 ⇒ A2 iff
it does not satisfy A1 or it satisfies A2; it satisfies A1

≡ A2 iff either it satisfies both A1 and A2, or none
of them.

A ::= a | ¬A | A ∨A | A ∧A | A⇒ A | A ≡ A

A regular formula R, as described in the BNF
below, is made up of nil, the empty operator, . the
concatenation operator, | the choice operator, ∗ the
transitive and reflexive closure operator, and + the
transitive closure operator. The semantics of each are
the same as those for regular expressions.

R ::= a | nil | R.R | R | R | R ∗ | R+

In he BNF below, S is a state formula, < R > F
and [R]F are the possibility and necessity modal
operators, @(R) is the infinite looping operator, µX.F
and νX.F are the minimal and maximal fixed point
operators, and X is a propositional variable. The
fixed point operators act as binders for the variables
X in a way similar to quantifiers in first-order logic.
In each meaningful µX.F or νX.F formula, X is
supposed to have free occurrences inside F . State
formulas are assumed to be syntactically monotonic
(i.e., in each fixed point formula µX.F or νX.F ,
free occurrences of X in F may appear only under
an even number of negations and/or left-hand sides
of implications) and alternation-free (i.e., without
mutually recursive minimal and maximal fixed point
variables). Syntactically, all binary operators on state
formulas are left-associative.

S ::= true | false | ¬S | S ∨ f | S ∧ S | S ⇒ S |

S ≡ S | < R > S | [R]S | @(R) | X | µX.F | νX.F

2.1. The Model Checking Process

We shall demonstrate the model checking process
with a text processor model. In table 1, the text pro-
cessor is modeled and specified, after being verified,
the counterexample generated may be seen in the same
table. The text processor is modeled as a labeled
transition system on which a specification written in
the regular alternation free mu-calculus is verified. The
text processor starts at the Text Processing state
and when a help file is requested, it may either go to the
Idle state or to the Help File Display state.
From Idle, it may either display the help file, loop in
Idle or continue processing. It is required that when
the user requests a help file, it is always displayed at
some later state. This property is formalized in table 1.
From the LTS described, one can see that this property
does not hold since the text processor may loop to
infinity in the Idle state. After verifying the model,
the model checker may produce a counterexample or
a family of counterexamples to show why the property
does not hold as shown in table 1.

2.2. Dealing with the State Explosion Problem

As mentioned previously, a problem one needs to
deal with when model checking a system is the state
explosion problem. In order to be able to verify com-
plex systems, among other techniques (mentioned in
[4]) abstraction may be used. When reasoning about
reactive systems that involve data paths, the use of
abstraction seems to be essential [4].

Given a programming or specification language,
abstract interpretation consists in giving several seman-
tics linked by relations of abstraction [7]. A semantic is
a mathematical characterization of a possible behavior
of a system. A precise abstraction describes the actual
execution of the system very closely; this are called
the concrete semantics. The concrete semantics of the
type of system we would like to verify is a set of
execution traces where each state corresponds to a
line of code. This type of abstraction is the first step
towards modeling the user interface.

Due to the state explosion problem of model check-
ing, we are mostly interested in types of abstractions
which under-approximate the system by removing
states which are irrelevant to the types of properties
being verified. There are several ways of doing this,
the simplest way would be by retaining states which
are directly relevant, such as lines of code which

Model Counterexample

Property: [not ("Idle")*]<any*."Start Processing".any*."Help File"> true

Table 1. The Model Checking Process

are directly related to user interfaces. Other under-
approximations are described in [2] which include the
grouping of related components and the consideration
of independent subsystems which may be verified
separately, such as different windows.

3. Human-Computer Interaction

HCI is the study of interaction between people and
computers. It is often regarded as the intersection of
computer science, behavioral sciences, design and sev-
eral other fields of study. Interaction between users and
computers occurs at the user interface. A sister field of
research to HCI is MMI (Man-Machine Interaction) or
HMI (Human Machine Interaction). In [8] a definition
is given as follows: “Human-computer interaction is a
discipline concerned with the design, evaluation and
implementation of interactive computing systems for
human use and with the study of major phenomena
surrounding them.”

In HCI we are mostly concerned with usability
issues. In [9], Nielsen defines usability is as follows:
“Usability is a quality attribute that assesses how easy
user interfaces are to use. The word “usability” also
refers to methods for improving ease-of-use during the
design process.” Alternatively, in [10], Bevan interprets
usability as “quality of use”. What Bevan points out
as a flaw in Nielsen’s definition of usability is that

software can have a user interface which is easy
enough to use making the software usable in Nielsen’s
sense, but the features the software might have might
be useless and cannot be used as a utility. Therefore
a more refined definition of usability would be how
capable a software package is at helping users achieve
their intended goals, providing a quick way of doing
things by a good user interface design.

Common user interface design principles have been
identified by various papers such as [9] and [11], some
of which are listed below:

1) Strive for consistency
2) Enable frequent users to use shortcuts
3) Offer informative feedback
4) Design dialog to yield closure
5) Offer simple error handling
6) Permit easy reversal of actions
7) Support internal locus of control
8) Reduce short-term memory load

Bugs in coding may lead to other situations not
mentioned; specifying a good design and implement-
ing it make way for different types of errors. Apart
from the need for assurance that a user interface is
designed following good principles, one should also
check whether it is implemented correctly.

4. Model Checking User Interfaces

From figure 1 we can get a general picture of the
process of model checking user interfaces. A system
is abstracted to obtain a model of its user interface
which is translated and input to the model checker.
Subsequently, properties are specified, formalized and
input to the model checker. Finally, the model checker
is run to obtain a result of whether the property holds
or not, and possibly a counterexample is visualized.

Here we shall describe the technique for automating
the process of abstracting the user interface model. The
systems we are handling are a family of programs,
consisting of the Main method and a number of event
handlers which handle user interaction. To model user
behavior, we use the asynchronous and interleaving
composition of all these programs. This composition is
an automated process handled by the model checker.

To abstract the user interface, we build an inter-
procedural control flow graph (ICFG) for each program
using standard techniques [12]. At this stage, control
flow issues, such as the handling of recursion and
catering for the object oriented paradigm, should be
considered. The next step is to discard all nodes which
are irrelevant to the user interface, while retaining the
correct control flow and anything contributing to the
correctness of the properties we are verifying, such as
loops (for the correctness of liveness properties).

Let us look at a method of an event handler and
perform the abstraction to get a better idea of this
procedure. Consider the event handler code in figure
2. The concrete graph is the first step towards ab-
straction; a complete ICFG of the event handler is
built. The abstract graph is the resulting ICFG after
the abstraction is performed. One can note that the
only control structure retained here is the structure
containing user interface relevant code, and the only
line of code retained is the one directly related to the
user interface (by the label).

5. Case Study and Evaluation

This technique was used to implement a tool for sys-
tems written in C# .NET 1.0 and 2.0 which produces
graphs to be used as input to CADP’s Evaluator [6]
model checker. CADP provides tools for representing
LTSs in a compact format, reducing and performing
manipulations on them. Evaluator allows us to write
properties in the regular alternation free mu-calculus
described in section 2.

A case study was carried out on a system developed
using C# .NET 2.0 consisting of 2, 631 lines of code.
This system is a simulator for a fuzzy logic controller

and it is made up of a main window with a main
menu. Menu items are to be enabled and disabled
when appropriate, and when selected, a new window
is opened to allow the user to work on the selected
item. 26 properties were defined which were of the
following nature:

• Properties related to the behavior of menu
items – Checking that they are enabled when they
should be and that they behave as necessary.

• Window disposal – Since the user interface uses
several windows, we have checked that when one
is disposed, no others are disposed mistakenly.

• Window resizing – This system makes use of
window resizing and we make sure that this
behaves as specified.

• Error and warning handling – We checked that
errors and warnings are displayed when necessary.

• Component behavior – General behavior of
components such as buttons and labels were ver-
ified.

Popular classes of properties include safety
(nothing bad ever happens), liveness (something
good eventually happens) and fairness properties
(considering only fair execution paths). We see an
example of a property from each class.

• Safety Property – Two labels are to be enabled
in a mutually exclusive fashion.
[any*.Label1Enabled.
(not label1Disabled)
*.Label2Enabled] false

• Liveness Property – When a user closes a win-
dow, eventually it is closed.
<any*.CloseWindowCommand.
(any*.Error)*.any*.
WindowClosed> true

• Fairness Property – When the Select button
is clicked and no error occurs, the window is
resized.
[any*.SelectClicked.(not Error)*]
<(not WindowSizeChanged)*.
WindowSizeChanged> true

Our model consisted of a total 143 states with 73
different labels. The average time taken for proper-
ties to be verified is 45s. The property which took
longest to be verified was the one which generated a
counterexample, the time included its verification and
counterexample generation.

6. Conclusions and Future Work

In this paper we presented a technique to automati-
cally abstract a system’s user interface for verification
by model checking. The asynchronous and interleaving

Figure 1. System Architecture

Figure 2. Abstraction Process

composition of a number of programs was used to
model user behavior, where this process of composition
was automated. A tool was developed implementing
this technique and used on a case study to demonstrate
how automatic user interface abstraction for verifica-
tion by model checking may be applied.

A number of possibilities for future work have been
identified. One of the most interesting issues is how
abstraction is performed. In this paper we abstracted
the user interface using an under-approximating ab-
straction, however one may look into precise approx-
imations by program slicing [13]. Due to the pre-
cise approximation and concrete semantics of program
slicing, this would work well on a system with a
small state space, however, for more complex systems,
further abstraction would be necessary. Another form
of abstraction is property driven abstraction where if
one wants to verify properties about one variable, all
irrelevant details are discarded. Combining property
driven abstraction with program slicing techniques
could be a step towards a precise abstraction relevant to
the property being verified. Additionally, in [2] a few
possible abstractions on user interfaces are discussed
which include grouping fields, considering independent
subsystems and the application state.

On another note, web user interfaces also pose
an interesting problem, their apparent simplicity may
reveal several underlying issues. For example, to model
the user interface of a simple HTML page, one should
keep in mind client-server interaction. The techniques
presented in this paper combined with techniques used
to model check website may lead to an interesting
analysis.

References

[1] J. Preece and Y. Rogers, Human-Computer Interaction.
Addison-Wesley, 1994.

[2] M. B. Dwyer, V. Carr, and L. Hines,
“Model checking graphical user interfaces using
abstractions,” in Proceedings of the Sixth European
Software Engineering Conference (ESEC/FSE 97),
M. Jazayeri and H. Schauer, Eds. Springer–
Verlag, 1997, pp. 244–261. [Online]. Available:
citeseer.ist.psu.edu/20430.html

[3] R. E. K. Stirewalt and G. D. Abowd, “Composition
property analysis: a new strategy for model checking
user-interface designs,” Department of Computer Sci-
ence, Michigan State University, East Lansing, Michi-
gan, Tech. Rep. MSU-CSE-99-30, August 1999.

[4] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled,
Model checking. Cambridge, MA, USA: MIT Press,
1999.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud,
“The synchronous data-flow programming language
LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9,
pp. 1305–1320, September 1991.

[6] H. Garavel, F. Lang, and R. Mateescu, “An overview of
CADP 2001,” European Association for Software Sci-
ence and Technology (EASST) Newsletter, vol. Volume
4, pp. Pages 13–24, August 2002.

[7] P. Cousot and R. Cousot, “Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints,” in POPL
’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages.
New York, NY, USA: ACM, 1977, pp. 238–252.

[8] Hewett, B. Card, Carey, Gasen, Mantei, Perlman,
Strong, and Verplank, “Curricula for human-computer
interaction,” ACM SIGCHI, New York, NY, USA,
Tech. Rep., 1992, chairman-Thomas T. Hewett.

[9] J. Nielsen, Usability Engineering. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1995.

[10] N. Bevan, “Usability is quality of use,” in Proceed-
ings of the Sixth International Conference on Human-
Computer Interaction. Elsevier Science, 1995, pp.
349–354.

[11] B. Shneiderman, Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
ADDISON-WESLEY, 1998.

[12] F. Nielson and H. R. Nielson, “Interprocedural
control flow analysis,” in European Symposium on
Programming, 1999, pp. 20–39. [Online]. Available:
citeseer.ist.psu.edu/nielson99interprocedural.html

[13] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” in Proceedings of
the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, vol. 23, Atlanta,
GA, June 1988, pp. 35–46. [Online]. Available:
citeseer.ist.psu.edu/horwitz90interprocedural.html

