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A large portion of the software development industry relies on testing as the main technique
for quality assurance while other techniques which can provide extra guarantees are largely
ignored. A case in point is runtime verification [3, 9, 7, 12] which provides assurance that a
system’s behaviour is correct at runtime. Compared to testing, this technique has the advantage
of checking the actual runs of a system rather than a number of representative testcases.

Based on experience [6, 5] with local industry, one of the main reasons for the lack of uptake
of runtime verification is the extra effort required to formally specify the correctness criteria to
be checked at runtime — runtime verifiers are typically synthesised from formal specifications
(e.g., Larva [7], JavaMOP [12]). One potential approach to address this issue is that of using
the information available in tests to automatically obtain monitors [8]. The plausibility of this
approach lies in the similarity between tests and runtime verifiers: tests drive the system under
test and check that the outcome is correct; runtime verifiers also check that the outcome is
correct but let the system users drive the system.

Notwithstanding the similarities, the fact that in runtime verification the users drive the sys-
tem means that, while tests are typically focused on checking very specific behaviour, runtime
verification assertions need to be able to handle the general case. This makes it hard to create
runtime monitors (which are generic enough to be useful) from tests, in particular due to the
following aspects:

– Input: The checks of the test may only be applicable to the particular inputs specified in
the test. Once the checks are applied in the context of other inputs they may no longer make
sense. Conversely, the fewer assumptions on the input the assertion makes, the more useful
the assertion is for monitoring purposes.

– Control flow: The test assertions may be specific to the control flow as specified in the
test’s context with the particular ordering of the methods and the test setup immediately
preceding it.

– Data flow: The test may also make assumptions on the data flow, particularly in the context
of global variables and other shared data structures — meaning that when one asserts the
contents of a variable in a different context, the assertion may no longer make sense.

– External state: A similar issue arises when interacting with stateful external elements
(e.g., stateful communication with a third party, a database, a file, etc.): if a test checks
state-dependent assertions, the runtime context might be different from the assumed state
in the test environment.

The idea of translating tests into test models is not new and the challenges highlighted
above have been addressed in one way or another in previous work: Arts et al. [1] attempt to
generate QuickCheck automata from EUnit tests. We note that QuickCheck automata are used
for testing rather than runtime checking and therefore the approach is mainly to learn patterns
from existing tests and explore their generalisation to push testing further.
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Similarly — in that the translation is from testing to more generalised testing — in previous
work [4], the authors show how to generate QuickCheck automata from Gherkin specifications.
The main difference from the work by Arts et al. is the level of abstraction of the starting point,
i.e., Gherkin specification which unlike unit tests in EUnit, are system level tests. This means
that such tests make less implicit assumptions on the context in which they run. This enabled
us to not only extract sequences of (non)acceptable actions as in [1], but also conditions on the
system state.

Closer to the approach being proposed in the extended abstract is the work by Pace and
Falzon [8] translating QuickCheck automata into runtime verification monitors. We note that
this work overcomes the challenges highlighted above by starting from a testing model whose
oracles are already significantly generic to handle the wide range of tests which can be gen-
erated. The downside of the approach is that like runtime verification, model-based testing is
also not as widespread in industry.

With the aim of being as relevant as possible to industry, we aim to take unit tests and
through machine learning techniques, infer the generic monitor from specific low-level oracles.
For example, observing that in all the tests of the deposit method the resulting balance is always
the start balance plus the deposited amount, one can generate a monitor to ensure this also
holds during runtime. Inferring invariants from a number of observed system executions is not
new [2, 10, 11, 13, 14]. However, this line of work focuses on generating invariants to be used
during regression testing or debugging purposes and not to be deployed with the system. The
consequence is that the inferred invariants might still be too narrow, catering only for runs
manifesting themselves during the testing phase.

Our aim for the future is to explore ways in which invariants can be automatically filtered
to avoid having false negatives at runtime. To this extent we will be exploring a number of
options: focus on invariants dealing with interfacing invariants, i.e., those passed around as pa-
rameters, as these would hopefully better at revealing a protocol amongst the various methods
using the interface. Another option might be to focus on tests which call more than one method
in their testing sequence; again, a possible indication of a higher level of abstract (integration
test rather than unit test). Another indication of abstraction level might be the privacy quali-
fier of variables, i.e., public as opposed to private variables, with public possibly indicating a
higher one. We hope to share the findings of these possibilities once we carry out sufficient
experimentation.
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