
Engineering Adaptive User Interfaces using Monitoring-Oriented Programming

Aaron John Buhagiar, Gordon J. Pace
Department of Computer Science

University of Malta
Malta

aaron.buhagiar.13@um.edu.mt, gordon.pace@um.edu.mt

Jean-Paul Ebejer
Centre for Molecular Medicine and Biobanking

University of Malta
Malta

jean.p.ebejer@um.edu.mt

Abstract—User interfaces which adapt based on usage pat-
terns, for example based on frequency of use of certain features,
have been proposed as a means of limiting the complexity of the
user interface without specialising it unnecessarily to particular
user profiles. However, from a software engineering perspective,
adaptive user interfaces pose a challenge in code structuring,
and separation of the different layers of user interface and
application state and logic can introduce interdependencies
which make software development and maintenance more chal-
lenging. In this paper we explore the use of monitoring-oriented
programming to add adaptive features to user interfaces, an
approach which has been touted as a means of separating
certain layers of logic from the main system. We evaluate the
approach both using standard software engineering measures
and also through a user acceptance experiment — by having
a number of developers use the proposed approach to add
adaptation logic to an existing application.

Keywords-Runtime monitoring, Monitoring-oriented pro-
gramming, Software engineering, User interfaces.

I. INTRODUCTION

The user interface is an integral part of the application as
it is the means by which the user can communicate to the
program, with discrepancies between its specification and
implementation possibly resulting in inaccessible parts of
the system, or unexpected behaviour. Not only is the user
interface responsible for the user experience, but also to
access to potentially critical parts of the underlying systems,
thus requiring a high degree of reliability.

From the user experience perspective, in practice this
is typically addressed through the application of certain
fundamental principles in order to ensure that they are user
friendly [1]. This becomes increasingly difficult as application
logic increases in complexity, and it has been observed that
the back end design of the system is equally important when
discussing user interfaces [2]. The potentially cross-cutting
nature of user interfaces has led to various approaches being
proposed in the literature and adopted in practice, with
the model-view-controller pattern being the most widely
used [3]. However, as applications try to cater for different
types of users, or for users using the application in different
contexts, one direction which has been explored has been
that of adaptive user interfaces [4] — the adaptation of a
user interface based on usage patterns, for example, certain

features might be relegated deeper in a menu if infrequently
used, or a touch keypad interface might change slightly the
layout of the buttons (increase in size, distance between
buttons) depending on the type of errors the user typically
makes when inputting values. Since the primary aim of using
adaptation is to improve the user experience, ensuring that
once adaptation is performed, it does not negatively affect
the usability of the interface is a major concern. Apart from
this, identifying what should be adapted, when it should be
adapted and under what circumstances this should happen
add to the challenges of performing adaptation.

From a software engineering perspective, adaptive user
interfaces pose a challenge in code structuring, especially
when a static user interface is changed into an adaptive one,
in order to ensure that code remains properly structured and
any changes remain local. Separation of the different layers
of application state and logic — the core system, the user
interface (actually a whole family of user interfaces) and
the adaptation management unit — can typically introduce
interdependencies which make software development and
maintenance more challenging. Monitoring-oriented program-
ming [5] has been touted as a software engineering approach
in which monitoring logic is automatically injected into the
system from specifications which are independently specified
thus ensuring separation-of-concerns between the underlying
system and the augmented logic. Although the approach has
been primarily used as a means of achieving reliable software
by adding dynamic checks on the system’s behaviour, it has
also been used as a means of adding functionality to a
system through by having orthogonal aspects of the system
programmed separately, and triggering them through the use
of a runtime monitoring tool thus introducing less direct
dependency between these aspects.

In this paper we explore the viability of developing adap-
tive user interfaces using a monitoring-oriented programming
based design and evaluate whether one achieves separation-
of-concerns. By comparing adding adaptive features to an
application’s UI directly through the source code, to adding
the features using a specification written for a runtime
monitoring tool, we assess the viability and usability of the
approaches using both standard software complexity metrics
and user evaluations through interviews. The results indicate



that the monitoring-oriented approach is more effective, even
when performed by developers with no prior experience of
runtime monitoring tools.

II. MONITORING-DRIVEN ADAPTIVE USER INTERFACES

Whilst there exist various types of adaptation, in this paper,
we focus on adaptations that manipulate the user interface
(UI) based on usage patterns — UI changes triggered on how
the user is using the application, and intended to improve
the user experience. Such changes range from ones such as
hiding buttons whose short cut is predominantly used by the
user, to more sophisticated ones which, for example, modify
the spacing and sizes of buttons based on the number of key
input errors which the user makes.

It has been shown [4], that if appropriately used, adaptive
user interfaces may contribute to an increase in the applica-
tion usability and a better user experience. However, such
adaptivity should also be applied with caution, the effect
on usability varies based on the user, the conditions the
application is being used in and the application itself [6].
One of the main challenges of adaptive UIs is that adaptation
varies from user to user, such that not all users prefer the
same amount of adaptivity [4]. Apart from this, how the user
interface is visually changed is also important to determining
the effectiveness of the adaptive UI [7]. In a study by Gajos et.
al different types of visual adaptation had drastically different
results, with the best method improving the usability of the
interface and the worst method lead to confusing the users.

These studies, in conjunction with the fact that no clear
generally applicable guidelines exist (or perhaps can exist)
to guide the design of adaptive UIs, indicate that the design
and engineering of adaptability is largely an experimentally-
driven endeavour, to see what helps and what hinders users.
This implies that a methodology to support ease of adoption
and modification in the design of adaptive features of the UI
from the system designers’ and developers’ perspective is
imperative. However, when adaptive features are hard coded,
issues of extensibility, flexibility and reusability can arise
[8]. This is particularly the case since the adaptive features
heavily depend on the system’s dynamic behaviour.

Model

View

View modifier

Controller

Adaptation logic

Updates

Shows

Controls

Adapts

Figure 1: Architecture for adaptive user interface using
directly instrumented directives

Much of modern UI design is based on the Model-View-
Controller (MVC) approach or variants of it [3]. MVC
separates what is shown in the UI (the view), the backend
model of the data (the model) and the logic of how interaction

with the UI influences this data (the controller). The addition
of adaptive features of the UI have typically been handled
using an extension of this approach, as shown in Figure 1.
The controller is enriched with an adaptation subcomponent,
which keeps track of how the user is interacting with the
UI, and decides how the view is to be changed. This
is sent to a subcomponent of the view, which handles
modification of the UI. Using this approach has a number
of drawbacks. Firstly, the adaptation and UI modification
logic, which are closely interrelated, are integrated in two
separate components of the architecture. Furthermore, the
adaptation logic typically consists of two parts: (i) one part
which keeps track of the history of user interaction with
the UI; and (ii) another which finds patterns in this history
in order to trigger modification directives. This standard
structure of the adaptation logic subcomponent indicates that
it would be better to delegate it to a separate component,
thus separating concerns, and gives the opportunity to use
standard techniques and tools to perform this in an efficient
manner without local optimisations.

One approach which has been used in the literature to add
features to a system which depend on runtime behaviour is
monitoring-oriented programming [5]. This approach is based
on the idea behind runtime monitoring — the use of monitors
which observe events that occur within the application at
runtime, usually bound to method calls, and react accordingly
[9]. Much work in the area of runtime monitoring has
focussed on addressing the issue of separation-of-concerns —
how to build runtime monitoring tools which allow separation
between the code of the application and the monitoring code
itself. Internally, runtime monitoring tools use technologies
such as aspect oriented programming [10] to add the new
logic into the underlying system.

In order to specify the behaviour of the monitors, runtime
monitoring tools typically use logics (such as LTL) or
automata to specify system behaviour which should trigger
the additional monitoring logic. Typically, upon the system’s
dynamic (runtime) behaviour matching a specification, the
runtime monitoring system may choose to trigger a reaction
which may affect the underlying system under scrutiny,
depending on the intended use of the triggered code. Most
commonly, monitoring systems are used to ensure system
correctness, in the form of runtime verification (where the
monitor is designed to match upon failure of the system, and
the reaction would typically report or try to reduce the impact
of the failure), or runtime enforcement (where the monitor
attempts to realise that the system may fail, and the reaction
is meant to redirect it in order to ensure that the failure does
not happen). However, monitoring-oriented programming [5]
has been put forward as an alternative use of such reactions,
intended to trigger new or modified functionality to the
system at certain points during its execution.

We propose an architecture based on monitoring-oriented
programming to support a more structured approach to



Model

View Controller

MonitorAdaptation logicUI modification

Updates

Shows

Controls

Adapts Observes

Figure 2: Architecture for adaptive user interface using using
a monitoring-oriented approach.

programming adaptive UIs, as shown in Figure 2. The
key to the proposed approach is that the adaptation layer
(shown below the MVC in the diagram) is programmed
independently of the rest of the system, and is integrated
using a runtime monitoring tool. In fact, the three adaptation
components correspond to the parts derived by the runtime
monitoring tool, with the leftmost Monitor component being
the event capturing part of such tools, the Adaptation logic
corresponding to patterns specified using an appropriate
logic and code to match which is automatically derived
by the monitoring tool, and finally the UI modification
component corresponding to the reaction code which is
adding functionality to the UI view. The separation of
concerns between the main UI system and the adaptation
part of the logic gives advantages especially when adding a
new adaptation layer, or when testing or modifying existing
ones. It is worth also noting that given the power provided
by most runtime monitoring tools, if required, one can also
capture events pertaining to parts of the underlying system
other than the controller without manual instrumentation of
code in that part of the system.

The questions we set out to answer in the rest of the paper
are (i) whether users find the use of monitoring techniques
helpful or not when programming adaptability into a UI;
and (ii) how a monitoring-oriented implementation of an
adaptive UI compares to direct manual instrumentation in
terms of standard software engineering metrics. The results
are discussed in sections IV and V.

III. INSTANTIATING THE FRAMEWORK IN LARVA

In order to evaluate how the adoption of such an archi-
tecture performs, we have used the runtime monitoring and
verification tool Larva [11] to extend existing applications
with fixed UIs in order to make adopt adaptive UIs.

Larva is a runtime monitoring and verification tool for Java
systems. It captures events happening on the system under
scrutiny (primarily events correspond to method invocations
and exiting, although it also provides support for events
related to exceptions). In order to identify relevant sequences
of events, Larva uses an automaton-based specification lan-
guage, Dynamic Automata with Timers and Events (DATEs),

with a specification effectively being a set of communicating
automata extended with timers and dynamic automaton
replication1. Transitions in these automata are tagged by
a triple: e | c 7→ a where (i) e is the event (which can be a
system-side event such as a method call, or an event resulting
from a Larva timer); (ii) c is a boolean condition which is
checked whenever the event fires and enables the transition
to be followed if and only if the condition is satisfied; and
(iii) a is an action — a piece of code which is executed upon
taking the transition (after the condition is evaluated to true).
In the case of DATEs both the condition and the action are
optional. If no condition its stated then it is taken to be true
thus, the action is performed upon the event occurring. The
transition is followed normally but no actions occurs if a is
empty. Full details with the formal semantics of DATEs and
their monitoring in Larva can be found in [11].

No pop-up activestart Pop-ups active

activatePopUp |7→ p = 1

activatePopUp |7→ p++
deactivatePopUp | p > 1 7→ p−−

deactivatePopUp | p == 1 7→ p = 0

activateButton

deactivateButton

Figure 3: Verifying button activation and deactivation in
Larva

Larva has been mostly used for runtime verification,
allowing the identification of so-called bad states which will
only be reached if the system runs afoul of its specification.
In the context of UIs, consider the DATE shown in Figure 3,
which verifies that deactivation of buttons on the main
window can only happen if at least one popup window is
open, while activation of such buttons can only occur if no
popup windows are open. The DATE2 keeps count of the
number of popup windows opened in a variable p, and uses
two states to encode whether at least one popup window is
open. A third bad state (shaded in grey) is used to capture
when unexpected activation or deactivation occurs.

In our context, such bad states will not be used, but it is
straightforward to see how such an example can be modified
to use monitoring-oriented programming such that, starting
from a system which does not enable or disable buttons, does
so through triggers from the monitor. Figure 4 shows how

1Note that Larva also supports various other temporal logics to be used
as input by providing translators into DATEs.

2For convenience of presentation, multiple transitions with the same source
and destination state are drawn using one arrow but with the different event,
condition, action triples decorating the transition on separate lines.



No pop-up activestart Pop-ups active

activatePopUp |7→ { p = 1; deactivateButtons() }

activatePopUp |7→ p++
deactivatePopUp | p > 1 7→ p−−

deactivatePopUp | p == 1 7→ { p = 0; activateButtons() }

Figure 4: Verifying button activation and deactivation in
Larva

Figure 5: Five button interface frequently used in medical
infusion pumps

such an approach can be implemented using a Larva DATE.
To illustrate how DATEs can be used to instrument an

adaptive UI using monitoring-oriented programming, consider
a 5-key number entry UI as used in medical infusion pumps as
shown in 5. This interface allows input of a five digit number
shown in the display, and consists of (i) two horizontal
direction buttons (J and I) used to control the position
cursor; (ii) two vertical direction buttons (N and H) used to
set the digit at the current position of the cursor; and (iii) an
OK button to accept the number currently displayed. Although
on devices such as medical infusion pumps, these interfaces
are physical ones, software emulating such input devices are
increasingly being used to allow control from touchscreen
device. Using such a context, we can explore the use of
monitoring-oriented programming to adapt the UI view. Some
simple adaptive features such as enlarging the commonly
used buttons, adapting spacing between buttons based on
frequency of errors and enabling or disabling wraparound of
cursor can be easily added to an application.

Consider the DATE shown in Figure 6, which allows for
automatic switching between cursor wraparound and strongly
bounded display ends — the former allows the cursor to be
moved from the leftmost to the rightmost position and vice-
versa, while the latter ignores further left and right button
presses when the cursor is at the left and right extremes
of the display. The logic implemented observes the user
and changes cursor movement mode accordingly: (i) if the
system is in non-wraparound mode but repeatedly tries to use
wraparound behaviour, then this behaviour is enabled; while
(ii) if the system is in wraparound mode, but the user barely
uses it over a one hour period, it is switched off accordingly.
Note that t@δ is the event triggered when a timer t reaches

time δ, while t.reset() resets timer t to zero. To avoid cluttered
diagrams, ∗ denote any system event which does not match
with any other outgoing transition.

Obviously, more sophisticated decision procedures to tog-
gle between wraparound and non-wraparound behaviour can
be implemented in a similar manner. Typically, complexity of
these automata is contained by using multiple DATEs, some
of which are used to compute statistics about user behaviour,
and others which use these statistics to seek behavioural
patterns and change between modes as required.

The use of DATEs can further be expanded to observe
when mistakes are performed by the user whilst using a user
interface. Take for example the same UI shown in Figure 5,
mistakes occur when two opposite horizontal arrow buttons
are pressed after in quick succession. For example if J is
pressed and is immediately followed by a I then this is
counted as a mistake, as the second button press was used
to effectively undo the first. Upon logging 10 mistakes, the
spacing between the buttons on the UI is increased so that it
is less likely for the user to press the incorrect button. The
UI adaptation can be implemented as two DATEs running
concurrently as shown in Figure 7. The DATEs cater for the
horizontal arrow buttons J and I, but the pattern can be
similarly applied to N and H.

If the adaptation logic were to be added directly to
the MVC model of the UI implementation, the result is
code combines both the UI and adaptation controls, which
hinders maintenance and debugging. In order to avoid
these interdependencies, the only solution is to include
event generators in the controller code, and implement the
adaptation logic as an event stream consumer — effectively
replicating the structure provided by the monitoring-oriented
programming approach in a manual manner.

IV. USER EVALUATION

The first question we set out to answer is whether users
find the use of monitoring techniques helpful or not when
programming adaptability into a UI. To investigate usability,
an experiment was set up, in which participants were
required to implement adaptive features into an application
using both (i) a monitoring approach using Larva; and (ii)
manually coding the adaptation in the main code. It is worth
emphasising at this stage that we are evaluating the use
of Larva to support adaptive UI development as part of an
already existing Java system. The results are inevitably biased
to the specification language used by Larva, and if we were to
use another tool or formalism (e.g. using regular expressions
or LTL) might, give different results.
Experimental setup: Before running the experiment, rele-
vant information about the participants was gathered — their
experience and knowledge of the technologies used (Java and
Larva), programming experience and level of ICT education.
They were given 30 minutes to familiarise themselves with
the technologies involved through videos (i) detailing the



start

J | cursorPosition = leftmost 7→
I | cursorPosition = rightmost 7→

J | cursorPosition = leftmost 7→
I | cursorPosition = rightmost 7→

J | cursorPosition = leftmost 7→
{ setWrap(ON); t.reset(); c = 0 }

I | cursorPosition = rightmost 7→
{ setWrap(ON); t.reset(); c = 0 }

*

*

t@1hr | c ≥ 10 7→ setWrap(OFF)

J | cursorPosition 6= leftmost 7→ c++
I | cursorPosition 6= rightmost 7→ c++
t@1hr 7→ c < 10 7→ { t.reset(); c = 0 }

Figure 6: Switching wraparound mode on and off based on usage.

start start

J | cursorPosition 6= leftmost 7→ t.reset()

I | c < 10 7→ c++
J|7→
t@3s |7→

I | c ≥ 10 7→ {increaseSpacing(); c = 0; }

I | cursorPosition 6= rightmost 7→ t′.reset()

J | c < 10 7→ c++
I|7→
t′@3s |7→

J | c ≥ 10 7→ {increaseSpacing(); c = 0; }

Figure 7: Adapting button spacing based on usage.

architecture and implementation of the application that they
were to adapt, and the adaptive feature which they were
to add; and (ii) a Larva tutorial. They were also provided
with a printed short Larva tutorial and documentation for
the code provided. Although all participants performed both
tasks, half of them started with the manual approach, while
the other half started with the monitor oriented task. All
participants performed the tasks under supervision in order
to enable reliable measurement of timing and ensuring a
uniform setup of the development environment.
The Task: The application used in the experiment was an
implementation of the five digit interface using a keypad.
The adaptive feature which they were to implement was a
hypothetical situation in which, if users repeatedly mispressed
numeric keys (which would be displayed on a small screen),
then increasing the distance between the buttons will help the
user3. Concretely, the logic that the users were to implement
was that if, in a 5 second period, the user presses backspace
15 or more times with less than 1 second between presses,
then the distance between buttons on the UI is increased.
The participants performed the task using Eclipse IDE with
the Larva plug-in installed which gives basic syntax support,
and allows for direct compilation of Larva scripts.
Measurements: During the experiment, the participants were
timed4 in order to see how long they took to complete each

3Although the benefits of such an adaptive UI are arguable, it is not this
feature that we are evaluating, but rather the difficulty of implementing it.

4This measure does not include the time it took the participants to
familiarise themselves with the application or Larva. The timings measure
how the long the participants took to design and code the adaptive feature.

task. In this interview the participants were asked to comment
about which approach they preferred and found easier to
complete and the main problems encountered. They were
also asked to comment about which approach they would
have adopted if they were to apply more complex adaptations
to larger systems. Apart from this, their code was analysed
using standard software engineering metrics: (i) development
time taken to complete each exercise; (ii) lines of code (Java
or Larva) added to the source files and lines of code added by
the participants; (iii) Average Cyclomatic Complexity (ACC)
and Weighted Methods per Class (WMC) are also measured.
WMC gives the maximum amount of possible execution
paths the application may take while ACC measures the
average complexity of the applications methods [12]. These
metrics were measured using Google’s CodePro AnalytiX
plug-in for Eclipse IDE.

11 participants took part in the experiment, all having
knowledge and experience of programming. All the partici-
pants were either IT students or professionals, with experience
ranging from 2 to 10 years in IT. All the participants
were experienced Java programmers, but only 3 had prior
experience using Larva. In an ideal setup, the users were
equally experienced in both technologies, but this was
impossible due to the fact that Larva is not very widespread.
Although the number of participants for such a study is not
high, it is worth noting that participants were required to
be programmers, and had to give a substantial investment
in time for the experiment (not only implementing the two
tasks, but also reading and viewing the support material, etc.).
These requirements reduced our sample size significantly.



Outcomes from interviews: The results from the post-
experiment interviews are given in the table below. The
majority (7 of 11) preferred using Java to perform the task,
citing their knowledge of the language as the primary reason.
However many added that with some experience in Larva they
would have opted to choose it as their preferred approach.

Larva Java Neither
Which task was found easier 4 7 0
Most problems encountered 7 2 2
Which is more understandable 8 3 0
Which to adopt in larger system 10 1 0

The most predominant problem the participants found
when they were implementing adaptability was the fact that
they were unfamiliar with the application’s code and that
this affected the first task they attempted. However, 7 of 11
participants noted that they had problems with the monitoring-
oriented approach due to their inexperience in Larva.

In contrast, when questioned about understandability, 8 out
of the 11 participants preferred the Larva approach, citing (i)
the separation of concerns — the source code from the code
of the application; and (ii) the use of automata to control
adaptation. The other 3 cited prior knowledge of the language
used (Java as opposed to Larva) as the reason for identifying
the manual approach as the more understandable one.

When questioned as to which approach they would adopt
if implementing more complex adaptive features into a larger
application, 10 of the 11 participants opted for the monitoring
approach. The reasons mentioned were: (i) the separation
between the adaptation code and the application; (ii) that an
automata-based language is less complex to describe such
adaptations in; and (iii) the fact that the new features were
implemented with little to no modification to the original
code, which would also help since any tests on the original
application can be left untouched.
Metrics applied to the code produced: The quantitative
results from the analysis of the code produced by the exper-
iment subjects are given in the table below. The time taken
by each participant for the monitoring-oriented programming
and the Java tasks are shown in Figure 8. The mean for the
time taken for the Java exercise was slightly lower than for the
Larva exercise (31.474±3.239 vs 38.536±5.456 mins). We
attribute this to the fact that the participants all had working
Java experience but only a few had used Larva before. Note
that there is no statistical significant difference between the
time measurements for the two different approaches (paired
Wilcoxon test, α = 0.05, p = 0.413).

Dev. Total Extra LoC
Approach time LoC LoC (%) WMC ACC
Original n/a 242 n/a 100 31 1.47
code
Manually 31m28s 275 40 116 36 1.56
instrumented
Monitoring 38m32s 242 58 124 31 1.47
oriented
It is interesting to note that although no code was added to

the original system files when using the monitoring-oriented
approach, more lines of code were written due to the verbosity

Figure 8: Time taken to implement the Java and Larva tasks
by each of the 11 participants in the study.

of Larva scripts5. On average participants wrote 50% more
lines of code in the Larva implementation when compared
to the manual approach using Java.

Since WMC measures the number of possible execution
paths through the application, the Larva approach resulted
in lower complexity since the (source) logic is completely
separate from that of the original system. The ACC for the
monitoring-oriented approach remained unaltered since little
(if any) code was added at the source level of the application.
This, however was not the case with the manual approach
where the average ACC rose by 0.08 with respect to all the
methods in the application. It is important to note that the
ACC and WMC were measured with respect to the original
Java code and not the Larva script, thus the code written in
Larva was not measured.
Manual code review: After the tasks were completed the
code produced by the participants was reviewed. It was
interesting to note that 2 of the participants who were
instructed to implement the Larva approach first, adopted
an architecture inspired by the monitoring design pattern
imposed by Larva when implementing the Java version. Also,
in virtually all cases, the logic implemented for the tasks
was very similar, with the most common difference being
that of handling timers.

Based on the interviews, most participants preferred using
the manual approach as they noted that this was their
first experience with Larva (and runtime monitoring tools
in general). However, almost all (~91%) agreed that the
monitoring approach was the way to go for larger systems.
Given the small number of participants it is difficult to
draw observations of statistical significance, however, it is
encouraging to see how users, who are new to monitoring

5At the time of writing, no visual editor for DATEs exists, and DATEs
have to be described in a text format which users usually spread over various
lines to improve readability.



technology, found the approach attractive and how it took
them similar time to implement an adaptive UI when
compared to a more traditional approach.

V. EVALUATING COMPLEXITY FOR A LARGER USE-CASE

We have also looked the impact of adopting a monitoring
approach for a larger use-case. We have used SimpleNotepad6,
an open source word processor as the base application
into which a set of adaptive features were added using
both a manual and a monitoring approach. SimpleNotepad
contains standard word processing functionality, including
text formatting, saving, opening and printing of files.

The adaptive UI features introduced were: (i) adding
compound formatting, through which the application tries to
identify patterns of use of text formatting features (bold,
italic, underline) usage and groups them together in a
single new button; and (ii) adding auto-indent feature which
notices indents done at the beginning of a new line and
automatically indents new lines. The same metrics used in
the user acceptance experiment were measured for this use-
case, and can be found in the table below:

Total Extra LoC
Approach LoC LoC (%) WMC ACC
Original 2972 n/a 100 539 2.32
Manual 3292 885 130 643 2.37
MOP 3149 1185 140 604 2.28

Using Larva resulted in 30% more lines of code when
compared to the manual approach. However, when using
Larva, only 177 lines of code were added to the original
application, mostly consisting of boilerplate methods for
Larva to hook onto. With the manual approach, 320 lines of
code had to be added to the original code and the rest of the
logic (865 lines of code) written as a separate class.

In terms of code complexity, both approaches resulted in
an increase in WMC, although the increase with the manual
approach (from 539 to 643) was substantially higher than
that of the monitoring approach (from 539 to 604). Given
that the ACC is computed as the average complexity of the
methods in the application, paradoxically, the monitoring-
oriented approach resulted in a drop of ACC, due to the
dummy methods added to the code. In the case of the manual
approach the ACC increased with respect to the original code.

For the two cases, the code used in order to adapt the
UI was almost identical between the two approaches. What
differed was mainly the way they interacted with the original
application and how relevant events were identified and
logged. In the manual approach, counters and other logic
were added to the methods in the original system to enable
adaptation, while in the Larva monitoring approach, capturing
the events and logic were within the monitor itself.

VI. DISCUSSION AND RELATED WORK

From the evaluations, it was observed that a monitoring
approach using Larva resulted in more lines of code than

6Available on GitHub: https://github.com/statickidz/SimpleNotepad-Swing

when using a manual approach. However, most of the extra
code is contained within a single separate script file, whilst
that in the manual approach has to be partially or completely
embedded into the source code. Despite the increase in code
size, none of the participants cited this as detrimental to the
understandability or usability and when asked which option
they would use to develop a larger adaptive UI almost all
preferred the monitoring approach due to its modularity. This
was also our experience with the large use case as during
its development, the fact that more lines of code had to be
used did not affect the experience whilst coding it.

However, the monitoring-oriented approach proved to
be most problematic for most of the participants as they
were unfamiliar and inexperienced with Larva. They did not
however find Larva or the concept of monitoring-oriented
programming difficult to understand and use – as can be noted
from the difference in the average time taken to complete
each task. Given that for more than half the participants,
Larva was completely new and that all participants were
adept in Java, the difference for the times between the two
sets is not significant (as also showed by the statistical test).

Given that the additional code of the monitor oriented
approach is in a separate file and internally works through
the use of aspect oriented programming, the complexity of
the application is lowered. This applies to both the ACC and
the WMC and applies for both evaluations. Along with the
decreased complexity, the monitoring-oriented code produces
more understandable code as commented by the users. This,
was also observed during the large use case as it was noted
that designing the logger in terms of states and transitions is
easier as opposed to designing it in terms of method calls.

Given that the participants noted that reasoning in terms of
automata was helpful, the choice of Larva may be considered
as fortuitous, but means that the users’ views on their
preference for this approach on larger projects cannot be
automatically generalised for other monitoring tools.

Navarro et al. [13] have previously used monitoring tools
on UIs, and used a variety of monitoring tools to evaluate
the approach. However, in contrast with our approach, the
work there focusses on the verification of UIs, rather than
their development, and to the best of our knowledge, the use
of monitoring-oriented programming has not been used to
develop adaptive user interfaces before.

However, Zaman et al. [14] investigated the use of aspect
oriented programming for this purpose. The architecture they
propose is similar to ours, although our approach has the
advantage that we can further abstract away from the events
using the temporal logic supported by the monitoring tool
(DATEs in the case of Larva). Furthermore, they provide no
experimental evidence that the approach is, in fact, beneficial.

VII. CONCLUSIONS

From the results of the evaluations performed, it is
evident that monitoring-oriented programming can be a viable



approach to the development of adaptive user interfaces.
Whilst many questions require more data and experimental
setups to be able to answer effectively, the initial results
indicate that this it is worth investigating further. The fact
that all participants were of the opinion that for larger systems
monitoring-oriented approaches would give better results in
developing adaptive UIs since the approach aids modularity
and code separation, further supports this statement. One
of the drawbacks of using the monitoring approach with
Larva was that of code verbosity, which are due to the
language adopted by Larva. The other drawback, from a
purely pragmatic perspective, is that most people are not
familiar with monitoring technologies, although the speed
with which some of the experimental subjects were able to
implement UI adaptation using a technology with which they
were not at all familiar was impressive.

This study did not touch upon overheads on system re-
sources due to monitoring as opposed to direct coding. Other
studies (e.g. see the results of the runtime verification tool
competitions [15]) looking at overheads due to monitoring
have shown overheads to be, of an acceptable level.

REFERENCES

[1] R. Molich and J. Nielsen, “Improving a human-computer
dialogue,” Commun. ACM, vol. 33, no. 3, pp. 338–348, 1990.
[Online]. Available: http://doi.acm.org/10.1145/77481.77486

[2] N. F. Schneidewind, “The state of software maintenance,”
IEEE Trans. Software Eng., vol. 13, no. 3, pp. 303–310,
1987. [Online]. Available: http://dx.doi.org/10.1109/TSE.1987.
233161

[3] G. E. Krasner and S. T. Pope, “A cookbook for
using the model-view controller user interface paradigm
in smalltalk-80,” J. Object Oriented Program., vol. 1,
no. 3, pp. 26–49, Aug. 1988. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=50757.50759

[4] D. Benyon, “Accommodating individual differences through
an adaptive user interface,” Open University, Tech. Rep., 2010.

[5] F. Chen and G. Rosu, “Java-mop: A monitoring oriented
programming environment for java,” in Tools and Algorithms
for the Construction and Analysis of Systems, 11th
International Conference, TACAS 2005, Held as Part of
the Joint European Conferences on Theory and Practice
of Software, ETAPS 2005, Edinburgh, UK, April 4-
8, 2005, Proceedings, ser. Lecture Notes in Computer
Science, N. Halbwachs and L. D. Zuck, Eds., vol.
3440. Springer, 2005, pp. 546–550. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-31980-1_36

[6] T. Lavie and J. Meyer, “Benefits and costs of adaptive
user interfaces,” Int. J. Hum.-Comput. Stud., vol. 68,
no. 8, pp. 508–524, 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.ijhcs.2010.01.004

[7] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld,
“Exploring the design space for adaptive graphical user
interfaces,” in Proceedings of the working conference on
Advanced visual interfaces, AVI 2006, Venezia, Italy, May
23-26, 2006, A. Celentano, Ed. ACM Press, 2006, pp.
201–208. [Online]. Available: http://doi.acm.org/10.1145/
1133265.1133306

[8] P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive model-driven
user interface development systems,” ACM Comput. Surv.,
vol. 47, no. 1, pp. 9:1–9:33, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2597999

[9] M. Leucker and C. Schallhart, “A brief account of
runtime verification,” J. Log. Algebr. Program., vol. 78,
no. 5, pp. 293–303, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.jlap.2008.08.004

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in ECOOP, 1997, pp. 220–242. [Online].
Available: http://dx.doi.org/10.1007/BFb0053381

[11] C. Colombo, G. J. Pace, and G. Schneider, “Dynamic
event-based runtime monitoring of real-time and contextual
properties,” in Formal Methods for Industrial Critical Systems,
13th International Workshop, FMICS 2008, L’Aquila, Italy,
September 15-16, 2008, Revised Selected Papers, ser. Lecture
Notes in Computer Science, D. D. Cofer and A. Fantechi,
Eds., vol. 5596. Springer, 2008, pp. 135–149. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-03240-0_13

[12] S. P. Satyavan Nain, Anshu Parashar, “Empirical evaluation
of software quality using object-oriented software metrics,”
International Journal of Advanced Research in Computer
Science, vol. 3, no. 1, 2012, jan - feb.

[13] P. L. M. Navarro, D. S. Ruiz, and G. M. Pérez, “A lightweight
framework for dynamic GUI data verification based on
scripts,” Softw. Test., Verif. Reliab., vol. 26, no. 2, pp. 95–118,
2016. [Online]. Available: http://dx.doi.org/10.1002/stvr.1579

[14] S. A. T. M. Atif Zaman, Mudassar Ahmad, “Adaptive graphical
user interface for web applications using aspect oriented
component engineering,” International Journal of Computers
and Technology, vol. 10, no. 2, pp. 1384–1391, August 2013.

[15] G. Reger, S. Hallé, and Y. Falcone, “Third international
competition on runtime verification - CRV 2016,” in Runtime
Verification - 16th International Conference, RV 2016,
Madrid, Spain, September 23-30, 2016, Proceedings, 2016,
pp. 21–37. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-46982-9_3

http://doi.acm.org/10.1145/77481.77486
http://dx.doi.org/10.1109/TSE.1987.233161
http://dx.doi.org/10.1109/TSE.1987.233161
http://dl.acm.org/citation.cfm?id=50757.50759
http://dl.acm.org/citation.cfm?id=50757.50759
http://dx.doi.org/10.1007/978-3-540-31980-1_36
http://dx.doi.org/10.1016/j.ijhcs.2010.01.004
http://dx.doi.org/10.1016/j.ijhcs.2010.01.004
http://doi.acm.org/10.1145/1133265.1133306
http://doi.acm.org/10.1145/1133265.1133306
http://doi.acm.org/10.1145/2597999
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1002/stvr.1579
http://dx.doi.org/10.1007/978-3-319-46982-9_3
http://dx.doi.org/10.1007/978-3-319-46982-9_3

	Introduction
	Monitoring-Driven Adaptive User Interfaces
	Instantiating the Framework in Larva
	User Evaluation
	Evaluating Complexity for a Larger Use-Case
	Discussion and Related Work
	Conclusions
	References

