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Abstract. τ -confluence is a reduction technique used in enumerative
model-checking of labeled transition systems to avoid the state explo-
sion problem. In this paper, we propose a new on-the-fly algorithm to
calculate partial τ -confluence, and propose new techniques to do so on
large systems in a compositional manner. Using information inherent in
the way a large system is composed of smaller systems, we show how we
can deduce partial τ -confluence in a computationally cheap manner. Fi-
nally, these techniques are applied to a number of case studies, including
the rel/REL atomic multicast protocol.

1 Introduction

An important area of research in model checking is the generation of restricted
models using intuition and insight in the system in question to produce smaller
state spaces — small enough to enumerate and manipulate. In practice, different
techniques have been developed. Of interest to this paper, we note: on-the-fly
model generation, where only the ‘interesting’ part of the model is generated;
partial-order reduction [14] and the related τ -confluence [8, 17] reduction tech-
niques which exploit independence of certain transitions in the system to discard
unnecessary parts; and compositional techniques [7] where a model is decomposed
into smaller parts, partially generated using knowledge about future interface
components to avoid intermediate explosion.
In this paper we are mainly interested in deriving techniques which use structural
information of the system to perform τ -confluence reduction. Extracting general
τ -confluence of a flattened system can be costly and impractical. However, the
user usually also provides the system in the form of a symbolic description,
which we attempt to exploit at a low cost to calculate τ -confluence. The in-
formation we use is the connection pattern of the network of communicating
transition systems — composition expressions. At the leaves, we have transition
system components, usually various magnitudes of size smaller than the whole
system (especially if techniques such as projection [11] are first applied). Using
the structure of the network, we can immediately deduce certain independence
between transitions to be used for model reduction. We propose a new algorithm
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to calculate partial τ -confluence on-the-fly — similar in spirit to [2], but opti-
mised in particular for flat transition systems. We then prove correct a number
of laws which allow us to deduce τ -confluence in a composition expression with-
out the need of expensive calculations and show its performance when applied
on a number of case studies, including the rel/REL atomic multicast protocol.

2 Related Work

An extensive and thorough study of τ -confluence in process algebrae and Lts
verification can be found in [8]. In [17], the results are developed further, ex-
tending weak confluence conditions for divergent transition systems.
The ideas we develop in this paper heavily borrow from [9], in which a global
(not on-the-fly) algorithm is given for calculating maximal τ -confluence sets. The
algorithmic complexity is of the order O(m ∗ fanout3τ ), where m is the number
of transitions in the Lts, and fanoutτ is the maximum number of τ transitions
exiting from a state. The paper also uses τ -prioritisation and τ -compression
(where chains of τ transitions are replaced by a single one), used to reduce a
Lts, once a τ -confluence set has been calculated. We use the same notion of
τ -confluence as in this paper mainly since discovering τ -confluence sets under
this definition is well-tractable. Our alternative algorithm to evaluate a maximal
τ -confluence set has complexity of the order O(m∗fanout∗fanoutτ ) and works on-
the-fly. Furthermore, our τ -confluence detection algorithm works equally well for
Ltss which are divergent, and we use deduction to partially identify τ -confluence
in large systems by analysing their components.
[3, 2] build upon the results of [17] and are closely related to our work, except
that they concentrate on weak confluence. The algorithms work equally well with
the stronger confluence condition we use. To calculate a τ -confluent set, they use
the symbolic description of the Lts (as guarded action/event systems) and feed
conditions to an automated theorem prover to prove the independence of certain
guards. In a certain sense, our algorithm to calculate the maximal τ -confluent
set can be seen as an extreme case of this approach — the Lts expanded to
the actual description of the Lts transitions, and given the trivial nature of the
resulting guards and transitions, we replace the automated theorem prover by a
Bes solver. Our symbolic description, based on composition expressions, differs
from theirs, and allows for certain independence to be concluded easily, but does
not allow symbolic reduction as is possible in their case.
τ -confluence is closely connected to partial-order reduction techniques [14]. The
fact that τ transitions are ‘partially’ invisible under branching and other weak
bisimulations, means that independence of τ transitions preserving bisimulation
is possible, and can be useful in practice. In [16] is an analysis of partial-order
methods applied to process algebrae, that includes a set of conditions sufficient
to guarantee branching bisimulation equivalence after reduction. As remarked
in [2], these conditions are stronger than weak τ -confluence. The conditions are
not comparable to the notion of partial confluence we use, since we allow for
confluence, but closing up to one step ahead. [16] allows for multiple invisible



transitions, but not for confluence. The conditions, however, closely relate to the
conditions used in this and other τ -confluence papers.
Several partial-order reduction techniques applied to compositions of Ltss have
been proposed. Of interest are the τ -diamond elimination technique presented
in [4] (implemented for Csp in the Fdr 2 tool) and a technique based on the de-
tection of so-called τ -inert transitions presented in [15] (implemented for Ccs in
the Concurrency Factory). Both consist in identifying τ -transitions that do not
need be interleaved with concurrent transitions, since the obtained behaviour
would be equivalent (for some relation) to the one in which the τ -transition is
taken first. The difference relies on the properties being preserved under bisim-
ulation in the case of behaviour equivalence preserved under reduction: weak
bisimulation in the case of [15], and failure/divergence in the case of [4]), both
of which do not preserve branching properties of the system. Additionally, our
approach works on-the-fly, in combination with any verification tool of Cadp,
and for any language with a front-end for Cadp.

3 Basic Definitions

Definition: A labeled transition system (Lts) is a quadruple 〈Q,Act,→, q0〉
where Q is the set of states of the system, Act is the set of possible actions the
system may take (including a special invisible action τ), →⊆ Q×Act×Q is the
set of transitions and q0 ∈ Q is the initial state of the system.
Using standard conventions, we will write q

a→ q′ to say that (q, a, q′) ∈→, and
for a set of actions G ⊆ Act, G→ is the transition relation → restricted to actions
in G. actions(q) is the set of actions possible from state q. If we may want to
‘ignore’ invisible transitions, q

a→ q′, means that either q
a→ q′, or q = q′ and

a = τ (note that this case does not necessarily imply that q
τ→ q′). τ∗→ is the

reflexive transitive closure of
{τ}→ . Finally, we say that an Lts is divergent if there

exists an infinite sequence of states qi such that for all i, qi
τ→ qi+1.

Definition: Given two Ltss S1 and S2 (Si = 〈Qi,Act,→i, q0i〉) a relation be-
tween the states of the two Ltss ' ⊆ Q1 × Q2 is said to be a branching
bisimulation if for any q1 ' q2, the following two properties are satisfied:

1. for any q1
a→ q′1, there exist q′2, q′′2 with q2

τ∗→ q′2
a→ q′′2 and q1 ' q′2, q′1 ' q′′2 .

2. for any q2
a→ q′2, there exist q′1, q′′1 with q1

τ∗→ q′1
a→ q′′1 and q′1 ' q2, q′′1 ' q′2.

The maximal branching bisimulation is a well-defined equivalence relation ('b).
We say that two Ltss are branching bisimilar (S1 'b S2) if their initial states
are branching bisimilar q01 'b q02.

3.1 τ -Confluence
τ -confluence corresponds to the intuition that certain silent transitions do not
change the set of transitions we can undertake now or in the future. If we can
calculate a set of silent transitions with this property, we can then reduce the
Lts to obtain a smaller system.



Different levels of τ -confluence have been defined in the literature. Some en-
compass more τ transitions (and hence allow more powerful reductions), but
are more expensive to calculate an appropriate confluent set. Others are more
restrictive, but allow cheap τ -confluence set deduction. In this paper we will
concentrate on so-called strong confluence which we will refer to in the rest of
the paper simply as confluence. The interested reader is referred to [8, 17] for a
whole hierarchy of τ -confluence notions.

Definition: Given an Lts S = 〈Q,Act,→, q0〉, and T ⊆{τ}→ , we say that T is
τ -confluent in S if: for every q1

τ→ q2 ∈ T and q1
a→ q3, there exists a state q4

such that q2
a→ q4 and q3

τ→ q4 ∈ T .
The intuition is that every other outgoing transition of q1 can be emulated
after the τ -confluent transition. Graphically, the τ -confluence can be seen in
the following figures. Normal line transitions are given (universally quantified),
whereas dashed transitions indicate that their existence must be proved:

a
q1

q2 q3

q4

τ

τ ∈ Ta

Proposition 1: If q
τ→ q′ is a τ -confluent transition in S, then q 'b q′.

Proposition 2: The union of two τ -confluent sets of an Lts S is itself a
τ -confluent set of S. We call the union of all τ -confluent sets the maximal τ -
confluent set, and write it as T(S).
The proofs of these propositions can be found in [9].

3.2 Reduction techniques

Definition: Given two Ltss S1 and S2 (Si = 〈Qi,Act,→i, q0i〉), we say that S2

is a τ -prioritisation of S1 with respect to a τ -confluent set T , if (i) →2⊆→1 and
(ii) for every q

a→1 q′, either q
a→2 q′ or for some q′′, q

τ→2 q′′ ∈ T .
The following figures show two examples of τ -prioritisation (with unreachable
states removed):
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Proposition 3: If S1 is a τ -prioritisation of a non-divergent Lts S2 with respect
to T , then S1 'b S2.
The proof can be found in [9]. τ -prioritisation thus allows reduction of non-
divergent systems with respect to a τ -confluent set, maintaining equivalence
modulo branching bisimulation. The main problem with τ -prioritisation is that
it is restricted to non-divergent systems. However, one can augment the pri-
oritisation to calculate and eliminate on-the-fly τ cycles. Alternatively, other
reduction techniques [3, 13] have been defined in the literature (see Section 2)
and can be used.



4 Calculating τ -Confluence Using Boolean Equations

In this section, we present an on-the-fly algorithm to calculate the maximal
τ -confluent set.
Definitional boolean equation systems without negation are a well-known and
studied field. The following is a short resumé of definitions and results to set
the picture for the translation algorithm we propose for on-the-fly τ -confluence
calculation.

4.1 Boolean Equation Systems.

Definition: A boolean equation system (Bes) is a set of variables V split into
two disjoint subparts Vd and Vc, with their definition δ ∈ V → 2V . Variables
in Vd are seen as defined in terms of a disjunction over the definition set, while
those in Vc as a conjunction:

Definition: An interpretation I of a Bes is a subset of variables V of the
equation system, I ⊆ V . Variable v is said to be satisfied in I if v ∈ I. An
interpretation is said to be valid if the definition function holds:

(∀v : Vd . δ(v) ∩ I 6= ∅) ∧ (∀v : Vc . δ(v) ⊆ I)
Proposition 4: The union of all valid interpretations of a Bes Eq is itself a
valid interpretation. This is called the greatest fixed point solution: (νV. Eq).
Standard algorithms exist to evaluate the greatest fixed point of a boolean equa-
tion system. In particular, we are mainly interested in an on-the-fly algorithm
— a local one resolving only the necessary variables we may require. Such algo-
rithms can be found in [12, ?] and work in both a breadth-first and depth-first
fashion. This problem can be solved in time proportional to the number of vari-
ables and the size of the definition sets.

4.2 Translating τ -Confluence of Ltss into Boolean Equations.
It is rather straightforward to translate the definition of τ -confluence in Section
3.1 into a BES whose validity implies the confluence of individual τ transitions.

Definition: Given an Lts S, we introduce a conjunctive variable for every τ
transition, and a disjunctive variable for every half-terminated diamond in the
τ -confluence diagram:

Vc
df
= {cq1,q2 | q1

τ→ q2}, Vd
df
= {da

q1,q2,q3
| q1

τ→ q2, q1
a→ q3}

The intuitive interpretation we will use is that (i) every confluent τ transition has
to be able to close all half-diamonds (conjunction) and (ii) every half-diamond
has to be closed by some other confluent τ transition (disjunction). The boolean
variables cq1,q2 will be satisfiable if and only if q1

τ→ q2 is confluent, while da
q1,q2,q3

is satisfiable if and only if the half-diamond can be satisfactorily closed.

Conjunctive variables: cq1,q2 should be satisfiable if and only if all extended
half-diamonds which are not trivially closed (via a direct a transition from
q2 to q3) can be closed:

δ(cq1,q2)
df
= {da

q1,q2,q3
| q1

τ→ q2, q1
a→ q3, q2 6

a→ q3}



Disjunctive variables: da
q1,q2,q3

is satisfiable if and only if there is some τ
transition from q3 to some q4 which (i) closes the diamond, and (ii) is τ -
confluent:
δ(da

q1,q2,q3
)

df
= {cq3,q4 | q2

a→ q4, q3
τ→ q4}

δ(dτ
q1,q2,q3

)
df
= {cq3,q4 | q2

τ→ q4, q3
τ→ q4} ∪ {cq3,q2 | q3

τ→ q2}
Note that in the case of a = τ , the diamond may be closed as a triangle (see
the figures depicting how τ -confluence diagrams can be closed.)

Proposition 5: The translation is sound and complete: Given a valid inter-
pretation I of a translated Lts S, {q1

τ→ q2 | cq1,q2 ∈ I} is a τ -confluent set
(soundness), and for any τ -confluent set T , there is a valid interpretation I such
that I ∩ Vc = {cq1,q2 | q1

τ→ q2 ∈ T} (completeness).
From this proposition, it then follows that:

Theorem 1: Calculating the greatest fixed point of the Bes obtained by trans-
lating an Lts gives the maximal τ -confluent set.

4.3 Complexity.
Consider variables Vc. We have mτ (the number of τ transitions) such variables.
Furthermore, the definition set of each variable is bounded above by fanout ∗
fanoutτ (fanout is the maximum number of successors of a state in the Lts,
fanoutτ is the maximum number of τ -successors). Now consider the disjunctive
variables Vd. We have mτ ∗ fanout such variables (for each τ transition, we have
an entry for each other transition which can be taken from the source node).
The definition sets of these variables never exceeds fanoutτ entries.
Recall that a Bes can be solved in time proportional to the number of variables
plus the size of the definition sets. The complexity of resolving τ -confluence using
our algorithm is thus O(mτ fanout∗ fanoutτ ). This compares favourably with the
algorithm given in [9] which has complexity O(mτ ∗ fanout3τ ).
However, this is pessimistic view of the complexity. Due to the regular nature of
the equations (conjunctions of disjunctions), and the fact that we also know that
the disjunctive variables are never reused (a disjunctive variable is revisited only
through a conjunctive one), we can hone the algorithm to work more efficiently
(for example, by not caching disjunctive variables).

5 Definitions and Basic Results: Composition Expressions

Definition: A composition expression is an object in the abstract type Exp:
Exp ::= Lts | hide G in Exp | Exp ‖G Exp

The basic building blocks are Ltss, together with the hiding operator (renames
any label in the action set G to τ) and synchronous composition (actions in G are
synchronised, the rest can happen independently). One can add other operators
to this family, but these usually suffice for a decomposed view of a system.
A composition expression describes the way a family of Ltss communicate to-
gether, but can be seen itself as an Lts.



Hiding: In (hide G in E1), if E1 is the Lts 〈Q1, Act1, →1, q01〉, the resul-
tant Lts is 〈Q1, Act1, →, q01〉 where → is the smallest relation generated
by the following structured operational semantics rules:

q1
a→1 q′1, a /∈ G

q1
a→ q′1

q1
a→1 q′1, a ∈ G

q1
τ→ q′1

Synchronous composition: In the composition expression (E1 ‖G E2), if Ei

corresponds to the Lts 〈Qi, Acti, →i, q0i〉, the resultant Lts is 〈Q1 ×
Q2, Act1 ∪ Act2, →, (q01, q02)〉 where → is the smallest relation generated
by the following structured operational semantics rules:

q1
a→1 q′1, a /∈ G

(q1, q2)
a→ (q′1, q2)

q2
a→2 q′2, a /∈ G

(q1, q2)
a→ (q1, q

′
2)

q1
a→1 q′1, q2

a→2 q′2, a ∈ G

(q1, q2)
a→ (q′1, q

′
2)

For the sake of brevity, in contexts where we speak of expressions, unless oth-
erwise stated, the Lts generated by expression E will be 〈Q, Act, →, q0〉, and
that of expression Ei will be 〈Qi, Acti, →i, q0i〉.
Definition: The subterm relation over composition expressions v is defined to
be the reflexive, transitive closure of the smallest relation <1 satisfying:

E <1 hide G in E, E <1 E ‖G E′, E <1 E′ ‖G E

We say that a transition q
a→ q′ of E is immediately generated from a transition

q1
a1→1 q′1 of E1 (E1 <1 E) if the derivation of the former transition using the

operational semantic rules requires the use of the latter. Thus, for example,
q1

τ→ q2 in (hide a in E) is immediately generated from q1
a→ q2 in E.

We are mainly interested in the transitive closure of this relation: ↑E2
E1
⊆→1

× →2 (where E1 v E2), which relates transitions in →2 (of E2) with the tran-
sitions in →1 (of E1) contributing to their generation.
For this definition to make sense, we will make the simplifying assumption that
an expression will not contain common subexpressions (all the leaf Ltss are
different). This is done to simplify the presentation but can be easily remedied
either by tagging different leaf nodes (different tag for every leaf) or by reasoning
in terms of expression contexts.
The decomposition law states that if E1 v E2 v E3: ↑E2

E3 ◦ ↑E1
E2

= ↑E1
E3

(where
r◦s is the relation composition of r and s).
Similarly, we can talk about a transition generating another: t ↓E1

E2
t′ means

that t is a generator of t′. ↓E1
E2

is simply the inverse of ↑E1
E2

.

We define relation application as usual: R(X)
df
= {y | ∃x ∈ X . x R y}.

Definition: Given a composition expression E, the actions hidden above, and
synchronised above a subexpression E1 are defined as:
HiddenE(E1)

df
=

⋃
{G | hide G in E2 v E, E1 v E2}

SynchronisedE(E1)
df
=

⋃
{G | E2 ‖G E3 v E, E1 v E2 ∨ E1 v E3}

Given E1 v E, we define TauE(E1) to be the set of labels such that transitions
in E1 whose label appears in TauE(E1) are guaranteed to be transformed into
τ transitions in E:



TauE(E1)
df
= HiddenE(E1) \ SynchronisedE(E1)

Proposition 6: Given E1 v E, every transition labelled by TauE(E1) generates
at least one τ transition, and nothing but τ transitions:

∀t :
TauE(E1)→ . ↑E

E1
(t) 6= ∅∧ ↑E

E1
(t) ⊆{τ}→

Proof: The proof follows from structural induction with the inductive hypothesis
that in expression E2 (E1 v E2 v E), a non-empty set of {τ} ∪ TauE(E1)
transitions generates a non-empty set of {τ} ∪ TauE(E2) transitions.
Furthermore, since by definition, TauE(E) = ∅, the conclusion follows. 2

We will write the expression obtained by replacing in E the occurrence of sub-
expression E2 by E1 as E[E1/E2].
Proposition 7: Branching bisimilarity is preserved in composition expressions:
If E1 v E and E1 'b E2 then E 'b E[E2/E1].
Proposition 8: Actions in TauE(E1) can be hidden immediately in E1. Given
E1 v E and G ⊆ TauE(E1): E[hide G in E2/E1] 'b E[E2/E1].
Consider a τ transition in a leaf Lts, which is not confluent. Just by looking
at the leaf in question, we can sometimes deduce that the transition can never
become confluent. Transitions about which we cannot guarantee this will be
called potential τ -confluent transitions. We identify a set of transitions which we
will later prove that all τ transitions generated higher up in the expression tree,
will be generated by transitions in this set.
The intuition is the following: a transition is potentially confluent if (i) either
it is already invisible, or its action will be hidden higher up in the expression
tree, (ii) hidden, it satisfies the τ -confluence conditions on all other outgoing
transitions except (iii) it may not satisfy the τ -confluence conditions with respect
to transitions which may later disappear (synchronised above).

Definition: Given E1 v E, P1 ⊆ G→1 (where G = HiddenE(E1) ∪ {τ}) is said
to be a potential τ -confluence set if, for all q1

a→1 q2 ∈ P1 and q1
b→1 q3 with

b /∈ SynchronisedE(E1), then either q3
a?→1 q2 ∈ P1 or there exists q4 such that

q3
a?→1 q4 ∈ P1 and q2

b?→1 q4. q
a?→ q′ is defined as q

a→ q′ ∨ (a ∈ G ∧ ∃a′ ∈
G . q

a′→ q′).
Proposition 9: The union of all potential τ -confluence sets of E1 with respect
to E (E1 v E) is itself a potential τ -confluence set. We call this the maximal
potential τ -confluence set and write it as PE(E1).
Proposition 10: If T is a τ -confluent set of E1 (E1 v E), T is also a potential
τ -confluence set of E1 with respect to E.

Proof: Consider q1
τ→ q2 ∈ T . Since it is a τ -confluent transition, for any

q1
a→ q3, there exists q4 such that q2

a→ q4 and q3
τ→ q4 ∈ T . Consider the

different cases from the a and τ : (i) a = τ , q2 = q4, q3 = q4 (ii) a = τ , q2 = q4,
q3

τ→ q2 ∈ T (iii) q2
a→ q4, q3 = q4 (iv) q2

a→ q4, q3
τ→ q4 ∈ T . These satisfy the

property required of potential τ -confluence. T is thus a potential τ -confluence
set. 2

Proposition 11: If E1 v E, then T(E1) ⊆ PE(E1).



Proof: The proof follows immediately from propositions 2, 9 and 10. 2

6 Calculating τ -Confluence in Composition Expressions

We now give a number of results to deduce τ -confluence in composition expres-
sions without applying the algorithm on the top-level Lts, which can be very
large.

6.1 Discovering τ -confluence in composition expressions.
The basic result we will apply to reduce composition expressions, is that τ -
confluent transitions can only generate τ -confluent transitions. This can be very
useful, especially if the leaf Ltss are reduced using τ -prioritisation, where in the
resultant Lts, the τ -confluent transitions become the only transitions leaving a
state, making them trivially recognisable as τ -confluent ones.

Theorem 2: If T1 is a τ -confluent transition set of E1 (E1 v E) then ↑E
E1

(T1),
the set of transitions of E generated from T1, is a τ -confluent transition set of
E.
This theorem together with the reduction techniques given in Section 3 pro-
vides us with two approaches to reduce an Lts in a compositional manner. One
way is to calculate and label confluent transitions in the leaves, and use this
information to deduce a confluence set in the top level Lts and perform reduc-
tion on-the-fly as the top level Lts is generated (using either τ -prioritisation
or any other technique). Another approach is to reduce the leaves using max-
imal τ -prioritisation (leaving only one confluent outgoing transition, when one
is available), thus making sure that as the top level Lts is generated, confluent
transitions in the leaves are easily recognisable (unique τ transitions leaving a
state) and use this information to generate the reduced Lts. The latter has the
advantage that confluence information needs not be stored.

6.2 Doing more than τ transitions.
One way in which new τ -confluence can manifest itself is via new τ transitions
appearing from the hide operator. In general, we cannot just treat transitions
which are eventually hidden as invisible transitions, because if they are syn-
chronised before being hidden, they may disappear due to the other branch not
complementing the required transition. In the case of hidden transitions which
are not synchronised, we can either push the hide operator into the expression
to generate τ transitions as early as possible, or treat them as invisible transi-
tions (despite the fact that they are not τ transitions). The second solution is
preferable, since it does not destroy the structure of the expression as given by
the user, and avoids adding new expression nodes, resulting in slower analysis.
The following result justifies their treatment analogous to τ transitions.

Theorem 3: Given E1 v E and T1 ⊆
TauE(E1)→1 which satisfies the confluence

conditions if replaced by τ transitions, and E2, a τ -prioritisation of E1 with
respect to T1, then E[E2/E1] 'b E.



6.3 Some τ transitions are not worth the bother.
Finally, we can not only identify transitions which are, and will remain confluent,
but also ones which can under no circumstances become confluent. Since within
composition expressions we can only partially identify τ -confluent transitions,
we may want to apply τ -confluence algorithm at the top-most level once again.
If certain transitions can be identified as certainly not being τ -confluent during
the expression tree traversal, we can apply the τ -confluence detection algorithm
on a smaller set of transitions. The main theorem in this section allows us to do
precisely this by using the notion of potential τ -confluence.
Lemma 1: If P2 is a potential τ -confluent set of E2 with respect to E (E1 v
E2 v E) then ↓E2

E1
(P2) is a potential τ -confluent set of E1 with respect to E.

Lemma 2: If E1 v E2 v E, then PE(E2) ⊆ ↑E
E1

(PE(E1))
Theorem 4: Some transitions need never be checked for confluence. If E1 v E:

T(E) ∩ (→1 \ ↑E
E1

(PE(E1))) = ∅
Proof: From lemma 2 and proposition 10 we can now conclude that:

T(E) ⊆ ↑E
E1

(PE(E1))
from which the theorem directly follows. 2

Thus, by identifying and marking the complement of the maximal potential τ -
confluent set in the leaf nodes, we can mark transitions which they generate
at higher levels in the expression tree. Using this theorem, we are guaranteed
that these transitions are not confluent, and we can thus reduce the computa-
tion required to identify a τ -confluent set of the Lts generated by the whole
composition expression.

7 Tools and Applications

We have implemented the techniques described within the Cadp toolkit [10] in
the Open/Cæsar environment. A collection of front-ends enable the compila-
tion of source languages into C code which includes a function to access the LTS
described by the system which is explored on-the-fly by the verification back-
ends. Exp.Open is a front-end for composition expressions, while Cæsar.Open
is a front-end for the Lotos language and Generator is a back-end that ex-
plicitly generates the reachable state space of a system.
A variant of Generator, named τ -Confluence, detects and prioritises τ -
confluent transitions on-the-fly, using Boolean Equation Systems. Exp.Open
has been extended to enable τ -confluence detection (branching option), by
taking an account of the composition expression as stated in Theorems 2 and 3.
More precisely, in global Lts of a composition expression E, Exp.Open priori-
tises the transitions that were detected as τ -confluent in the components of E.
Additionally, some locally visible transitions are also prioritised, knowing that
they will lead to τ -confluent transitions in the global Lts of E.
Exp.Open flattens the composition expression into a tuple of Ltss and a set
of so-called synchronization vectors. If n is the size of the Lts tuple, each syn-
chronization vector is a tuple of size n + 1, whose elements are either labels
or a special null value. The first n elements represent labels of transitions that



must be fireable from the corresponding Lts current state components (none
if element is null), whereas the last element (which must not be null) is the
label of the resulting transition in the produced Lts. Working globally on the
expression also allows us to identify certain locally confluent transitions which
do not fall under the framework proposed in this paper. More details will be
found in a related technical report. Exp.Open also calculates transitive closures
of τ -confluent transitions (to avoid entering circuits of τ -confluent transitions),
and hence compresses successive τ -confluent transitions into a single one.
These tools have been used to generate the state space of the rel/REL proto-
col previously studied in [5, 11]. The rel/REL protocol is an atomic multicast
protocol between a transmitter and several receivers. This protocol is reliable in
the sense that it allows arbitrary failures of the stations involved in the com-
munication. The protocol guarantees the following two properties: (1) when a
message M is sent by the transmitter, either every functioning station correctly
receives M , or M is not received by any of the stations, and (2) messages are
received in the same order as they are sent. Two underlying assumptions are
needed to guarantee correctness: that crashed stations stop sending and receiv-
ing messages, and that functioning stations can always communicate with each
other. The overall compositional structure of the system with two receivers is
given by the following composition expression:

hide R T1, R T2, R1, R2, DEPOSE1, DEPOSE2 in

CRASH TRANSMITTER ‖{R T1, R T2} (

(RECEIVER THREAD1 ‖{R T1, R1, R2, GET, CRASH, DEPOSE1} FAIL RECEIVER1)

‖{R1, R2}

(RECEIVER THREAD2 ‖{R T2, R1, R2, GET, CRASH, DEPOSE2} FAIL RECEIVER2) )

The composition of Ltss RECEIVER THREADn and FAIL RECEIVERn (n = 1, 2)
defines the behaviour of receiver n, including the possibility of a crash. The Lts
CRASH TRANSMITTER describes the behaviour of the transmitter. These Ltss are
generated from a Lotos description of the system, detailed in [5].
In our experiments, performed using Svl scripts [6], we have compared two state-
space generation approaches for the rel/REL protocol: (i) Normal generation:
leaf Ltss and composition expression are generated normally, without optimisa-
tion (using respectively Cæsar.Open/Generator and Exp.Open/Generator).
(ii) τ -prioritised generation: leaf Ltss are generated using the Cæsar.Open/τ-
Confluence tools and composition expression is generated using Exp.Open
branching together with Generator.
Experiment results are displayed in Table 1. From these results, τ -prioritisation
techniques on composition expressions seem very promising. Various reasons
contribute to the success of τ -prioritisation. Although both FAIL RECEIVERs
are purely sequential, RECEIVER THREADs and CRASH TRANSMITTER use parallel
composition of processes performing silent transitions. This generates many τ -
confluent transitions, which are detected by τ -confluence. Also, as a consequence
of successful τ -prioritisation in three of the five leaves of the composition expres-
sion, Exp.Open avoids the creation of new τ -confluent diamonds. Additionally,
a lot of transitions present in leaves are hidden at the top-level of the composition
expression, some of which are confluent.



Normal τ -prioritised Difference %
states transitions states transitions states transitions

CRASH TRANSMITTER 85 108 73 84 14% 22%

RECEIVER THREADn 16 260 167 829 16 260 115 697 0% 31%

FAIL RECEIVERn 130 1 059 130 1 059 0% 0%

Normal τ -prioritised Difference %

Number of states 249 357 114 621 54%

Number of transitions 783 470 220 754 72%

Exp.Open execution time 2′23′′ 2′10′′ 9%

Exp.Open memory consumption (Kb) 5 776 3 944 32%

Svl execution time 3′05′′ 3′03′′ 1%

Table 1. (a) Leaf Lts sizes using normal and τ -prioritised generation, (b) Cost of
normal and τ -prioritised composition expression generation.

Exp.Open State Space
Difference % time memory states trans

Alternating Bit(1) 9% 0% 4% 25%

Alternating Bit(2) −4% 0% 6% 27%

Distributed Leader Election(1) −57% 3% 11% 24%

Distributed Leader Election(2) −21% 0% 12% 23%

Distributed Leader Election(3) −88% 5% 5% 11%

Distributed Leader Election(4) −90% −1% 0% 8%

Distributed Leader Election(5) −102% −1% 0% 0%

Table 2. Difference ratios for several case studies

Note that applying τ -prioritisation at the top-level gives no further reduction
showing that we have identified the maximal τ -confluent set.
To see what gain can be obtained on examples less adapted with respect to
these observations, we have applied the τ -confluence technique to systems with
purely sequential leaf components. We have chosen examples from the Cadp
distribution: two versions of the Alternating Bit Protocol and five versions of a
Distributed Leader Election Protocol. Table 2 shows the results. Note that in this
case, comparing execution times is irrelevant, since τ -prioritisation of sequential
components is known to be useless. It is very encouraging to note that in all
experiments, the overhead in memory consumption is negligible, since memory
more than time is usually the bottleneck in verification.

8 Conclusions

τ -confluence can be an effective technique to reduce transition systems at a
reasonable cost. We propose to use composition expressions to help identify in-
dependent transitions resulting in τ -confluence at a negligible cost. One question
arising is whether we can do better by enriching the set of composition operators.



In this paper we concentrate on results for strong confluence, mainly because we
have no efficient way of recognising weak confluence at the leaf nodes. However,
it would be useful to extend these results, especially since certain leaf nodes
may be small enough to calculate larger sets of more weakly confluent transi-
tions. Overall, we believe that composition structure information can, in various
contexts, be used to improve existing algorithms.
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