
SVMs with Profile-Based Kernels 1

Support Vector Machines with Profile-Based Kernels for

Remote Protein Homology Detection

Steven Busuttil1 John Abela2 Gordon J. Pace2

steven@cs.rhul.ac.uk jabel@cs.um.edu.mt gordon.pace@um.edu.mt
1 Department of Computer Science, Royal Holloway, University of London, UK.
2 Department of Computer Science & Artificial Intelligence, University of Malta, Malta.

Abstract
Two new techniques for remote protein homology detection particulary suited for sparse data

are introduced. These methods are based on position specific scoring matrices or profiles and use
a support vector machine (SVM) for discrimination. The performance on standard benchmarks
outperforms previous non-discriminative techniques and is comparable to that of other SVM-based
methods while giving distinct advantages.

Keywords: remote protein homology detection, support vector machine (SVM), kernel, profile

1 Introduction

In recent years, advances in molecular biology like large-scale sequencing and the human genome
project, have yielded an unprecedented amount of new protein sequences. The resulting sequences
describe a protein in terms of the amino acids that constitute it and no structural or functional
information is available at this stage. To a degree, this information can be inferred by finding a
relationship (or homology) between new sequences and proteins for which structural properties are
already known. This is known as protein homology detection. Traditional laboratory methods of
protein homology detection are lengthy and expensive. Since using these methods is unpractical for
the amount of data available, researchers are increasingly relying on computational techniques to
automate the process.

Over the past quarter of a century, an array of successively more powerful computational methods
for detecting protein homologies have been developed. Early attempts involved comparing a new
protein to a set of diverse proteins whose structural and functional details are already known — one
at a time [17]. Each pair is given a score which indicates the amount by which they are related. This
method gives good results for closely related proteins, however, remote homologies are not detected.

In the early 1990s a dramatic accuracy improvement was achieved by collecting the information
inherent in a number of related proteins. This information is synthesised into a single model, to which
new protein sequences are compared [5]. This technique is more sensitive to remote protein similarities
and consequently, gives better results. Furthermore, even better accuracy was obtained in the late
1990s by supplementing these models with information present in large protein databases [1, 11]. This
process is performed iteratively and makes a model increasingly more accurate.

In 1999, Jaakkola et al. introduced a new computational technique for protein homology detection
known as SVM-Fisher [9]. This technique couples a previous statistical protein homology detection
method, known as a profile hidden Markov model (HMM), with a discriminator from the area of
machine learning, known as a support vector machine (SVM). In empirical tests this technique signif-
icantly outperforms previous (non-discriminative) methods for protein homology detection.

In this paper we propose two new methods for protein homology detection. As is done in the SVM-
Fisher method, our methods build on an existing technique in the area of protein sequence analysis,
known as a profile, and use an SVM as a discriminator.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/153558042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Busuttil et al.

2 Technical Background

2.1 Profiles

Profiles, or position specific scoring matrices (PSSMs) [5], were introduced in bioinformatics by Grib-
skov et al. in 1990. Given a multiple sequence alignment, a profile specifies for every column, the
frequency that each amino acid appears in that column. Once a profile is available, a new sequence
can be aligned to it to see how well it fits the profile. This is similar to asking how much a sequence
is similar to the proteins from which the profile was derived.

In practice, the construction of a profile is somewhat more involved. For instance, sequences in the
multiple alignment are given a weight which describes their informational value. This is important in
cases where the multiple alignment contains a large set of closely related proteins. This set carries
more or less the same amount of information as a single sequence, however, its size may allow it
to overshadow other more divergent proteins. In addition, when calculating the character position
probabilities a method is usually used that gives probabilities to unobserved amino acids based on
their presumed association with those observed. This is especially useful when the multiple alignment
contains only a few sequences or the proteins to be classified are remotely related.

As an optional last step, it is common practice to convert profile probabilities to log-odds ratios
to increase the selectivity of the model. This involves taking the logarithm of the ratio between the
available probabilities and the probability of a particular amino acid being found in nature.

2.2 Support Vector Machines

Although the study of support vector machines (SVMs) was started in the late 1970s by Vladimir
Vapnik, it was not until the late 1990s that this work came to fruition and SVMs started to receive
increasing attention [4, 19]. To date, SVMs and related techniques have been greatly developed and
applied to many areas, including bioinformatics. In most cases, the performance of SVMs either
matches or is significantly better than that of competing methods.

In essence, support vector machines are supervised learning machines based on statistical learning
theory. SVMs take a vector of real numbers as input and based on previous experience, return its clas-
sification1. Support vector machines are based on linear learning machines and learn the hyperplane
that separates two classes with the maximum margin of separation. This optimal hyperplane has been
proven to guarantee the best generalisation performance [19]. Finding this hyperplane translates to
solving a convex quadratic optimisation problem, which is formulated in such a way that all vectors
appear inside a dot product.

Frequently, the input data is not linearly separable in input space. SVMs handle this situation
by substituting the said dot product with a function known as a kernel. A kernel takes two vectors
and returns their dot product in some feature space. In this manner, SVMs operate in feature space
without the inherent complexities. The simplest kernel is the usual dot product (known as the linear
kernel), where the feature space is equal to the input space. A more powerful and commonly used
kernel is the Gaussian radial basis function (RBF) kernel:

kr(x, z) = exp
(
−‖x− z‖2

2σ2

)
(1)

RBF kernels map the input space onto the surface of an infinite dimensional unit hypersphere, because
by construction ‖φ(x)‖ =

√
kr(x,x) = 1. The parameter σ ∈ R+ controls the amount of smoothing

of the decision surface in input space.
An extension of the basic SVM algorithm is the soft margin classifier. Since in real-world data it is

common that some erroneous elements are present, this extension allows some training examples to be
misclassified, effectively making a trade-off between training accuracy and generalisation performance.

1Other uses of support vector machines apart from classification exist but these are beyond the scope of this paper.



SVMs with Profile-Based Kernels 3

3 Problem and Related Work

3.1 The Problem

Researchers simulate the problem of remote protein homology detection by withholding all members
of a SCOP (Structural Classification of Proteins database) [15] family for testing, and training with
the remaining members of the SCOP superfamily. In addition to these (positive) sequences, negative
examples are taken from folds that are different from the one that the target family belongs to.

There are two semi-standard datasets that are used in the area. The first one was introduced
in 1999 by Jaakkola et al. [9] and is based on SCOP 1.37. This dataset contains 33 experiments
and adds homologous protein sequences to the positive training set. The second dataset, which was
introduced in 2002 by Liao and Noble [14], is based on SCOP 1.53 and contains 54 experiments. This
dataset is similar in principle to the one by Jaakkola et al., however the positive training set does not
include added homologues. This makes recognition more difficult.

3.2 Methods

Essentially, applying SVMs to a problem entails creating a new (problem specific) kernel. For homology
detection, there usually is a choice of either (1) creating a new similarity measure between two protein
sequences and proving that it is a (string) kernel, or (2) transforming sequences into fixed-length
numerical vectors and using a standard kernel. By the closure of kernels [4], the combination of an
explicit mapping to a feature space and a kernel results in a valid kernel.

The SVM-Fisher method [9] was introduced in 1999 by Jaakkola et al. Initially a number of HMMs
are trained on different subsets of the positive training set, and then Fisher scores for each sequence
are computed. The Fisher score for a sequence is a vector that measures the difference between it
and an HMM. All the Fisher scores for a sequence are combined to give a vector that summarises
the difference from a typical member of the target superfamily. An SVM is then trained using an
RBF kernel. SVM-Fisher yields results that significantly outperform all previous techniques. In 2002,
Liao and Noble proposed a simple but effective remote protein homology detection method, named
SVM-pairwise [14]. This method builds an ordered list of training examples, to which each sequence is
subsequently compared using a pairwise sequence comparison algorithm. This results in fixed-length
vectors of pairwise scores. Such vectors are then used to train an SVM with an RBF kernel. On the
Liao and Noble dataset, this method performs considerably better than SVM-Fisher.

The mismatch kernel [13], introduced in 2003 by Leslie et al., maps each protein to the feature
space indexed by all possible subsequences of length k (called k-grams). For a sequence s this method
generates a vector with feature i corresponding to the number of times k-gram i appears, with up to
m mismatches, in s. A linear kernel is used to measure the similarity of these vectors. The performance
of the mismatch kernel is comparable to that of the SVM-Fisher and SVM-pairwise methods. 2003 also
saw the introduction of the motif kernel [2] by Ben-Hur et al. This method uses an ordered list of
discrete sequence motifs and vectorises a sequence by taking the number of times each motif appears
in it. The linear kernel is then used to train an SVM. On a custom dataset, the performance of this
method is better than some previous techniques.

In 2004, Saigo et al. proposed a new string kernel for protein homology detection, called the local
alignment kernel [16]. To measure the similarity between two protein sequences, this kernel takes
the sum of the scores of all their possible local alignments. On the dataset by Liao and Noble, this
method outperforms all previous SVM-based techniques. The profile kernel [12] introduced in 2004
by Kuang et al., is related to the mismatch kernel. Initially, a profile is produced for each sequence,
and then a kernel is defined on the profiles. Similarly to the mismatch kernel, the profile kernel maps
sequences to the feature space indexed by all k-grams. This time, however, mismatches are only
allowed for amino acids that have a profile column probability greater than a threshold. On a custom
dataset, this method outperforms SVM-pairwise.



4 Busuttil et al.

4 Solutions Proposed

Our aim is to vectorise protein sequences in such a way as to be accepted for input to an SVM. The
vectors should incorporate prior knowledge from the area so that the discrimination of related and
non-related proteins be made easier.

4.1 Approach Overview

The following is a high level description of the steps involved in our vectorisation method (also il-
lustrated in the figure below): (1) Compute a multiple alignment of the positive training set using
ClustalW, a standard multiple alignment program by Thompson et al. [18]. (2) Build a profile from
the multiple alignment using the Henikoff and Henikoff position-based method. Effectively, this results
in a model that encapsulates what makes a protein part of the target superfamily. (3) Vectorise a
sequence by comparing it to the profile to produce a vector that measures their similarity.

Positive
Training Set

Multiple
Alignment

Profile

Protein Sequence

ClustalW
Henikoff and

Henikoff
Method

ProfGram
or

ProfBlock
Feature Vector

1

3

2

The construction of a profile from a multiple alignment (step 2) is a two step process. First, we use
a modified version of the position-based sequence weights method by Henikoff and Henikoff [8], then
the character position specific probabilities are calculated using the pseudo-count method by Henikoff
and Henikoff [7]. For the vectorisation of a protein sequence (step 3) we propose two new methods,
ProfGram and ProfBlock, which are described in detail in Section 4.2 and Section 4.3 respectively.

4.2 ProfGram

The ProfGram vectorisation method maps protein sequences to the feature space indexed by all
possible (contiguous) profile subparts of length k, which we shall call profile k-grams. For this method,
the profile is converted to log-odds scores. Each of these profile k-grams is slid across the sequence to
be vectorised, taking the score of aligning each part of the sequence with the k-gram. All the scores
for a particular k-gram are added together, giving a value that represents the similarity of the whole
sequence to the k-gram. The resulting k-gram score is stored as an element of the feature vector. This
process is illustrated below for k = 3 and is presented more formally subsequently.

Split profile into all
possible grams of

length k.

1 2 3

A 0.3 0.1 0.2

C 0.1 0.1 0.3

... ... ... ...

Y 0.2 0.3 0.3

- 0.4 0.2 0.4

n-2 n-1 n

A 0.1 0.2 0.4

C 0.3 0.4 0.1

... ... ... ...

Y 0.1 0.1 0.2

- 0.2 0.1 0.3

..
.

RPRTAFSSENQNRTFFKRI

Align each profile k-gram
with every part of protein

sequence. Add the
scores and save in

feature vector.

Feature Vector

Profilek-grams

1 2 ... n-1 n

A 0.3 0.1 ... 0.2 0.4

C 0.1 0.1 ... 0.4 0.1

... ... ... ... ... ...

Y 0.2 0.3 ... 0.1 0.2

- 0.4 0.2 ... 0.1 0.3

Profile

Protein Sequence

12 9 ... 11 5

Let s be a sequence of length m and let the character in position j of s be denoted by sj . Let n be
the length of the profile and k ≤ min(m,n) be the predefined length of the profile grams. Let w(i, sj) be



SVMs with Profile-Based Kernels 5

the profile score for character sj appearing in position i and v be the feature vector of length n−k+1.
For a sequence s, an element of v (denoted vh) is calculated as follows2:

vh
df
=

m−k+1∑
i=1

k−1∑
j=0

w(h + j, si+j) (2)

Equation 2 is thus used to calculate vector v. An empirical test was carried out to determine a good
candidate value for k. It seems that for some experiments a small width is better while for others a
wider profile gram gives better results. We finally opted for k = 4 which gives a performance that is
consistent throughout, even if not always optimal.

4.3 ProfBlock

ProfBlock is a more sophisticated vectorisation method that uses the expected matching length of a
sequence to every part of the profile. For this method the profile is not converted to log-odds scores,
but is left at the stage where it contains raw probabilities.

4.3.1 The Expected Matching Length

Definition 4.1 (Expected Matching Length). Given a profile p of length n, containing position-
specific character probabilities and a sequence s of length m, the expected matching length of s to p
starting at profile position i ≤ n and sequence position j ≤ m, is denoted by eij . Let p(i, c) be the
profile probability of character c in position i, sj be the character in position j of s, and l be the
maximum possible matching length, l = min(n − i + 1,m − j + 1). eij is defined to be the expected
matching length as per standard probability theory:

eij
df
=

l∑
k=1

k

(
k−1∏
h=0

p(i + h, sj+h)

)
(1− p(i + k, sj+k)) (3)

4.3.2 Approximation of the Expected Matching Length

The expected matching length is a powerful way of finding the amount by which a part of a sequence
matches a part of the profile, however it has the drawback of being very computational expensive.
To alleviate this problem, we use a technique that enables us to compute only a small number of the
summations of Equation 3 while giving approximately the same result.

For notational clarity we will subsequently be ignoring the different profile and sequence positions
and denote a profile probability as simply pi, meaning the probability of the match of the ith sequence
and profile positions pair. Once again, let l be the maximum possible matching length and let k < l.
Equation 3 can be opened up by splitting the summation into two parts (for the first positions):

e11 =
k∑

i=1

i

 i∏
j=1

pj

 (1− pi+1) +
l∑

i=k+1

i

 i∏
j=1

pj

 (1− pi+1) (4)

Since the probabilities product (
∏i

j=1 pj) approaches zero as i increases, the second term of Equa-
tion 4 becomes progressively less significant as i increases. If ek

ij is the summation of the first k terms
(the first term in Equation 4), we would like to determine a value of k such that eij lies within the
interval [ek

ij , e
k
ij + ε] where ε is a nonnegative real number. This would allow us to approximate eij

by calculating only the first k terms. Moreover, we would like to determine when to stop based on
information from the first k terms. Lemma 4.1 relates the values of the first k terms to the magnitude
of the remaining terms (more details and a full proof can be found in [3]):

2Recall that adding log-odds scores is equivalent to multiplying the underlying probability ratios.



6 Busuttil et al.

Lemma 4.1.

l(l−k)
k∏

j=1

pj ≥
l∑

i=k+1

i

 i∏
j=1

pj

 (1−pi+1) �

Therefore, if the calculation of the expected matching length is stopped when l(l − k)
∏k

j=1 pj ≤ ε
Lemma 4.1 guarantees that the summation of all the other terms in the series is bound above by ε
and hence, eij cannot increase by more than ε. This reduces the computation required to calculate
(an approximation of) eij considerably. Empirical analysis showed that setting ε to be 0.001 takes
only 14% of the time taken to calculate the exact expected matching length with a precision loss of
just 1.2× 10−5.

4.3.3 Computing the Feature Vector

The expected matching length of a sequence of length m to a profile of length n, starting at profile
position i and sequence position j, is denoted by eij . Scoring a whole sequence with a part of the profile
starting at position i, results in the vector ti = (ei1, ei2, . . . , eim)′. Vector ti represents how much the
different positions of a sequence match the profile starting at position i. A function g : Rm → R is
needed that takes a vector ti as its argument and combines its elements to return a single real number.
This number represents how much the sequence as a whole matches the profile starting at position i.
The feature vector generated for a sequence is thus: v = (g(t1), g(t2), . . . , g(tn))′. That is, a vector
with elements representing how much a sequence matches the different positions of a profile.

Profile
1 2 . . . n

S
eq

u
en

ce 1 (e11, (e21, . . . (en1,
2 e12, e22, . . . en2,
...

...
...

. . .
...

m e1m) e2m) . . . enm)
= t1 = t2 . . . = tn

Feature ↓ ↓ . . . ↓
Vector (g(t1), g(t2), . . . g(tn))′

The ProfBlock scoring function was chosen after an empirical analysis of several candidate func-
tions. It turns out that positive examples have longer expected matching lengths. The scoring function
that was found to give the best performance is the sum of squares since it strengthens larger values
present in the expected matching length vectors ti:

g(ti) =

∑m
j=1 e2

ij

m

Note that the sum of squares is divided by the length of the sequence, m, to normalise the values
across sequences of different lengths.

4.4 Time Complexity Analysis

In analysing the time complexity of our vectorisation methods, we will be taking the profile as given3.
Let n be the length of the longest profile and m be the length of the longest sequence. ProfGram
compares each part of a sequence with each part of a profile, for up to k positions each time (k is the
width of the profile grams). Therefore, the time complexity for ProfGram is O(kmn). Note that in
practice k is usually a small constant.

3The calculation of a profile from a multiple alignment is a preprocessing step that is done just once for the dataset.



SVMs with Profile-Based Kernels 7

On the other hand, ProfBlock compares each position of a sequence (m possibilities) with each
position of a profile (n possibilities), for up to the length of the sequence or profile (min(m,n) possi-
bilities). The time complexity for the ProfBlock vectorisation method is therefore O(min(m,n)mn),
making ProfBlock more complex than ProfGram by a factor of min(m, n). However, through our
ProfBlock expected matching length approximation technique, the length compared is usually just a
small fraction of the maximum length possible. Empirical evidence indicates that this reduces the
min(m,n) factor considerably.

5 Experiments and Results

Our remote protein homology detection method involves vectorising protein sequences using ProfGram
or ProfBlock and then training and testing an SVM on the resulting vectors. Scaling vectors before
applying the SVM algorithm is very important. This is mainly done to avoid vector elements in greater
numeric ranges dominating those in smaller numeric ranges and to avoid numerical difficulties during
the kernel calculations. For our experiments, we normalise each vector to Euclidean length 1. Note
that more information on the experiments performed and more detailed results can be found in [3].

In practice, the output of an SVM is a real number in the range [−1,+1]. To evaluate the
predictions produced by an SVM, we employ two methods that are commonly used in bioinformatics.
The median rate of false positives (median RFP) is the fraction of negative examples that score as
high or better than the median-scoring positive example. The median RFP is bounded by 0 and 1
and a smaller value indicates better performance. The receiver operating characteristic (ROC) [6]
is a sophisticated technique that is used to evaluate the results of a prediction. A ROC curve is a
graphical plot of the number of true positives as a function of the number of false positives for varying
classification thresholds. The area under the ROC curve is called the ROC score and is commonly
used as a summary statistic. Clearly, the ROC score is within the interval [0, 1] and a higher score
indicates better performance.

Through an empirical analysis it was found that our methods perform best when coupled with
an RBF kernel (see Equation 1). Using this setup, two SVM parameters have to be chosen prior to
training: σ, the RBF kernel smoothing parameter, and C the (soft margin) SVM training error to
generalisation performance trade-off parameter. Our goal is to identify a good C and σ pair such that
the classifier accurately predicts unknown data. For this, we use a technique known as cross-validation.
In k-fold cross-validation, the training set is split into k subsets of equal size. For a particular C and σ
configuration, one subset is tested using the classifier trained on the remaining (k − 1) subsets and
scored. This is repeated for every subset and the average of the scores is taken. This average score
is an approximation of the performance of the classifier on testing data for a particular configuration.
To find the best pair of C and σ over some ranges, a grid search using cross-validation is employed.
In our experiments, the grid search performed is very coarse due to the size our datasets.

5.1 Results

For our experiments we use Joachims’ implementation of a support vector machine, SVMlight [10].
This implementation can handle large training sets and allows us to specify different cost models.
We test our methods, SVM-ProfGram and SVM-ProfBlock, on both the Liao and Noble dataset and
the Jaakkola et al. dataset. For comparison, we include the results obtained by SVM-Fisher, SVM-
pairwise, the mismatch kernel (denoted SVM-Mismatch) and the local alignment kernel (denoted
LA kernel)4. We were unable to include results for the motif kernel and the profile kernel since these
were run on custom datasets. As a rough idea of the time taken by the experiments, consider that the
233,073 ProfBlock vectorisations required for the Liao and Noble dataset took approximately 15 hours.

4The results of competing methods reported in this paper are those published in [14] and [9], except those of SVM-
Mismatch and those of the LA kernel (from private communications with R. Kuang and H. Saigo respectively).



8 Busuttil et al.

Our methods for remote protein homology detection were designed for the Liao and Noble dataset.
For this dataset, the SVM parameters grid search was iterated over the following values: C =
{2−3, 2−2, . . . , 25} and σ = {2−3, 2−2, . . . , 27}. The SVM was trained with different cost models for
the two classes being classified since negative examples greatly outnumber positive examples in the
training set. Positive training examples were given a misclassification cost factor of N−

N+
where N−

and N+ are the number of negative and positive training examples respectively. Negative training
examples were left with the default misclassification cost factor of 1. Below is a summary of the results
obtained on this dataset.

Liao and Noble Dataset

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ROC

N
um

be
r 

of
 F

am
ili

es

SVM-ProfGram
SVM-ProfBlock
SVM-pairwise
SVM-Fisher
SVM-Mismatch
LA kernel

Liao and Noble Dataset

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Median RFP

N
um

be
r 

of
 F

am
ili

es

SVM-ProfGram
SVM-ProfBlock
SVM-pairwise 
SVM-Fisher 
LA kernel

On the other hand, ProfGram and ProfBlock were not designed for datasets like the one by
Jaakkola et al. where the positive training set contains a lot of extra homologous proteins. In addi-
tion, it was not possible to run our methods on 5 of the experiments (the Immunoglobulin families)
because the size of the positive training sets prevented us from producing the corresponding multiple
alignments. Consequently, we will have to leave out these experiments from our comparisons. For
this dataset, the two SVM parameters were iterated over the following values: C = {21, 22, . . . , 25}
and σ = {26, 27, . . . , 212}. There was no need to train the SVM with different cost models since the
positive and negative training sets are roughly balanced. Below are the results.

Jaakkola et al. Dataset

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ROC

N
um

be
r 

of
 F

am
ili

es

SVM-ProfGram
SVM-ProfBlock
SVM-Fisher
SVM-Mismatch

Jaakkola et al. Dataset

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Median RFP

N
um

be
r 

of
 F

am
ili

es

SVM-ProfGram
SVM-ProfBlock
SVM-Fisher

5.2 Analysis of Results

In general and as was expected, SVM-ProfBlock performs better than SVM-ProfGram, even though
the difference is not very pronounced. Of particular interest is the performance of our methods on
the Liao and Noble dataset since this was the dataset they were designed for. Although our methods
are similar to SVM-Fisher in that they use a model of the positive training set, they still clearly
outperform SVM-Fisher. The fact that our methods perform so well on limited positive training



SVMs with Profile-Based Kernels 9

examples is commendable. SVM-ProfGram performs equally well as SVM-Mismatch, while SVM-
ProfBlock performs comparably to SVM-pairwise (although the latter has a slight advantage). The
current state-of-the-art technique for this dataset, the local alignment kernel, is significantly better
than any of our methods. The performance of SVM-ProfGram and SVM-ProfBlock is also satisfactory
on the Jaakkola et al. dataset, even though they were not designed for it. It is important to keep
in mind, however, that five experiments were left out of the benchmark, therefore the results here
are somewhat incomplete. On this dataset, SVM-Fisher and SVM-Mismatch perform better than our
methods. We suspect that this is due to the excessive amount of positive training examples from which
a profile is built. Some of these examples may be too distantly related, resulting in a profile that is
too general. Unfortunately, it was not possible to verify this hypothesis due to time constraints.

Recall that the time complexities of ProfGram and ProfBlock for the vectorisation of a sequence
are O(kmn) and O(min(m,n)mn) respectively, where k is a small constant, m is the length of the
sequence, and n is the length of the profile5. The time complexity of the vectorisation step of SVM-
pairwise for a single sequence is O(m2l) where l is the amount of sequences in the training set. Typi-
cally, l � max(m,n), making both our methods more efficient. The time complexity of the vectorisa-
tion step of SVM-Fisher for a single sequence is O(mp) where p is the number of HMM parameters6.
Since n ≈ p, the ProfGram vectorisation method takes approximately the same amount of time as the
SVM-Fisher vecorisation. On the other hand, ProfBlock takes approximately min(m,n) times as long
as the SVM-Fisher method. However, it is important to note that for the Jaakkola et al. dataset, the
SVM-Fisher vectorisation of a sequence is done relative to several HMMs to produce feature vectors
which are subsequently combined. This means that for this dataset several O(mp) operations have
to be performed. The implementations of the mismatch kernel and the local alignment kernel do not
explicitly vectorise sequences, but give their similarity measure immediately. This means that one of
their operations is equivalent to two vectorisations. The time complexities of the mismatch kernel and
the local alignment kernel are O(2m) and O(m2) respectively, making our methods more expensive.

6 Conclusion

In general, the results obtained with our profile-based methods significantly outperform previous non-
discriminative methods of protein homology detection and are better or comparable to competing
SVM-based methods. The only competing method that performs significantly better than both our
methods is the local alignment kernel. ProfGram performs better than ProfBlock in terms of its
computational complexity, whereas ProfBlock has a slight performance advantage. It is also interesting
to note that our techniques perform well even when only a few positive training examples are available.

On the other hand, the performance of our methods on the Jaakkola et al. dataset suffers, pre-
sumably because the generated profile is too general. To handle this situation, Jaakkola et al. in the
original SVM-Fisher experiments, created a number of models (in the form of HMMs) for different sets
of homologous proteins. We suspect that if we create a similar setup, where the HMMs are replaced
by our profiles, better results would be obtained. In general, we feel that designing new techniques
that combine profiles and SVMs for remote protein homology detection is still an open research area.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic
Acids Research, 25:3389–3402, 1997.

5The min(m, n) term of the ProfBlock time complexity is reduced considerably through our approximation technique.
6SVM-Fisher also includes the training of profile HMMs as a preprocessing step, however this will be ignored since it

is done only once prior to the actual vectorisations.



10 Busuttil et al.

[2] A. Ben-Hur and D. Brutlag. Remote homology detection: a motif based approach. Bioinformatics,
19:i26–i33, 2003.

[3] S. Busuttil, J. Abela, and G. J. Pace. Support vector machines with profile-based kernels for
remote protein homology detection. Technical Report CSAI2004-01, University of Malta, 2004.
http://www.cs.um.edu.mt/~reports/archive/CSAI2004-01.pdf.

[4] N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[5] M. Gribskov, R. Luthy, and D. Eisenberg. Profile analysis. Methods in Enzymology, 183:146–159,
1990.

[6] M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC) analysis to
evaluate sequence matching. Computers and Chemistry, 20(1):25–33, 1996.

[7] J. G. Henikoff and S. Henikoff. Using substitution probabilities to improve position-specific scoring
matrices. Computer Applications in the Biosciences, 12:135–143, 1996.

[8] S. Henikoff and J. G. Henikoff. Position-based sequence weights. Journal of Molecular Biology,
243:574–578, 1994.

[9] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote
protein homologies. Journal on Computational Biology, 7(1–2):95–114, 2000.

[10] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods: Support Vector Learning. MIT-Press, 1999.

[11] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov models for detecting remote protein
homologies. Bioinformatics, 14(10):846–856, 1998.

[12] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie. Profile-based string
kernels for remote protein homology detection and motif extraction. In Proceedings of Computa-
tional Systems Bioinformatics (CSB), 2004.

[13] C. Leslie, E. Eskin, J. Weston, and W. Stafford Noble. Mismatch string kernels for SVM protein
classification. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems. MIT Press, 2003.

[14] L. Liao and W. Stafford Noble. Combining pairwise sequence similarity and support vector ma-
chines for detecting remote protein evolutionary and structural relationships. Journal of Compu-
tational Biology, 10(6):857–868, 2003.

[15] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of
proteins database for the investigation of sequences and structures. Journal of Molecular Biology,
247:536–540, 1995.

[16] H. Saigo, J-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string alignment
kernels. Bioinformatics, 20:1682–1689, 2004.

[17] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195–197, 1981.

[18] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Research, 22(22):4673–4680, 1994.

[19] V. Vapnik. The nature of statistical learning theory. Springer-Verlag, New York, 1995.

http://www.cs.um.edu.mt/~reports/archive/CSAI2004-01.pdf

	Introduction
	Technical Background
	Profiles
	Support Vector Machines

	Problem and Related Work
	The Problem
	Methods

	Solutions Proposed
	Approach Overview
	ProfGram
	ProfBlock
	The Expected Matching Length
	Approximation of the Expected Matching Length
	Computing the Feature Vector

	Time Complexity Analysis

	Experiments and Results
	Results
	Analysis of Results

	Conclusion

