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SOME PROPERTIES OF THE

HOFFMAN-SINGLETON GRAPH

Peter Rowlinson, Irene Sciriha

The Hoffman-Singleton graph, with spectrum 7(1)
, 2(28)

,−3(21), is charac-
terized among regular graphs by a star complement for the eigenvalue 2, that
is, by an induced subgraph of order 22 without 2 as an eigenvalue. Properties
of other induced subgraphs are noted; in particular, the subgraph induced by
vertices at distance 2 from a given vertex is the edge-disjoint union of three
Hamiltonian cycles.

1. INTRODUCTION

The Hoffman-Singleton graph HS may be described as the unique
Moore graph of degree 7 and diameter 2 [2], or as the unique 7-regular graph
of order 50 with girth 5 [1, p. 189]. It may be constructed as follows, where a hep-

tad is a set of seven triples which may be taken as the lines of a Fano plane whose
points are 1, 2, 3, 4, 5, 6, 7 [6, Section 5.9]. The vertices of HS are the 15 heptads in
an orbit of the alternating group A7 together with the 35 triples in {1, 2, 3, 4, 5, 6, 7}.
There are edges in HS between disjoint triples, and between a heptad and each of

its triples. It follows that HS has an induced subgraph H0
∼= K

(2)
1,7 illustrated in

Fig. 1, where the vertices of degree 1 and 7 are the 15 independent heptads. We
note first that H0 is a star complement for 2 in HS, in the sense of the following
definition.

Let G be a finite graph of order n with an eigenvalue µ of multiplicity k. (Thus
the corresponding eigenspace of a (0, 1)-adjacency matrix of G has dimension k.)
A star set for µ in G is a set X of k vertices in G such that the induced subgraph
G − X does not have µ as an eigenvalue. In this situation, G − X is called a
star complement for µ in G (or in [5] a µ-basic subgraph of G). Star sets and star
complements exist for any eigenvalue of any graph, and serve to explain the relation
between graph structure and a single eigenvalue µ [4, Chapter 5].
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Now the spectrum of HS is 7(1), 2(28),−3(21), while that of K
(2)
1,7 is 3(1),

√
2 (6),

0(8),−
√

2 (6),−3(1). Thus H0 is a star complement for 2 in HS.

t

t t t t t t t

t t t t t t t t t t t t t t

���������

������
�
�
�

Q
Q
Q

PPPPPP

XXXXXXXXX
�
��
B
BB

�
��
B
BB

�
��
B
BB

�
��
B
BB

�
��
B
BB

�
��
B
BB

�
��
B
BB

Fig. 1

The following result [4, Theorem 5.1.7] establishes the fundamental property
of star complements: if X is a star set for µ in G, and if H is the star complement
G−X , then G is determined by µ, H and the H-neighbourhoods of vertices in X .
We shall use implicitly the fact that if µ 6= 0 or −1 then these H-neighbourhoods
are non-empty and distinct [4, Proposition 5.1.4].

Theorem 1.1. Let X be a set of k vertices in the graph G and suppose that

G has adjacency matrix

(

AX BT

B C

)

, where AX is the adjacency matrix of the

subgraph induced by X. Then X is a star set for µ in G if and only if µ is not an

eigenvalue of C and

(1) µI − AX = BT (µI − C)−1B.

In this situation, the eigenspace of µ consists of the vectors

(

x

(µI − C)−1Bx

)

,

where x ∈ IRk.

We take G to have vertex-set V (G) = {1, 2, . . . , n}, and we write ‘i ∼ j’ to
denote that vertices i and j are adjacent. We define a bilinear form on R

n−k by

〈x,y〉 = xT (µI − C)−1y (x,y ∈ IRn−k).

Now equation (1) says that if B has columns b1, . . .bk, then for all vertices i, j of
X :

(2) 〈bi,bj〉 =







µ if i = j

−1 if i ∼ j .
0 otherwise

Recall that µ is a main eigenvalue of G if the eigenspace E(µ) is not orthogonal to
the all-1 vector jn; and that in a connected r-regular graph, all eigenvalues other
than r are non-main eigenvalues. If the conditions of Theorem 1.1 are satisfied,
and if {e1, . . . , ek} is the standard basis of R

k then E(µ) has a basis consisting of
the vectors

(

ei

(µI − C)−1Bei

)

(i = 1, . . . , k).
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Since Bei is the i-th column of B, we see that µ is a non-main eigenvalue if and
only if

(3) 〈bi, j〉 = −1 (i = 1, . . . , k),

where j = jn−k.

In Section 2, we discuss the addition of vertices to K
(2)
1,7 to obtain 2 as a

non-main eigenvalue. This enables us to characterize HS as the only regular graph

with K
(2)
1,7 as a star complement for 2. In Section 3 we discuss other induced

subgraphs of HS; in particular, we note that the vertices at distance 2 from a given
vertex induce a subgraph (of order 42) which is the edge-disjoint union of three
Hamiltonian cycles.

Characterizations of other graphs by star complements are documented in
the survey paper [9]. Many other properties of the Hoffman-Singleton graph
are listed in [2, Section 13.1].

2. A CHARACTERIZATION OF HS

In this section we retain the notation of Theorem 1.1 and suppose that H

is a star complement for 2 isomorphic to K
(2)
1,7 . In this situation, with a natural

ordering of vertices,

(4) 20(2I − C)−1 =













































−4 −4 −4 · · · −4 −2 −2 −2 −2 · · · −2 −2
−4 16 −4 · · · −4 8 8 −2 −2 · · · −2 −2
−4 −4 16 · · · −4 −2 −2 8 8 · · · −2 −2
...

...
... · · ·

...
...

...
...

... · · ·
...

...
−4 −4 −4 · · · 16 −2 −2 −2 −2 · · · 8 8
−2 8 −2 · · · −2 14 4 −1 −1 · · · −1 −1
−2 8 −2 · · · −2 4 14 −1 −1 · · · −1 −1
−2 −2 8 · · · −2 −1 −1 14 4 · · · −1 −1
−2 −2 8 · · · −2 −1 −1 4 14 · · · −1 −1
...

...
... · · ·

...
...

... · · · · · · · · ·
...

...
−2 −2 −2 · · · 8 −1 −1 −1 −1 · · · 14 4
−2 −2 −2 · · · 8 −1 −1 −1 −1 · · · 4 14













































.

Here the blocks are determined by {u} ∪̇ Γ1(u) ∪̇ Γ2(u), where u is the vertex of
degree 7 in H and Γi(u) is the set of vertices at distance i from u in H (i = 1, 2).
The graph H−u consists of seven disjoint 2-claws, which we label W1, . . . , W7, with
central vertices u1, . . . , u7 respectively. The remaining vertices of Wi are labeled
si, ti (i = 1, . . . , 7).
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Lemma 2.1. If 2 is a non-main eigenvalue of H + v, then

(i) v is not adjacent to u,

(ii) v is adjacent to just one vertex in Γ1(u),

(iii) v has just three neighbours in Γ2(u),

(iv) the four neighbours of v lie in four different claws of H.

Proof. By equation (3), 2 is a non-main eigenvalue of H + v if and only if the
sum of entries of the rows of 20(2I −C)−1 indexed by the H-neighbourhood of v is
−20. The sum of entries in row j is −60 if j = u, −20 if j ∈ Γ1(u), and 0 otherwise;
statements (i) and (ii) follow.

We say that a claw W is of type αβ in H + v if v is adjacent to α vertices of
degree 2 in W and β vertices of degree 1 in W (α = 0 or 1, β = 0, 1 or 2). Further,
v is of type abcde if H + v has a, b, c, d, e claws of type 01, 02, 10, 11, 12 respectively.

If bv is the characteristic vector of the H-neighbourhood of v then

20bT
v (2I − C)−1bv = (c + d + e)2(−4) + (2b + a + d + 2e)2(−1)

+ 2(c + d + e)(2b + a + d + 2e)(−2) + 40(b + e)

+ 20d + 40e + 15(a + d) + 20(c + d + e).

(Here the first three summands are determined by a matrix with constant blocks,
obtained from 20(2I − C)−1 by replacing 8 by −2, 16 by −4, 14 by −1 and 4 by
−1; the remaining summands are the required correction terms.) We may write
this equation in the form

(5) 20bT
v (2I − C)−1bv = −q2 + 10q + 5a + 20b + 25d + 60e,

where

(6) q = a + 2b + 2c + 3d + 4e.

From equation (2), we have 〈bv,bv〉 = 2, and equation (5) yields

(7) 15 + (q − 5)2 = 5a + 20b + 25d + 60e,

Note that 5 divides q. Equations (6) and (7) may now be used to find all
(nine) solutions for a, b, c, d, e and hence all H + v (v 6∼ u) for which 2 is an
eigenvalue. However, when 2 is a non-main eigenvalue, we have c + d + e = 1 from
(ii). In this situation we have q ∈ {5, 10, 15} since a + b + c + d + e ≤ 7. For each
of the possibilities (c, d, e) = (1, 0, 0), (0, 1, 0), (0, 0, 1), equations (6) and (7) yield
simultaneous equations for a and b, and we find a unique solution (a, b, c, d, e) =
(3, 0, 1, 0, 0). Statements (iii) and (iv) follow. �

Next we investigate the intersection of the H-neighbourhoods ∆H(v), ∆H(w)
of two vertices v, w in X . By equation (2), 20bT

v (2I−C)−1bw ∈ {−20, 0}. Here the
left-hand side is the sum σ(v, w) of entries in a 4× 4 submatrix M of 20(2I −C)−1

(see equation (4)). With a suitable labeling of the four vertices in ∆H(v), M

consists of four appropriate columns of the submatrix
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(8) N =









−4 16 −4 −4 −4 −4 −4 −4 8 8 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
−2 −2 8 −2 −2 −2 −2 −2 −1 −1 14 4 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−2 −2 −2 8 −2 −2 −2 −2 −1 −1 −1 −1 14 4 −1 −1 −1 −1 −1 −1 −1 −1
−2 −2 −2 −2 8 −2 −2 −2 −1 −1 −1 −1 −1 −1 14 4 −1 −1 −1 −1 −1 −1









.

Lemma 2.2. Suppose that 2 is a non-main eigenvalue of H + v+w of multiplicity

2, and that v ∼ u1.

(i) If w ∼ u1 then w 6∼ v and H + v + w has the form shown in Fig. 2.

(ii) If w 6∼ u1 and w 6∼ v then H + v + w has one of the three forms shown

in Figs. 3, 4 and 5.

(iii) If w 6∼ u1 and w ∼ v then H + v + w has the form shown in Fig. 6.
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Proof. Since w is of type 30100, σ(v, w) is the sum of entries in one column from
the second block of N and three columns from the third block (see equation (8)).
Moreover, by Lemma 2.1(iv), the four vertices in ∆H(w) lie in different claws.

For (i), the second column of N must be included; then σ(v, w) = 0 and the
four column sums are 10; 0,−5,−5. In this case, H + v + w has the form shown in
Fig. 2.

For (ii), we know that the second column of N is excluded, and σ(v, w) = 0.
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Thus the column sums are 0; 10,−5,−5 or 0; 5, 0,−5 or −10; 0, 0, 10 or 0; 0, 0, 0 or
−10; 5, 5, 0. The fourth possibility is ruled out because d = 0 and the fifth is ruled
out because b = 0. The remaining possibilities for H + v + w are shown in Figs. 3,
4 and 5.

For (iii), the second column of N is excluded, and σ(v, w) = −20. Thus the
column sums are −10; 0,−5,−5 and H + v + w is as shown in Fig. 6. �

Theorem 2.3. If G is a regular graph with H ∼= K
(2)
1,7 as a star complement for

the eigenvalue 2 then G ∼= HS.

Proof. Clearly G has degree at least 7, and so the eigenvalue 2 is a non-main
eigenvalue of G. By Lemma 2.1(i), no vertex of the star set X is adjacent to u, and
so G is 7-regular. For i = 1, . . . , 7, let Xi be the set of 4 neighbours of ui in X . By
Lemma 2.2(i), each Xi is an independent set in G. It follows from Lemma 2.1(ii)
that all vertices of G are at distance at most 2 from u, and that the sets X1. . . . , X7

are pairwise disjoint. Hence |X | = 28 and G has order 50.

Our objective now is to show that G has girth at least 5. Clearly any possible
3-cycle or 4-cycle has a vertex in X ; and by Lemma 2.1, such a cycle C has at least
two vertices v, w in X . Suppose that C has exactly two vertices in X . By Lemma
2.2(iii), v 6∼ w, and so C is a 4-cycle; but this possibility is ruled out by Lemma
2.2(ii).

Now consider vertices v1, v, v2 in X such that v1 ∼ v ∼ v2. We may suppose
that ∆H(v) = {u1, s2, s3, s4} and ∆H(v1) = {t4, u5, s6, s7} (cf. Fig. 6). Suppose,
by way of contradiction, that v1, v, v2 do not lie in different Xj . Then v2 ∈ X5, and
so none of t4, s5, t5 is a neighbour of v2 (cf. Fig. 2). Since v2 ∼ v, none of s1, t1, s4

is a neighbour of v2 (cf. Fig. 6). Without loss of generality, v2 ∼ t6 (cf. Fig. 2).
Then none of s6, s7, t7 is a neighbour of v2. Without loss of generality, v2 ∼ t2
(cf. Fig. 6). Then none of s2, s3, t3 is a neighbour of v2. Thus v2 cannot have 4
neighbours in H , a contradiction.

Now we know that v1, v, v2 lie in different Xi, we may suppose that v2 ∈ X6.
From Fig. 6 we see that not only v2 6∼ s4 but also v2 6∼ t4, for otherwise ∆H(v1) ∪
∆H(v2) is contained in only four claws (namely W4, W5, W6, W7), contradicting
Lemma 2.2. Without loss of generality, v2 ∼ t3, and hence ∆H(v2) = {t3, t5, u6, t7}.
Now H + v1 + v2 has the form shown in Fig. 4. In particular, v1 6∼ v2; therefore
there are no 3-cycles in the graph induced by X , and hence no 3-cycles in G.

The graph H + v + v1 + v2 is shown in Fig. 7. This graph has no 4-cycles,
and so to show that G has no 4-cycles, it suffices to show that there is no vertex
w ∈ X \ {v} such that w is adjacent to both v1 and v2. If w is such a vertex then
both of H + v1 + w and H + v2 + w have the form shown in Fig. 6, and so none
of W5, W6, W7 contains a vertex of ∆H(w). Hence ∆H(v) ∪∆H(w) is contained in
only four claws (namely W1, W2, W3, W4), a contradiction.

We conclude that G has no 4-cycles. Since X contains adjacent vertices, G

has girth 5. Since G has order 50, necessarily G ∼= HS. �
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3. SOME OTHER INDUCED SUBGRAPHS

Here we take G = HS and retain the notation of Section 2, with H = H0.
Additionally, we let ∆i(u) denote the set of vertices at distance i from u in G (i =
1, 2). (Note that ∆1(u) = Γ1(u).) We know that G is a transitive graph, and the
stabilizer of the vertex u is S7, with orbits {u}, ∆1(u), ∆2(u) (of lengths 1, 7, 42);
moreover the subgraph G2 induced by ∆2(u) is the unique distance-regular graph
with intersection array {6, 5, 1; 1, 1, 6} [2,Theorem 13.1.1]. In answer to a question
posed by S. Fiorini [private communication], we note here the following property
of G2.

Propostion 3.1. The subgraph of HS induced by the vertices at distance 2 from a

given vertex is the edge-disjoint union of three Hamiltonian cycles.

Proof. Let u = {124, 235, 346, 457, 561, 672, 713}, so that we can take the vertex
ui in Γ1(u) to be the triple with elements 1αi−1, 2αi−1, 4αi−1 (i = 1, . . . , 7), where
α is the permutation (1234567). Then the neighbours of u1 in Γ2(u) are

P = {124, 135, 167, 236, 257, 347, 456}, Q = {124, 136, 157, 237, 256, 345, 467}.

Now we can check easily that G2 is the edge-disjoint union of the following three
42-cycles:

357, Pα2, 247, 356, Qα3, 167, 234, 567, Qα2, 237, Q, 136, Pα, 145, 367,

245, Qα4, 127, 345, 126, Qα6, 467, 135, 246, 157, Qα5, 123, 456, Qα, 134,

257, Pα4, 147, 256, Pα3, 146, Pα6, 236, P, 347, 125, Pα5, 357;

357, Qα4, 134, 567, 123, Pα2, 167, P, 456, Pα5, 234, Qα6, 145, 237, Qα3,

246, Pα4, 345, Pα6, 247, 135, Pα3, 127, Pα, 347, 256, Q, 467, 125, 367,
Qα, 157, 236, 147, 356, Qα5, 146, 257, 136, 245, Qα2, 126, 357;

357, 246, Pα, 567, Pα6, 125, Qα3, 134, 256, Pα2, 145, 236, Qα4, 467, 123,

Pα4, 367, Pα3, 234, 157, Q, 345, 167, 245, Qα5, 347, 126, Qα, 247, 136,

Pα5, 147, Qα2, 135, P, 257, Qα6, 356, 127, 456, 237, 146, 357.

�

The three 42-cycles in Proposition 3.1 were found by computer as follows.
Let vi1, . . . , vi6 be the neighbours of ui in G2 (i = 1, . . . , 6). Each of the vertices
v11, . . . , v16 is adjacent to 6 other vertices vij (i 6= 1); moreover the neighbourhoods
of v11, . . . , v16 are disjoint, and so we have a subgraph F ∼= 6K1,6. We start with a
spanning tree T for G2 obtained by adding 5 edges to F , and construct 85 unicyclic
graphs U1, . . . , U85 by adding to T each of the remaining 85 edges of G2 in turn
(cf. [8, Theorem 7.7]). Let Qi be the unique cycle in Ui (i = 1, . . . , 85). We find a
partition of {Q1, . . . , Q85} into sets S1, S2, S3 (of sizes 27, 28, 30) such that in the
cycle space of G2, the sum of cycles in Si is a Hamiltonian cycle (i = 1, 2, 3).

Our final remarks concern the 28 vertices in X = X1 ∪̇ · · · ∪̇ X7: these
represent the triangles of a Fano plane (the triples not in the heptad u), and
the subgraph they induce is therefore the Coxeter graph [3], with spectrum
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3(1), 2(8), (
√

2 − 1)(6), (−1)(7), (−
√

2 − 1)(6). Since G2 has spectrum 6(1), (−1)(6),
2(21), (−3)(14) [7], the Coxeter graph is a star complement for −3 in G2. The
corresponding star set is the independent set of 14 vertices in Γ2(u). Since −3
is an eigenvalue of HS of multiplicity 21, we can see also that HS has as a star
complement for −3 a subgraph consisting of the Coxeter graph and an isolated
vertex (the subgraph induced by {u} ∪̇ X).
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