SOME PROPERTIES OF THE HOFFMAN-SINGLETON GRAPH

Peter Rowlinson, Irene Sciriha

The Hoffman-Singleton graph, with spectrum $7^{(1)}, 2^{(28)},-3^{(21)}$, is characterized among regular graphs by a star complement for the eigenvalue 2 , that is, by an induced subgraph of order 22 without 2 as an eigenvalue. Properties of other induced subgraphs are noted; in particular, the subgraph induced by vertices at distance 2 from a given vertex is the edge-disjoint union of three Hamiltonian cycles.

1. INTRODUCTION

The Hoffman-Singleton graph $H S$ may be described as the unique Moore graph of degree 7 and diameter 2 [2], or as the unique 7-regular graph of order 50 with girth 5 [$\mathbf{1}$, p. 189]. It may be constructed as follows, where a heptad is a set of seven triples which may be taken as the lines of a FANO plane whose points are $1,2,3,4,5,6,7[\mathbf{6}$, Section 5.9]. The vertices of $H S$ are the 15 heptads in an orbit of the alternating group A_{7} together with the 35 triples in $\{1,2,3,4,5,6,7\}$. There are edges in $H S$ between disjoint triples, and between a heptad and each of its triples. It follows that $H S$ has an induced subgraph $H_{0} \cong K_{1,7}^{(2)}$ illustrated in Fig. 1, where the vertices of degree 1 and 7 are the 15 independent heptads. We note first that H_{0} is a star complement for 2 in $H S$, in the sense of the following definition.

Let G be a finite graph of order n with an eigenvalue μ of multiplicity k. (Thus the corresponding eigenspace of a (0,1)-adjacency matrix of G has dimension k.) A star set for μ in G is a set X of k vertices in G such that the induced subgraph $G-X$ does not have μ as an eigenvalue. In this situation, $G-X$ is called a star complement for μ in G (or in [5] a μ-basic subgraph of G). Star sets and star complements exist for any eigenvalue of any graph, and serve to explain the relation between graph structure and a single eigenvalue $\mu[4$, Chapter 5].

[^0]Now the spectrum of $H S$ is $7^{(1)}, 2^{(28)},-3^{(21)}$, while that of $K_{1,7}^{(2)}$ is $3^{(1)}, \sqrt{2}{ }^{(6)}$, $0^{(8)},-\sqrt{2}^{(6)},-3^{(1)}$. Thus H_{0} is a star complement for 2 in $H S$.

Fig. 1
The following result [4, Theorem 5.1.7] establishes the fundamental property of star complements: if X is a star set for μ in G, and if H is the star complement $G-X$, then G is determined by μ, H and the H-neighbourhoods of vertices in X. We shall use implicitly the fact that if $\mu \neq 0$ or -1 then these H-neighbourhoods are non-empty and distinct [4, Proposition 5.1.4].

Theorem 1.1. Let X be a set of k vertices in the graph G and suppose that G has adjacency matrix $\left(\begin{array}{cc}A_{X} & B^{T} \\ B & C\end{array}\right)$, where A_{X} is the adjacency matrix of the subgraph induced by X. Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{T}(\mu I-C)^{-1} B \tag{1}
\end{equation*}
$$

In this situation, the eigenspace of μ consists of the vectors $\binom{\mathbf{x}}{(\mu I-C)^{-1} B \mathbf{x}}$, where $\mathbf{x} \in \mathbb{R}^{k}$.

We take G to have vertex-set $V(G)=\{1,2, \ldots, n\}$, and we write ' $i \sim j$ ' to denote that vertices i and j are adjacent. We define a bilinear form on \mathbb{R}^{n-k} by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T}(\mu I-C)^{-1} \mathbf{y} \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n-k}\right)
$$

Now equation (1) says that if B has columns $\mathbf{b}_{1}, \ldots \mathbf{b}_{k}$, then for all vertices i, j of X:

$$
\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle= \begin{cases}\mu & \text { if } i=j \tag{2}\\ -1 & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

Recall that μ is a main eigenvalue of G if the eigenspace $\mathcal{E}(\mu)$ is not orthogonal to the all- 1 vector \mathbf{j}_{n}; and that in a connected r-regular graph, all eigenvalues other than r are non-main eigenvalues. If the conditions of Theorem 1.1 are satisfied, and if $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right\}$ is the standard basis of \mathbb{R}^{k} then $\mathcal{E}(\mu)$ has a basis consisting of the vectors

$$
\binom{\mathbf{e}_{i}}{(\mu I-C)^{-1} B \mathbf{e}_{i}} \quad(i=1, \ldots, k)
$$

Since $B \mathbf{e}_{i}$ is the i-th column of B, we see that μ is a non-main eigenvalue if and only if

$$
\begin{equation*}
\left\langle\mathbf{b}_{i}, \mathbf{j}\right\rangle=-1 \quad(i=1, \ldots, k) \tag{3}
\end{equation*}
$$

where $\mathbf{j}=\mathbf{j}_{n-k}$.
In Section 2, we discuss the addition of vertices to $K_{1,7}^{(2)}$ to obtain 2 as a non-main eigenvalue. This enables us to characterize $H S$ as the only regular graph with $K_{1,7}^{(2)}$ as a star complement for 2. In Section 3 we discuss other induced subgraphs of $H S$; in particular, we note that the vertices at distance 2 from a given vertex induce a subgraph (of order 42) which is the edge-disjoint union of three Hamiltonian cycles.

Characterizations of other graphs by star complements are documented in the survey paper [9]. Many other properties of the Hoffman-Singleton graph are listed in [2, Section 13.1].

2. A CHARACTERIZATION OF $H S$

In this section we retain the notation of Theorem 1.1 and suppose that H is a star complement for 2 isomorphic to $K_{1,7}^{(2)}$. In this situation, with a natural ordering of vertices,
(4)

$$
20(2 I-C)^{-1}=\left(\begin{array}{c|rrlr|rrrrrrr}
-4 & -4 & -4 & \cdots & -4 & -2 & -2 & -2 & -2 & \cdots & -2 & -2 \\
\hline-4 & 16 & -4 & \cdots & -4 & 8 & 8 & -2 & -2 & \cdots & -2 & -2 \\
-4 & -4 & 16 & \cdots & -4 & -2 & -2 & 8 & 8 & \cdots & -2 & -2 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
-4 & -4 & -4 & \cdots & 16 & -2 & -2 & -2 & -2 & \cdots & 8 & 8 \\
\hline-2 & 8 & -2 & \cdots & -2 & 14 & 4 & -1 & -1 & \cdots & -1 & -1 \\
-2 & 8 & -2 & \cdots & -2 & 4 & 14 & -1 & -1 & \cdots & -1 & -1 \\
-2 & -2 & 8 & \cdots & -2 & -1 & -1 & 14 & 4 & \cdots & -1 & -1 \\
-2 & -2 & 8 & \cdots & -2 & -1 & -1 & 4 & 14 & \cdots & -1 & -1 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \cdots & \cdots & \vdots & \vdots \\
-2 & -2 & -2 & \cdots & 8 & -1 & -1 & -1 & -1 & \cdots & 14 & 4 \\
-2 & -2 & -2 & \cdots & 8 & -1 & -1 & -1 & -1 & \cdots & 4 & 14
\end{array}\right) .
$$

Here the blocks are determined by $\{u\} \dot{\cup} \Gamma_{1}(u) \dot{\cup} \Gamma_{2}(u)$, where u is the vertex of degree 7 in H and $\Gamma_{i}(u)$ is the set of vertices at distance i from u in $H(i=1,2)$. The graph $H-u$ consists of seven disjoint 2 -claws, which we label W_{1}, \ldots, W_{7}, with central vertices u_{1}, \ldots, u_{7} respectively. The remaining vertices of W_{i} are labeled $s_{i}, t_{i}(i=1, \ldots, 7)$.

Lemma 2.1. If 2 is a non-main eigenvalue of $H+v$, then
(i) v is not adjacent to u,
(ii) v is adjacent to just one vertex in $\Gamma_{1}(u)$,
(iii) v has just three neighbours in $\Gamma_{2}(u)$,
(iv) the four neighbours of v lie in four different claws of H.

Proof. By equation (3), 2 is a non-main eigenvalue of $H+v$ if and only if the sum of entries of the rows of $20(2 I-C)^{-1}$ indexed by the H-neighbourhood of v is -20 . The sum of entries in row j is -60 if $j=u,-20$ if $j \in \Gamma_{1}(u)$, and 0 otherwise; statements (i) and (ii) follow.

We say that a claw W is of type $\alpha \beta$ in $H+v$ if v is adjacent to α vertices of degree 2 in W and β vertices of degree 1 in W ($\alpha=0$ or $1, \beta=0,1$ or 2). Further, v is of type $a b c d e$ if $H+v$ has a, b, c, d, e claws of type $01,02,10,11,12$ respectively.

If \mathbf{b}_{v} is the characteristic vector of the H-neighbourhood of v then

$$
\begin{aligned}
20 \mathbf{b}_{v}^{T}(2 I-C)^{-1} \mathbf{b}_{v}=(& +d+e)^{2}(-4)+(2 b+a+d+2 e)^{2}(-1) \\
& +2(c+d+e)(2 b+a+d+2 e)(-2)+40(b+e) \\
& +20 d+40 e+15(a+d)+20(c+d+e)
\end{aligned}
$$

(Here the first three summands are determined by a matrix with constant blocks, obtained from $20(2 I-C)^{-1}$ by replacing 8 by $-2,16$ by $-4,14$ by -1 and 4 by -1 ; the remaining summands are the required correction terms.) We may write this equation in the form

$$
\begin{equation*}
20 \mathbf{b}_{v}^{T}(2 I-C)^{-1} \mathbf{b}_{v}=-q^{2}+10 q+5 a+20 b+25 d+60 e \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
q=a+2 b+2 c+3 d+4 e \tag{6}
\end{equation*}
$$

From equation (2), we have $\left\langle\mathbf{b}_{v}, \mathbf{b}_{v}\right\rangle=2$, and equation (5) yields

$$
\begin{equation*}
15+(q-5)^{2}=5 a+20 b+25 d+60 e \tag{7}
\end{equation*}
$$

Note that 5 divides q. Equations (6) and (7) may now be used to find all (nine) solutions for a, b, c, d, e and hence all $H+v(v \nsim u)$ for which 2 is an eigenvalue. However, when 2 is a non-main eigenvalue, we have $c+d+e=1$ from (ii). In this situation we have $q \in\{5,10,15\}$ since $a+b+c+d+e \leq 7$. For each of the possibilities $(c, d, e)=(1,0,0),(0,1,0),(0,0,1)$, equations (6) and (7) yield simultaneous equations for a and b, and we find a unique solution $(a, b, c, d, e)=$ (3, 0, 1, 0, 0). Statements (iii) and (iv) follow.

Next we investigate the intersection of the H-neighbourhoods $\Delta_{H}(v), \Delta_{H}(w)$ of two vertices v, w in X. By equation (2), $20 \mathbf{b}_{v}^{T}(2 I-C)^{-1} \mathbf{b}_{w} \in\{-20,0\}$. Here the left-hand side is the sum $\sigma(v, w)$ of entries in a 4×4 submatrix M of $20(2 I-C)^{-1}$ (see equation (4)). With a suitable labeling of the four vertices in $\Delta_{H}(v), M$ consists of four appropriate columns of the submatrix

Lemma 2.2. Suppose that 2 is a non-main eigenvalue of $H+v+w$ of multiplicity 2, and that $v \sim u_{1}$.
(i) If $w \sim u_{1}$ then $w \nsim v$ and $H+v+w$ has the form shown in Fig. 2.
(ii) If $w \nsim u_{1}$ and $w \nsim v$ then $H+v+w$ has one of the three forms shown in Figs. 3, 4 and 5.
(iii) If $w \nsim u_{1}$ and $w \sim v$ then $H+v+w$ has the form shown in Fig. 6.

Fig. 2

Fig. 4

Fig. 6

Fig. 3

Fig. 5

Proof. Since w is of type 30100, $\sigma(v, w)$ is the sum of entries in one column from the second block of N and three columns from the third block (see equation (8)). Moreover, by Lemma 2.1(iv), the four vertices in $\Delta_{H}(w)$ lie in different claws.

For (i), the second column of N must be included; then $\sigma(v, w)=0$ and the four column sums are $10 ; 0,-5,-5$. In this case, $H+v+w$ has the form shown in Fig. 2.

For (ii), we know that the second column of N is excluded, and $\sigma(v, w)=0$.

Thus the column sums are $0 ; 10,-5,-5$ or $0 ; 5,0,-5$ or $-10 ; 0,0,10$ or $0 ; 0,0,0$ or $-10 ; 5,5,0$. The fourth possibility is ruled out because $d=0$ and the fifth is ruled out because $b=0$. The remaining possibilities for $H+v+w$ are shown in Figs. 3, 4 and 5.

For (iii), the second column of N is excluded, and $\sigma(v, w)=-20$. Thus the column sums are $-10 ; 0,-5,-5$ and $H+v+w$ is as shown in Fig. 6.

Theorem 2.3. If G is a regular graph with $H \cong K_{1,7}^{(2)}$ as a star complement for the eigenvalue 2 then $G \cong H S$.
Proof. Clearly G has degree at least 7 , and so the eigenvalue 2 is a non-main eigenvalue of G. By Lemma 2.1(i), no vertex of the star set X is adjacent to u, and so G is 7 -regular. For $i=1, \ldots, 7$, let X_{i} be the set of 4 neighbours of u_{i} in X. By Lemma 2.2(i), each X_{i} is an independent set in G. It follows from Lemma 2.1(ii) that all vertices of G are at distance at most 2 from u, and that the sets $X_{1} \ldots, X_{7}$ are pairwise disjoint. Hence $|X|=28$ and G has order 50.

Our objective now is to show that G has girth at least 5 . Clearly any possible 3 -cycle or 4 -cycle has a vertex in X; and by Lemma 2.1 , such a cycle C has at least two vertices v, w in X. Suppose that C has exactly two vertices in X. By Lemma 2.2(iii), $v \nsim w$, and so C is a 4-cycle; but this possibility is ruled out by Lemma 2.2 (ii).

Now consider vertices v_{1}, v, v_{2} in X such that $v_{1} \sim v \sim v_{2}$. We may suppose that $\Delta_{H}(v)=\left\{u_{1}, s_{2}, s_{3}, s_{4}\right\}$ and $\Delta_{H}\left(v_{1}\right)=\left\{t_{4}, u_{5}, s_{6}, s_{7}\right\}$ (cf. Fig. 6). Suppose, by way of contradiction, that v_{1}, v, v_{2} do not lie in different X_{j}. Then $v_{2} \in X_{5}$, and so none of t_{4}, s_{5}, t_{5} is a neighbour of v_{2} (cf. Fig. 2). Since $v_{2} \sim v$, none of s_{1}, t_{1}, s_{4} is a neighbour of v_{2} (cf. Fig. 6). Without loss of generality, $v_{2} \sim t_{6}$ (cf. Fig. 2). Then none of s_{6}, s_{7}, t_{7} is a neighbour of v_{2}. Without loss of generality, $v_{2} \sim t_{2}$ (cf. Fig. 6). Then none of s_{2}, s_{3}, t_{3} is a neighbour of v_{2}. Thus v_{2} cannot have 4 neighbours in H, a contradiction.

Now we know that v_{1}, v, v_{2} lie in different X_{i}, we may suppose that $v_{2} \in X_{6}$. From Fig. 6 we see that not only $v_{2} \nsim s_{4}$ but also $v_{2} \nsim t_{4}$, for otherwise $\Delta_{H}\left(v_{1}\right) \cup$ $\Delta_{H}\left(v_{2}\right)$ is contained in only four claws (namely $W_{4}, W_{5}, W_{6}, W_{7}$), contradicting Lemma 2.2. Without loss of generality, $v_{2} \sim t_{3}$, and hence $\Delta_{H}\left(v_{2}\right)=\left\{t_{3}, t_{5}, u_{6}, t_{7}\right\}$. Now $H+v_{1}+v_{2}$ has the form shown in Fig. 4. In particular, $v_{1} \nsim v_{2}$; therefore there are no 3 -cycles in the graph induced by X, and hence no 3 -cycles in G.

The graph $H+v+v_{1}+v_{2}$ is shown in Fig. 7. This graph has no 4 -cycles, and so to show that G has no 4 -cycles, it suffices to show that there is no vertex $w \in X \backslash\{v\}$ such that w is adjacent to both v_{1} and v_{2}. If w is such a vertex then both of $H+v_{1}+w$ and $H+v_{2}+w$ have the form shown in Fig. 6, and so none of W_{5}, W_{6}, W_{7} contains a vertex of $\Delta_{H}(w)$. Hence $\Delta_{H}(v) \cup \Delta_{H}(w)$ is contained in only four claws (namely $W_{1}, W_{2}, W_{3}, W_{4}$), a contradiction.

We conclude that G has no 4-cycles. Since X contains adjacent vertices, G has girth 5 . Since G has order 50, necessarily $G \cong H S$.

3. SOME OTHER INDUCED SUBGRAPHS

Here we take $G=H S$ and retain the notation of Section 2, with $H=H_{0}$. Additionally, we let $\Delta_{i}(u)$ denote the set of vertices at distance i from u in $G(i=$ 1,2). (Note that $\Delta_{1}(u)=\Gamma_{1}(u)$.) We know that G is a transitive graph, and the stabilizer of the vertex u is S_{7}, with orbits $\{u\}, \Delta_{1}(u), \Delta_{2}(u)$ (of lengths 1, 7, 42); moreover the subgraph G_{2} induced by $\Delta_{2}(u)$ is the unique distance-regular graph with intersection array $\{6,5,1 ; 1,1,6\}$ [2,Theorem 13.1.1]. In answer to a question posed by S. Fiorini [private communication], we note here the following property of G_{2}.
Propostion 3.1. The subgraph of $H S$ induced by the vertices at distance 2 from a given vertex is the edge-disjoint union of three Hamiltonian cycles.

Proof. Let $u=\{124,235,346,457,561,672,713\}$, so that we can take the vertex u_{i} in $\Gamma_{1}(u)$ to be the triple with elements $1 \alpha^{i-1}, 2 \alpha^{i-1}, 4 \alpha^{i-1}(i=1, \ldots, 7)$, where α is the permutation (1234567). Then the neighbours of u_{1} in $\Gamma_{2}(u)$ are

$$
P=\{124,135,167,236,257,347,456\}, \quad Q=\{124,136,157,237,256,345,467\} .
$$

Now we can check easily that G_{2} is the edge-disjoint union of the following three 42-cycles:

$$
\begin{aligned}
& 357, P \alpha^{2}, 247,356, Q \alpha^{3}, 167,234,567, Q \alpha^{2}, 237, Q, 136, P \alpha, 145,367, \\
& 245, Q \alpha^{4}, 127,345,126, Q \alpha^{6}, 467,135,246,157, Q \alpha^{5}, 123,456, Q \alpha, 134, \\
& 257, P \alpha^{4}, 147,256, P \alpha^{3}, 146, P \alpha^{6}, 236, P, 347,125, P \alpha^{5}, 357 ; \\
& 357, Q \alpha^{4}, 134,567,123, P \alpha^{2}, 167, P, 456, P \alpha^{5}, 234, Q \alpha^{6}, 145,237, Q \alpha^{3}, \\
& 246, P \alpha^{4}, 345, P \alpha^{6}, 247,135, P \alpha^{3}, 127, P \alpha, 347,256, Q, 467,125,367, \\
& Q \alpha, 157,236,147,356, Q \alpha^{5}, 146,257,136,245, Q \alpha^{2}, 126,357 ; \\
& 357,246, P \alpha, 567, P \alpha^{6}, 125, Q \alpha^{3}, 134,256, P \alpha^{2}, 145,236, Q \alpha^{4}, 467,123, \\
& P \alpha^{4}, 367, P \alpha^{3}, 234,157, Q, 345,167,245, Q \alpha^{5}, 347,126, Q \alpha, 247,136, \\
& P \alpha^{5}, 147, Q \alpha^{2}, 135, P, 257, Q \alpha^{6}, 356,127,456,237,146,357 .
\end{aligned}
$$

The three 42 -cycles in Proposition 3.1 were found by computer as follows. Let $v_{i 1}, \ldots, v_{i 6}$ be the neighbours of u_{i} in $G_{2}(i=1, \ldots, 6)$. Each of the vertices v_{11}, \ldots, v_{16} is adjacent to 6 other vertices $v_{i j}(i \neq 1)$; moreover the neighbourhoods of v_{11}, \ldots, v_{16} are disjoint, and so we have a subgraph $F \cong 6 K_{1,6}$. We start with a spanning tree T for G_{2} obtained by adding 5 edges to F, and construct 85 unicyclic graphs U_{1}, \ldots, U_{85} by adding to T each of the remaining 85 edges of G_{2} in turn (cf. [8, Theorem 7.7]). Let Q_{i} be the unique cycle in $U_{i}(i=1, \ldots, 85)$. We find a partition of $\left\{Q_{1}, \ldots, Q_{85}\right\}$ into sets S_{1}, S_{2}, S_{3} (of sizes $27,28,30$) such that in the cycle space of G_{2}, the sum of cycles in S_{i} is a Hamiltonian cycle $(i=1,2,3)$.

Our final remarks concern the 28 vertices in $X=X_{1} \dot{\cup} \cdots \dot{U} X_{7}$: these represent the triangles of a FANO plane (the triples not in the heptad u), and the subgraph they induce is therefore the Coxeter graph [3], with spectrum
$3^{(1)}, 2^{(8)},(\sqrt{2}-1)^{(6)},(-1)^{(7)},(-\sqrt{2}-1)^{(6)}$. Since G_{2} has spectrum $6^{(1)},(-1)^{(6)}$, $2^{(21)},(-3)^{(14)}[\mathbf{7}]$, the Coxeter graph is a star complement for -3 in G_{2}. The corresponding star set is the independent set of 14 vertices in $\Gamma_{2}(u)$. Since -3 is an eigenvalue of $H S$ of multiplicity 21 , we can see also that $H S$ has as a star complement for -3 a subgraph consisting of the COXETER graph and an isolated vertex (the subgraph induced by $\{u\} \dot{\cup} X$).

REFERENCES

1. N. L. Biggs: Algebraic Graph Theory, 2nd edn. Cambridge University Press (Cambridge), 1993.
2. A. E. Brouwer, A. M. Cohen, A. Neumaier: Distance-Regular Graphs. SpringerVerlag (Berlin), 1989.
3. H. S. M. Coxeter: My graph. Proc. London Math. Soc., 46 (1983), 117-136.
4. D. Cvetković, P. Rowlinson, S. Simić: Spectral Generalizations of Line Graphs. Cambridge University Press, Cambridge, 2004.
5. M. Ellingham: Basic subgraphs and graph spectra. Australasian J. Combinatorics, 8 (1993), 247-265.
6. C. Godsil, G. Royle: Algebraic Graph Theory. Springer-Verlag, New York, 2001.
7. A. J. Hoffman, R. R. Singleton: On Moore graphs with diameters 2 and 3. IBM J. Res. Develop., 4 (1960), 497-504.
8. C. L. Liu: Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968.
9. P. Rowlinson: Star complements in finite graphs: a survey. Rendiconti Sem. Mat. Messina, 8 (2002), 145-162.

Department of Computing Science and Mathematics, (Received October 10, 2006) University of Stirling,
Stirling FK9 4LA, Scotland
E-mail: p.rowlinson@stirling.ac.uk
Department of Mathematics,
Faculty of Science,
University of Malta,
Msida MSD 06,
Malta
E-mail: isci1@um.edu.mt

[^0]: 2000 Mathematics Subject Classification. 05C50, 05 C 45.
 Key Words and Phrases. Graph, eigenvalue, star complement, Hamiltonian cycle.

