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Abstract 

Linearization of portfolio optimization plays a central 

role in financial studies, since linear problem allows for 

performing sensitivity analysis. This concept makes it 

possible to measure the variation of parameters as a 

result of variation of one parameter in a linear problem, 

without solving the problem from scratch. Based on the 

existing literatures, the approach of CVaR (conditional 

value at risk) method outperforms other methods, 

therefore in this study CVaR is applied as a constraint to 

change portfolio optimization problem into a linear 

problem. The coefficient of objective function of 

mentioned method for a portfolio includes average of 

asset returns, which are highly correlated. Here principal 

component analysis is employed to convert the 

correlation of the functional relations. An example of 

stock market is employed to substantiate the validity of 

method. Finally, we verify that the result of the presented 

method is closer to the ideal result.  
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1. Introduction 

The portfolio optimization is of great importance in asset management in order to manage 

investor’s exposure to risks. Based on the different risk measurements portfolio 

optimization problems have been concerned in various studies. The initial model presented 

by Markowitz (1950) has suffered from the multi- dimension which measures the risk by 

variance, many attempts had been made to change the portfolio optimization problem into 

a linear problem. Thereafter, linear portfolio optimization problems have been widely 

noticed because the related software and solution were effortless. Better yet it will ease the 

understanding of concept for whom with little mathematical knowledge. Moreover, it will 

make the sensitivity analysis possible. However, the mean absolute deviation (Konno, 

Yamazaki, 1991) and the following advanced technique were widely considered but the 

method presented by Uryasev (2000) was highly populated due to the following 

advantages. It has been shown that CVaR is a convex risk measurement (Uryasev, 2002). 

The minimization of CVaR on the other hand leads to a portfolio with a small VaR. 

Moreover, CVaR could be involved either as a subjective function or as a constraint 

(Uryasev, 2002).  

After proposition of linear portfolio optimization, the question raised that which algorithm 

has to be applied in order that the answers become more reliable, therefore in 1947 the 

simplex algorithm by Dantzig presented. The simplex method finds an optimal solution for 

the LP problem, which has entered the algorithm. After the simplex method, interior point 

methods (IPMs) were introduced to solve large-scale problems. This method solves 

problems in polynomial time (Roos et al. 1997; Wright, 1997). According on a research in 

1984, simplex algorithm surpassed interior point methods (Potra, 2000). Therefore, this 

method has been widely used in portfolio optimization problems (Liu, 2006; Lim, 2011; 

Kokoszkiewicz, 1996).  

Later, the importance of measuring the perturbation of other parameters as a result of 

change in one parameter had been considered. The study of questions like this is studied in 

the area of sensitivity analysis (Murty, 1983; Bazaraa, 2009). The following sensitivity 

analysis techniques do not consider the correlation among parameters, and includes some 

disadvantages. 
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The ordinary sensitivity analysis which was proposed by Koltai and Terlaky (2000) was 

only solvable by simplex method and also no simultaneous changes of OFC or RHS was 

allowed. Then the 100% rule was presented which covers the simultaneous change of OFC 

or RHS (Bradley, 1977) and later Wendell (1982, 1984, 1985) presented the tolerance 

approach, if this rule is satisfied then the optimal solution remains unchanged. The 

noteworthy point is that if this rule is not satisfied it is not known for sure whether the 

current optimal solution changes or not. Then, the symmetric tolerance analysis was 

presented, which allows for simultaneous and independent RHS or OFC was proposed. It 

was simple and easy to use. The tolerance is usually small and for medium and large scale 

problems it is often zero. However, It loses a lot of information on the model (Wendell, 

1982, 1984, 1985).Later, Non-symmetric tolerance analysis was presented, this method 

considered individual percentage change for every RHS parameters or OFC. However, small 

tolerance and no simultaneous perturbation among parameters are among weak points of 

this method (Arsham, 1990; Wondolowski, 1991; Wendell, 1992). The Parametric 

programming method is useful when RHS parameters or OFC depend only on one 

parameter. The weak point of this study is that no simultaneous perturbation of RHS 

parameters or OFC is considered (Saaty, 1954, 1955).Thereafter, Multiparametric 

programming was introduced. In this method RHS parameters or OFC change 

simultaneously and independently (Ward &Wendell 1990). In addition, sensitivity analysis 

in portfolio optimization has been concerned in a number of studies (Best, 1991; Koltai, 

2011; Arbaiy, 2013).  

To eliminate the shortcomings of ordinary sensitivity analysis Hanafizade (2011) 

represented a noble method that covers correlation among parameters, the method then 

followed by Shahin 2016. Shahin used Principal component analysis (PCA) to represents 

correlation among parameters.  

PCA method in some researches is applied as a creator of factors (Victor, 2007; Heij, 2008). 

Besides, the PCA method has known as a useful method in portfolio optimization, as an 

example, Sakalauskas in 2012 used the forenamed method for portfolio optimization 

problem. He also stated the superiority of using PCA method in portfolio optimization 

verses to portfolio optimization without using PCA, because not only a diversified portfolio 
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is provided by using PCA method, the risk of that portfolio decreases because stocks will be 

chosen from stocks with few risk. 

In this paper we aim to perform sensitivity analysis for a linear portfolio optimization 

problem under CVaR method and simplex algorithm, CVaR method objective function 

consists of the average returns of the stocks and these parameters are highly correlated. 

Among the previous studies there is no single study to deal with this problem. We will use 

the PCA method to tackle the problem and then the sensitivity analyses based on the 

related formulas are computed.  

The paper is organized as follows. In sect. 2 the methodology of sensitivity analysis in the 

presence of correlation among parameters is introduced. Sec. 3 illustrates the details of 

sensitivity analysis whit considering correlation among OFC. Sect.4 represents portfolio 

optimization using CVaR as a constraint. In Sect.5, the sensitivity analysis of real example of 

portfolio optimization is examined. Finally, the conclusion can be found in Sect.6 and 

possible future research directions are presented in section 7.  

 2. Method  

In this paper to construct a linear portfolio under CVaR method, first of all the historical 

data of four stocks (MNST, MAR, FISV, SON.SG) is derived from the related sites and then 

the logarithmic returns are calculated. Next, the historical returns divided into two parts 

the latest (newest) data, which is regarded as future data, and the historical data. For 

solving portfolio optimization with CVaR method the scenarios are needed, we use Mina & 

Yi Xiao method to generate scenarios, which is historical simulation. The historical monthly 

prices are used to derive monthly returns. The problem is solved without the latest data. 

 Next, we use the covariance matrix as the input of a multivariate statistical method called 

principal component analysis (PCA) in order to convert correlated parameters (OFC) into 

independent ones, introduced by some functional relations. To apply PCA, the historical 

returns for each stock in each 3 months classified -season data- and the average of each 

class is computed because the objective function constructs of average of returns thus the 

PCA should be applied over average of data. Then, by knowing variations in one of the OFC-

we know this variation by comparing the average of historical returns of each stock with 

the average of its historical returns while the latest data is considered- and using 
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derivatives of the functional relations we can find out the amount of variations in other 

OFC.  

Then the 100% rule should be applied to see whether the basic variables remain 

unchanged. If the 100% rule is satisfied, we know that the current optimal solution still 

remains optimal even though all the RHS parameters or OFC have changed. Then to prove 

the volatility and the power of predicting this method, the result is compared with two 

other problems, the first one as we call the ideal result which includes the whole data (the 

historical price includes the latest data). Furthermore, we consider a case in which instead 

of latest price the average of historical price is implied (except for one stock which takes its 

real latest data), to that end the historical price of data without the latest data is considered 

and then average of each stock is calculated then the result of linear portfolio optimization 

as before is calculated. Finally, these three results are compared. The following flowchart 

shows the steps of this paper. 
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Figure 1. The flowchart of sensitivity analysis in the presence of correlation 
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3. Sensitivity analysis  

In this section we briefly discuss the formulas of sensitivity analysis of LP problem in the 

presence of correlation among OFC that was introduced in Shahin (2016). 

It should be considered that these formulas are relies upon a series of assumptions. First 

they are valid for local perturbation, that is, the acceptable range for parameters change 

should be small and within ε-neighborhood of the estimated parameters. Second, it should 

be noted that these formulas are only applicable when a basic optimal non-degenerate 

solution is available.  

The following LP program is considered as a basis on which other formulas are derived.   

                                                                                Min cT x     (1) 

s.t. Ax = b, 

	 ≥  �, 
Here x is a vector with n variables, A is an m*n matrix, c is the OFC vector with n variables, 

and b is the right hand side (RHS) vector with m parameters.  

If program (1) is solved, then the optimal value and the optimal solution calculated as the 

following: 

�∗ = ��� ����, 
	�∗ = ����, 

Here z* is the optimal value of the objective function, cB is the OFC of basic variable and 

variable x*B is the optimal solution. The subscript B demonstrates basic variables and the 

superscript ∗ is indicating optimal value. In addition, B is the constraint matrices of basic 

and N is the constraint matrix of non-basic variables. 

If there is not a correlation between the components of vector c, we will have: 

��∗
��� = ����

∗ , �  �! = ���0   , �  �!�#$$%�&#'(� )# '#'*+��� ,+$�+*-%�          

In the presence of functional relation between OFC parameters, Shahin (2014) advanced 

following formulas based on the PCA method in order to change dependent parameters 

into the independents parameters: 

              ∆�. = /ɣ��ɣ�. + ɣ2�ɣ2. + ⋯ + ɣ4�ɣ4. 5                                                                                               (5)  

   (2) 

        (3) 
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∆�∗ = 78�∗
89:

+ 8�∗
89;

<ɣ::
ɣ:; + ɣ;:

ɣ;; + ⋯ + ɣ=:
ɣ=;> + ⋯ + 8�∗

89=
<ɣ::

ɣ:= + ɣ;:
ɣ;= + ⋯ + ɣ=:

ɣ==>? ∆��                       (6) 

Here γijs are the entries of the jth eigenvector, which is calculated through PCA method.  
4. CVaR Algorithm 

In this section we review the CVaR algorithm which is presented by Rockafelar and uryasev 

(2000). The portfolio optimization under CVaR method is solved by using scenario 

generation method afterward optimal weights of stocks and optimal value of portfolio 

could be derived. Then by using the formulas which are presented in the section 3, the 

portfolio sensitivity analysis based on the small changes in OFC -in CVaR algorithm mean 

return of stocks price are OFC- will be performed and portfolio sensitivity analysis based 

on a small changes of each stocks return is determined. 

The first step of the CVaR calculation is to find the matrix of historical returns from the 

matrix of historical prices. We follow Mina and Yi Xiao (2001) historical simulation method, 

which considers logarithmic returns. Logarithmic returns is the preferred method for 

return calculations in finance (Eberlein, 2001), and it will make calculations simpler in 

later stages of the thesis. The general formula for logarithmic returns is as the following:  

$�A = ln D &�A&�A��E                                                                      (8)  
 

Here rit is the return of stock i in day t and pi indicates the initial price of the security, 

whereas Pi+1 is the price in the next period.  

Then with using formula (9) the scenarios of the next period of stocks price based on the 

historical monthly returns i.e. rit-1, rit-2,... will be calculated. 

                                                                  G�. = H� ∗ %�&I$�A�. ∗ √)K       L = 1,2, … O                           (9) 

Here yij is the t+1 or the next-month price of stock i in the scenario j also is a random 

variable and qi is price of stock i in month t. 

The expected end-of-period (t+1) price of stock i is derived from the following equation: 

                                                          QRG�S = ∑ U.V.W� G�. = �
V ∑ G�.V.W�                                                 (10) 

We assume that all scenarios have equal probability.  

Rockafellar and Uryasev (2000) mentioned that CVaR can be considered in an optimization 

problem as an objective or constraint. If CVaR is considered as the objective of the 
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optimization problem, the risk of the portfolio which measured by CVaR will be minimized 

based on the given required expected return, and if CVaR is considered as a constraint, the 

expected return of the portfolio will be maximizing based on the given level of risk. 

In this research CVaR will be treated as the constraint of the portfolio optimization, so the 

objective of the optimization problem is to maximize the portfolio expected return or in 

other word, we could change the objective function into minimization by adding minus and 

so we will minimize the portfolio expected loss based on the certain level of risk. 

In this case we will have portfolio optimization problem like the following linear program: 

minZ,[ \ −QRG�S��
4

�W�
                                                                   (11) 

Subject to. 

^ + (1 − _)�� \ U.%. ≤ a \ H���b
4

�W�

V

.W�
                                                (12) 

%. ≥ \I−G�.�� + H���bK
4

�W�
− ^.       %. ≥ 0.   L = 1, … , O                              (13) 

H��� ≤ e� \ H!�!
4

!W�
.     � = 1, … , '                                                (14) 

 

Where i is the number of stocks, E[yij] is the average of stock's return in all scenarios, xi is 

the number of stock i in portfolio, w is the coefficient of risk tolerance, xi
0 is the number of 

stock i in the initial portfolio, ej is the coefficient for changing CVaR into the linear variable, 

qi is the price of stock i at the end of month in scenario j and ^  is VaR. 

5. Numerical Examples 

In order to exemplify and mixed two proposed methods, a real example of stock market is 

solved in this section. Then, the results are compared with the results of two other 

problems in which correlation among parameters have not been considered.  

The data sets are used in this paper are historical monthly close prices of 4 stocks (SON.SG, 

FISV, MAR, MNST) during February 1, 2014 to September 1, 2015, Then the latest prices 

are excluded and the problem is solved without the latest data by using CVaR method, for 

solving portfolio optimization with CVaR method the scenarios are required, thus we use 
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Mina & Yi Xiao method to generate scenarios, which is historical simulation. First, the 

historical monthly pries are used to derive monthly returns. 20 scenarios are derived from 

formula (9) for each stock. We assume that all scenarios have equal likelihood. Then based 

on the CVaR algorithm the portfolio optimization problem is solved with lingo software. 

The basic variables are shown in the following table: 

Table 1 The basic value  

ζ e(20) X(MNST) X(FISV) X(MAR) 

692.33 28.53 13.87 22.53 13.59 

 

Because objective function includes mean y, each 3 monthly scenarios is classified, then the 

average of each class is computed. We regard these data as season data and these data is 

used to generate PCA. 

To do so, first covariance matrix between season data is calculated and then eigenvalue and 

eigenvector are derived from covariance matrix. 

Table 2 Eigenvalues of season data 

Component Eigenvalue 

1 0.031548103 

2 6.064279805 

3 24.62035181 

4 1187.936196 

 

It turns out that, the eigenvalue of fourths element is notably bigger than other elements 

and based on the formula (15) it can be say that 0.97 percent of distribution of data can be 

explained by the fourth element. 

��2 + �22 + ⋯ + �g2 = -� + -2 + ⋯ + -g                                           (15) 

Where s represents variance and h is the eigenvalue. 
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Table 3 Eigenvectors of season data  

Eigenvectors                    

Variable 1 2 3 4 

SON1.SG -0.85846 0.287165 0.380537 0.189148 

MNST 0.184078 -0.32384 0.210371 0.903872 

FISV 0.311176 0.898522 -0.11826 0.286081 

MAR -0.36378 -0.07294 -0.89272 0.255728 

To derive PCA eigenvectors should be ordered based on the eigenvalue, the one which has 

bigger eigenvalue comes first and so on. 

Table 4 PCA of data 

��.  j=1 j=2 j=3 j=4 

i=1 0.189148 -0.38054 0.287165 0.858458 

i=2 0.903872 -0.21037 -0.32384 -0.18408 

i=3 0.286081 0.118264 0.898522 -0.31118 

i=4 0.255728 0.89272 -0.07294 0.363778 

Then one stocks is chosen, and for that stock we calculate average y while including latest 

data (was excluded at first) and the variation of mean y in this case and the initial one 

(without latest data) is calculated and this is the variation of mean y, it is notable that this 

variation should be in acceptable range, then the variation of other stock is calculated 

based on formula 5 and these data should also be in acceptable range. We consider stock 4, 

the variation between two mean y is -0.242 and variation of other stocks are calculated 

with formula 5 and the result is shown in table 6: 

Table 5 Objective Coefficient Range (from lingo output) 

Variable Allowable Increase Allowable Decrease 

X_SON1.SG INFINITY 58.96188 

X_MNST 37.53784 INFINITY 

X_FISV 2.339523 INFINITY 

X_MAR 115.8636 2.22285 
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Table 6 The variation of correlated parameters 

Stock (i) ∆��   
i=1 0.199453733 

i=2 1.382213411 

i=3 -1.74051599 

 

All of the above changes are in the accepted range for which the basis is unchanged. Now 

100% rule should be examined. If it is satisfied, we can calculate the new z*
. 

 

\ ∆�.
∆�.ijk

l

�W�
≤ 1                                                                     (16) 

By replacing the value of  ∆�.   in the above equation, it can be seen that the 100% rule is 

satisfied. Therefore, the current optimal basis remains optimum. 

And by calculating 
��∗
���  and replacing them into equations 6 we can calculate the new �∗.   

∆�∗ = −23.3258     

'%a �∗ = #-(�∗ + ∆�∗ = −4073.013 + (−23.3258) = −4096.3388 

For Comparison we are proceeding two steps. In the first step, we include the latest data 

that has been excluded first time and the portfolio optimization with whole data is solved. 

We regard this case as the ideal result because we assume that the future can be predicted 

100%. In the second step, which is regarded a historical method the forth stock variation 

considered as the first case (-0.242) but for the other stocks the average of historical return 

without the latest data is applied, the intention of this case is that how the result will differ 

from the ideal result if the correlation among parameters be ignored and the historical data 

replaced and the derivation of which case is considerable (considering correlation among 

parameters or using historical data) based on the ideal result. The summary results are 

presented in table 7. 
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Table7 The summary of results 

 ^ Non-zero e 
x 

(SON1.SG) 
x (MNST) x (FISV) 

x 

(MAR) 
VaR CVaR Z* 

PCA method 692.33 e(20)=28.53 0 13.87 22.53 13.59 0.16 0.17 -4096.33 

Ideal method 

 
468.69 e(21)=127.54 0 14.8018 21.96 13.95 0.11 0.25 -4110.35 

Historical 

method 
460.11 105.06 0 15.55135 22.83 11.61 0.111 0.23 -4133.02 

 

As can be identified from the table (7) the variation of PCA method and ideal method is 

14.02 and the variation of historical method and the ideal method is 22.26, which can be 

realized that the PCA method has explained the correlation and has resulted in the closer 

result to the ideal result. In the following graphs the results of three different cases will be 

depicted:  

  

             

          

 

6. Conclusions 

In this study we discussed a linear portfolio optimization regarding correlation among the 

average returns of four stocks. In case of presence of correlation among prices, the 

variation of one variable contributes to the variation of correlated variables. Current 

sensitivity analysis had failed to predict the exact changes in other variables. Here we 

calculated the changes in correlated variables and compared the result of new method with 

two other cases. 
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For performing portfolio optimization the CVaR method is employed and PCA method is 

used in order to eliminate correlation among OFC. Then, by using related formulas of this 

method the sensitivity analysis of linear portfolio optimization has performed. For 

performing sensitivity analysis we divided the historical data into two parts the first part 

which is called latest data first excluded and the results derived then to illustrate the 

validity of result we considered two different cases, first one which is called ideal result 

that is obtained by considering the whole data (including latest data), which we try to be as 

much as close to this result and second one is the one which obtained through historical 

data (no correlation is included),in which a stock variation is derived based on the latest 

data (only one stock) and assumed that other stocks will continue historical behavior,  the 

results then indicate that the result of new sensitivity analysis is closer to the ideal result 

whereas the historical method. 

7. Future Researches 

Further research can be done in order to make the result of this study closer to the result of 

ideal case. To that end, the existent error of correlation matrix should be eliminated by 

applying random matrix theory.   
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