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Action Perception: Seeing the
World through a Moving Body

Recent evidence suggests that the acquisition of new motor skills can
directly influence later visual perception even when an observer’s eyes
remain ‘wide shut’ during learning.
Ian M. Thornton1 and 
Günther Knoblich2

Functionally, there can be little
doubt that perception and action
are tightly coupled. In order to
survive, animals must be able to
detect dangerous or desirable
stimuli in the environment so that
they can plan and execute
appropriate avoidance or
approach behaviours. Often,
such planned actions must also
be adjusted mid-movement
under the guidance of perceptual
input to account for ongoing
environmental change. Still a
topic of much debate, however,
is exactly how such
action–perception coordination is
accomplished. More specifically,
the exact relationship between
the underlying representational
and neural substrates of these
systems remains highly
controversial. Some researchers
have stressed the differences
between representations for
perception and action [1], others
the similarity or even unity of the
two [2].

A new study by Antonino
Casile and Martin Giese [3],
reported in this issue of Current
Biology, has shown for the first
time that motor learning in the
absence of vision can directly
influence later perceptual
performance, a finding that
strongly favours the latter
perspective. In this study,
blindfolded participants were
taught to perform novel arm
synchronization patterns,
patterns that would not normally
be observed or executed.
Relative to a pre-testing session,
all observers showed improved
post-learning visual recognition
of biological motion displays [4,5]
that specifically matched the
learned motor patterns.
Performance did not improve for
visual displays that were
unrelated to the learned motor
patterns. Furthermore, a strong
correlation was found between
how well an individual could
perform the motor pattern and
the magnitude of the specific
recognition advantage.

Such a direct and specific
coupling of action and vision is
consistent with evidence that
action observation often recruits
areas of cortex primarily
concerned with the control of
movement. On a neuronal level,
such evidence was first provided
through the discovery of so-called
‘mirror neurons’ [6]. These
neurons, located in the parietal
and pre-motor cortex of the
macaque monkey, fire both when
the animal performs an action
itself — for example, grasping a
nut — and when they observe the
experimenter performing the same
action. Brain imaging studies have
provided ample evidence that a
similar mirror system exists in the
human brain. This system
comprises pre-motor and parietal
areas, which are consistently
activated when individuals
observe actions, engage in motor
imagery or perform actions
themselves [7]. Importantly,
activation of the mirror system is
greater when observers are
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experts at performing the
observed actions [8].

What might be the function of
such a direct coupling between
perception and action? One
obvious function would be the
use of perceptual constraints to
help learn and refine new
movement patterns through overt
imitation. When first being shown
a new complex movement
sequence — for example, a
dance routine or martial arts
pattern — an observation-
execution feedback cycle is
clearly a crucial part of learning.
The findings reported by Casile
and Giese [3] are so striking
because they clearly suggest that
such a process also works in
reverse. That is, the acquisition
of new motor skills appears to be
able to directly change the way
we see the world. Not only
vision-for-action, but also action-
for-vision. As vision and action
typically co-occur in everyday
life, this less intuitive outcome
may, until now, have been
obscured.

Why might it be useful to have
action directly affect vision in this
way? A main function of the
mirror system is thought to be
action understanding [6]. In this
view, mapping the perceived
actions of others’ onto one’s own
action repertoire allows the
observer to derive underlying
goals. If updating (or even just
activating) an action repertoire
also affects visual perception,
such a link might help
accomplish action understanding
by, quite literally, allowing us to
see the world through someone
else’s eyes. Another proposal is
that the mirror system helps to
more directly predict the visual
outcome of observed actions [9].
Here it is suggested that the
motor system can be used to
emulate observed action, helping
to project the future course of an
event and to stabilize perception
in a top-down manner, for
example by resolving perceptual
ambiguities. Again, updated
action repertoires could help
improve prediction and
anticipation.

While the above proposals may
seem reasonable, it would be fair
to ask why the visual system
would need help to accomplish
either of these goals — action
understanding or stable
prediction? Put another way,
what exactly does the motor
system bring to such a marriage?
The answer, quite simply, may be
time. It is uncontroversial that
action representations have both
a spatial and temporal
component. Our ability to
remember and reproduce
complex motor patterns clearly
relies on such ‘dynamic’, spatio-
temporal representations. Space
is the dimension that is typically
more emphasised in vision, with
the role of time, at least in
representation, still being much
neglected [10–12]. The
suggestion here is that the motor
system could be providing vision
with a general framework within
which to represent and process
time, or more specifically,
change-over-time [13].

Indeed time may play a crucial
role in explaining how learning a
new motor skill could lead to
more accurate visual perception
in Casile and Giese’s study [3].
Such a finding is not a
straightforward prediction of all
theories that assume direct
perception-action links, as the
authors seem to suggest. Most of
these theories assume that an
associative link between a
movement and its visual
outcomes needs to be created
before a resonance between
perception and action can occur
[6,14]. As observers in Casile and
Giese’s [3] experiment learn a
new coordination pattern
between familiar movement
components, these components
would already be linked to a
visual consequence. Thus,
learning a new temporal
coordination pattern on the
motor side most likely resulted in
improved temporal parsing for
the visual elements linked to
these motor components.

More generally, a temporal
advantage of connecting vision
and action clearly has
implications that go beyond the
perception of the body itself
[3,15–17]. Could our overall
perception of the dynamic world
be mediated by motor
experience? Do action
repertoires influence the visual
perception of other objects?
Might athletes with specialities
involving rapid, ‘high-frequency’
movements, such as martial arts
or fencing, come to experience
space and time in a different way
to those involved in more fluid,
‘low-frequency’ sports, such as
skiing or surfing? The challenge
for future research will be not
only demonstrate that such
effects exist, but also to separate
out the influence of motor
experience from accompanying
visual experience. Casile and
Giese [3] have shown that such a
separation is possible. The goal
now is to apply such methods to
other relevant areas of
perception [18–20] to more fully
assess the role our bodies play
as moving windows on the world.
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The idea that gradients of
morphogens are involved in
patterning complex embryo body
plans has a long history in
developmental biology. The
morphogen idea was first
postulated by Morgan at the
beginning of the 20th century, but it
was Wolpert [1] who refined the
idea in the 1960s. He proposed
that different genes would be
turned on in response to different
threshold concentrations of the
morphogen. In Wolpert’s French
flag model, these states were
represented by different colors,
with high concentrations turning on
a blue gene, lower concentrations
turning on a white gene, with red a
default state in regions of the
embryo below the threshold.

The first morphogen known
molecularly was Bicoid (Bcd), a
homeodomain-containing
transcription factor that is critical
for the establishment and
placement of all anterior
structures in the Drosophila body
plan. The experimental evidence
supporting Bcd as a morphogen
is very convincing. Embryos
containing different copy numbers
of the bcd gene show dramatic
shifts of landmark structures
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along the anterior posterior (AP)
axis [2]. For example, the cephalic
furrow, one of the first
distinguishable morphological
features, is shifted posteriorly in
embryos that contain four or six
copies of the bcd gene.

bcd mRNA is anchored by the
cytoskeleton to the anterior tip of
the oocyte (Figure 1A) [3]. When
eggs are laid, bcd mRNA is
translated, and a gradient of
protein is formed, with highest
levels near the anterior tip of the
embryo, and progressively lower
levels toward posterior regions
[4]. The shape of the gradient is
thought to be controlled by a
combination of the rates of
translation, diffusion, and
degradation.

While the Bcd protein gradient is
forming, zygotic nuclei are
undergoing ten very rapid division
cycles and migrate to the periphery
of the embryo and the early
cytoplasmic gradient is converted
into a nuclear gradient (Figure 1B).
The total amount of Bcd protein in
the embryo increases until the
beginning of division cycle 14, from
when its expression starts to
decline [4]. The peripheral
migration of the nuclei coincides
with the onset of zygotic
transcription, and the zygotic
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genes hunchback (hb) and
orthodenticle (otd) are among the
first to be turned on by Bcd (Figure
1C). hb is expressed throughout
the anterior half of the embryo,
while otd is expressed in only the
anterior-most 30% [5, 6]. Initially,
these expression patterns are
diffuse, but they are refined during
nuclear division cycle 14, exhibiting
sharp posterior boundaries that are
precisely positioned along the AP
axis and show very little variation
between individual embryos.

If otd and hb are regulated
primarily by Bcd dependent
activation, and if the Wolpert
model for morphogen activity is

Figure 1. The Bicoid gradient.

bcd mRNA (A) and protein (B) expression
in early Drosophila embryos. (C) A
schematic model of Bcd morphogenetic
activity showing two target genes (hb and
otd) that may respond to different con-
centration thresholds. (A,C) Reproduced
with permission from [18]. (B) Repro-
duced with permission from the embryo
tu9 entry of the FlyEx database (Copyright
1998, David Kosman and John Reinitz).
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