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Fixed Speed direct on line generator
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. Direct on line. No expensive power electronics converter needed.
. Mechanical control (complex & expensive)
. Blades pitch angle Control.
»  Maximum power point tracking not possible.
. Hydro-Dynamically controlled gearbox.
»  Continuously controllable variable gear box ratio.
» Maximum power point tracking possible.
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Adjustable Speed Using Synchronous Generator
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* Mechanical control system is kept simple, hence less expensive.
* Adjustable Speed Drive allows for Maximum Power Operation.

» Generator produces variable-frequency AC power.

A power electronics converter is needed.
» Power converter has to be rated 100% of total system VA.
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Adjustable Speed Using Doubly Fed Induction Generator
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 Mechanical control system is kept simple, hence less expensive.
* Adjustable Speed Drive allows for Maximum Power Operation.
» Generator produces fixed-frequency fixed-voltage AC power.

A power electronic converter is only needed to supply the slip power.
» Power converter typically rated 25% of total system VA (less expensive).
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Vector Control of the
Doubly Fed Induction Machine
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DFIM Modelling in stator and rotor frames:
d(ws, ) d(w
dt i
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DFIM Modelling in rotating dg frame:
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e Aligning the synchronous frame to the stator Y, leads to:
W, =Ws W5 =0
* Neglecting stator resistance and assuming steady state grid supply the

stator flux vector becomes constant in the dq frame and the stator dynamic
equations may be written as:

vsd:—aeLIJSq:O Vo, =a. W



iR

DFIM SFO Vector Control IEPC
Rotor Dynamic Equations —

UNIVERSITY
OF MALTA

Using the flux relationships:
l.IJS = LSiS + LOiR

l'IJR = LRiR + I—OiS
the rotor dynamic equations may be arranged in terms of w_ and i

dlir,)

VRd = RRIRd +d_RT\_ d_Rwslquj
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These equations can be used for PI current control design for SFO vector
control.
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» The stator active power is defined as: P, = 3Re(vsi;)

- whereas the reactive power is defined as: Qs =3Im(vsig)
* |t can be shown after some mathematical manipulation that:
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The Matrix Converter and
the DFIM Test Rig
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« Each output phase can be connected to any input
phase at any time

* Direct Conversion (no power storage elements)
— Power In = Power Out at all times

 Bidirectional power flow due to bidirectional switches

 Sinusoidal input currents due to PWM control and
iInput filter

* Input power factor can be set as desired — this
Includes operation at PF=1
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Experimental Results
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Stator Active and Reactive Power for step in iRd
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Operation Through Synchronous Speed: Automatic Rotor Current Reversal
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Rotor Power Reversal During DFIM Speed Transition Through Synchronous Speed
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Stator Reactive Power reduced to zero by step in Ird
(maintaining constant Stator Flux)
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Stator Voltage & Current and Rotor Current
for a step reduction of Stator Reactive Power to zero
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« Application of matrix converter drive applied to DFIM
stator power control for a Wind Energy System

 Matrix Converter used to control rotor circuit of DFIM
using SFO vector control

* Results demonstrate control of stator power to grid
during tests whilst speed is controlled by dc drive acting
as prime mover



