Power Control of Doubly Fed Induction Machine using a Rotor Side Matrix Converter

Kenneth Spiteri, Cyril Spiteri Staines, Maurice Apap

UNIVERSITY OF MALTA

Department of Industrial Electrical Power Conversion

- > Wind Grid-Connected Systems
- > Doubly Fed Induction Machine
- Matrix Converter and Experimental Rig
- Results

Overview of Wind Grid-Connected Systems

Fixed Speed direct on line generator

- Direct on line. No expensive power electronics converter needed.
- Mechanical control (complex & expensive)
 - Blades pitch angle Control.
 - Maximum power point tracking not possible.
 - Hydro-Dynamically controlled gearbox.
 - Continuously controllable variable gear box ratio.
 - Maximum power point tracking possible.

- Mechanical control system is kept simple, hence less expensive.
- Adjustable Speed Drive allows for Maximum Power Operation.
- Generator produces variable-frequency AC power.
- A power electronics converter is needed.
 - > Power converter has to be rated 100% of total system VA.

Adjustable Speed Using Doubly Fed Induction Generator

- Mechanical control system is kept simple, hence less expensive.
- Adjustable Speed Drive allows for Maximum Power Operation.
- Generator produces fixed-frequency fixed-voltage AC power.
- A power electronic converter is only needed to supply the slip power.
 - Power converter typically rated 25% of total system VA (less expensive).

Vector Control of the Doubly Fed Induction Machine

EPC

Sub-Synchronous

Super – Synchronous

DFIM dynamic model

DFIM Modelling in stator and rotor frames:

$$v_{S_{\alpha\beta}} = R_{S}i_{S_{\alpha\beta}} + \frac{d(\Psi_{S_{\alpha\beta}})}{dt} \qquad \qquad v_{R_{\alpha'\beta'}} = R_{R}i_{R_{\alpha'\beta'}} + \frac{d(\Psi_{R_{\alpha'\beta'}})}{dt}$$

DFIM Modelling in rotating dq frame:

$$v_{S_{dq}} = R_S i_{S_{dq}} + \frac{d(\Psi_{S_{dq}})}{dt} + j\omega_e \Psi_{S_{dq}} \qquad v_{R_{dq}} = R_R i_{R_{dq}} + \frac{d(\Psi_{R_{dq}})}{dt} + j\omega_{sl} \Psi_{R_{dq}}$$

• Aligning the synchronous frame to the stator Ψ_s , leads to:

$$\Psi_{S_d} = \Psi_S \qquad \Psi_{S_q} = 0$$

 Neglecting stator resistance and assuming steady state grid supply the stator flux vector becomes constant in the dq frame and the stator dynamic equations may be written as:

$$v_{S_d} = -\omega_e \Psi_{S_q} = 0 \qquad v_{Sq} = \omega_e \Psi_{S_d}$$

DFIM SFO Vector Control Rotor Dynamic Equations

Using the flux relationships:

$$\Psi_{S} = L_{S}i_{S} + L_{O}i_{R}$$
$$\Psi_{R} = L_{R}i_{R} + L_{O}i_{S}$$

the rotor dynamic equations may be arranged in terms of Ψ_{s} and i_{R}

These equations can be used for PI current control design for SFO vector control.

DFIM Stator Field Orientated Vector Control Scheme

 $heta_{eSFO}$

DFIM Indirect Stator Power Control

- The stator active power is defined as: $P_s = 3 \operatorname{Re}(v_s i_s^*)$
- whereas the reactive power is defined as: $Q_s = 3 \operatorname{Im}(v_s i_s^*)$
- It can be shown after some mathematical manipulation that:

$$P_{S} = -3\frac{L_{O}}{L_{S}}i_{R_{q}}\Psi_{S}\omega_{e} \qquad (P_{S} \propto -i_{R_{q}})$$

$$Q_{S} = -3 \left(\frac{\Psi_{S} v_{S}}{L_{S}} - \frac{L_{O} v_{S}}{L_{S}} i_{R_{d}} \right) \qquad (Q_{S} \propto i_{R_{d}})$$

Matrix Converter and Hardware Setup

The Matrix Converter and the DFIM Test Rig

Matrix Converter Properties

- Each output phase can be connected to any input phase at any time
- Direct Conversion (no power storage elements)
 - Power In = Power Out at all times
- Bidirectional power flow due to bidirectional switches
- Sinusoidal input currents due to PWM control and input filter
- Input power factor can be set as desired this includes operation at PF=1

7.5kW Matrix Converter Circuit

1.5 kW DFIM

DC machine

Experimental Results

DFIM Stator Power Control

Stator Active and Reactive Power for step in i_{R_a}

DFIM Stator Power Control

Stator Active and Reactive Power for step in i_{R_d}

Variable Speed Operation

Operation Through Synchronous Speed: Automatic Rotor Current Reversal

Variable Speed Operation

Rotor Power Reversal During DFIM Speed Transition Through Synchronous Speed

Power Factor Control

Stator Reactive Power reduced to zero by step in Ird (maintaining constant Stator Flux)

Power Factor Control

Stator Voltage & Current and Rotor Current for a step reduction of Stator Reactive Power to zero

Conclusions

- Application of matrix converter drive applied to DFIM stator power control for a Wind Energy System
- Matrix Converter used to control rotor circuit of DFIM using SFO vector control
- Results demonstrate control of stator power to grid during tests whilst speed is controlled by dc drive acting as prime mover