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7Abstract Submarine spreading is a type of mass movement that involves the

8extension and fracturing of a thin surficial layer of sediment into coherent blocks

9and their finite displacement on a gently sloping slip surface. Its characteristic

10seafloor signature is a repetitive pattern of parallel ridges and troughs oriented

11perpendicular to the direction of mass movement. We map ~30 km2 of submarine

12spreads on the upper slope of the Hikurangi margin, east of Poverty Bay, North

13Island, New Zealand, using multibeam echosounder and 2D multichannel seismic

14data. These data show that spreading occurs in thin, gently-dipping, parallel-bedded

15clay, silt and sandy sedimentary units deposited as lowstand clinoforms. More

16importantly, high-amplitude and reverse polarity seismic reflectors, which we

17interpret as evidence of shallow gas accumulations, occur extensively in the fine

18sediments of the upper continental slope, but are either significantly weaker or

19entirely absent where the spreads are located. We use this evidence to propose that

20shallow gas, through the generation of pore pressure, has played a key role in

21establishing the failure surface above which submarine spreading occurred. Addi-

22tional dynamic changes in pore pressure could have been triggered by a drop in sea

23level during the Last Glacial Maximum and seismic loading.

24

A. Micallef (*)

University of Malta, Msida, Malta

e-mail: aaron.micallef@um.edu.mt; micallefaaron@gmail.com

J.J. Mountjoy

National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand

S. Krastel

Christian-Albrechts-Universität zu Kiel, Kiel, Germany

G. Crutchley

GNS Science, Lower Hutt, New Zealand

S. Koch

GEOMAR, Kiel, Germany

© Springer International Publishing Switzerland 2015

G. Lamarche et al. (eds.), Submarine Mass Movements and their Consequences,

Advances in Natural and Technological Hazards Research 41,

DOI 10.1007/978-3-319-20979-1_42

419

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OAR@UM

https://core.ac.uk/display/153557699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


25 42.1 Introduction

26 Spreading entails the finite and downslope surficial displacement of rock/sediment on

27 gently sloping ground, and the fracturing of the displaced mass into coherent blocks

28 (Varnes 1978). Displacementmostly occurs along a shear zone (Rohn et al. 2004), and

29 the deformationmay involve subsidence, translation, rotation and disintegration of the

30 upper coherent units (Dikau et al. 1996; Varnes 1978). The ground deformation

31 associated with spreading comprises the extensional fissuring of the surface units in

32 the form of alternating ridges and troughs (Dikau et al. 1996). The literature on

33 spreading is not as extensive and exhaustive as for other types of mass movement,

34 and little is known about themechanics of the failure process. Deformation in a spread

35 is known to be driven by a combination of transient and static shear stresses, attributed

36 to a loss of shear strength of the underlying sediment, which allows the overlying

37 material to slide downslope as intact blocks. The geological conditions conducive to

38 spreading are usually those where consolidated rocks or sediments overlie a ductile

39 substratum (Dikau et al. 1996; Rohn et al. 2004). In terrestrial environments, spreading

40 is inextricably linked to the build up of pore pressure and associated liquefaction,

41 which may occur in shallow underlying deposits either during an earthquake or due to

42 changes in the height of the water table (Kanibir et al. 2006).

43 In submarine settings, numerical and mechanical models have indicated that,

44 similarly to terrestrial environments, an increase in pore pressure may be a key

45 preconditioning factor and trigger of spreading (Kvalstad et al. 2005; Micallef

46 et al. 2007). In this paper we address the hypothesis that, by influencing pore pressure

47 in sub-seafloor sediment, shallow gas can promote the development of a weak layer

48 above which submarine spreading can occur. We do this by analysing geophysical

49 data acquired from offshore the east coast of North Island, New Zealand (Fig. 42.1).

Fig. 42.1 (a) Location map. (b) Bathymetric map of the continental slope offshore Poverty Bay,

showing location of study area. Isobaths at 50 m intervals

420 A. Micallef et al.



50In comparison to terrestrial spreading, submarine spreading has received very little

51attention. First reported from offshore California (Field et al. 1982), most of what we

52know about submarine spreading comes from studies of the Norwegian passive

53continental margin (Baeten et al. 2013; Gauer et al. 2005; Kvalstad et al. 2005;

54Micallef et al. 2007, 2009). Nevertheless, the characteristic submarine spreading

55morphology, in the form of a recurring pattern of ridges and troughs, can be observed

56in numerous submarine landslides around the world (Lastras et al. 2003, 2006;

57Micallef et al. 2013; Piper et al. 1999; Vanneste et al. 2006). This means that

58submarine spreading is a widespread type of mass movement that has played an

59important role in the development of submarine landslides in different settings, and

60which therefore merits more detailed investigation.

6142.2 Study Area

62Our study area is located on the upper slope of the Hikurangi margin, 45 km east of

63Poverty Bay, North Island, NewZealand (Fig. 42.1). The east coast of the North Island

64straddles the boundary between the Pacific andAustralian tectonic plates. This margin

65is characterised by the westward subduction of the Pacific Plate beneath the North

66Island, at a rate of about 4.5–5.5 cm year�1 (Beavan et al. 2002). Across the

67continental shelf in the region of our study area, active eastward verging splay faults

68from the plate boundary mega-thrust are known to project to the seafloor (Mountjoy

69and Barnes 2011). On the mid- to upper-slope, however, there is a lack of active

70tectonic deformation, which results in a relatively simple facies geometry. The upper

71continental slope of the Hikurangi margin is underlain by Miocene to recent slope

72basin sequences with possible Cretaceous and Paleogene sedimentary rocks at depth

73(Barnes et al. 2002; Mountjoy and Barnes 2011). Overlying these sequences at the

74shelf break are lowstand clinoforms deposited during the Quaternary glacial cycles

75(Barnes et al. 2002; Pedley et al. 2010). These deposits are formed of gently dipping,

76parallel-bedded clay, silt and possibly sandy sedimentary units (Alexander

77et al. 2010). Modest size (0.01 km3) to very large (3,000 km3) submarine landslides

78have occurred on the Hikurangi margin (Barnes et al. 2010; Kukowski et al. 2010).

79Some of the best preserved examples of these occur on the upper continental slope

80directly off Poverty Bay and to the south-west of the study area (Fig. 42.1b). These

81include the ~30 km3 Poverty Debris Avalanche, and the ~10 km3 Tuaheni Landslide

82Complex (Mountjoy et al. 2009).

8342.3 Data and Methods

84Our study is based on two types of data. The first is a multibeam echosounder

85dataset covering 700 km2 of seafloor (Fig. 42.1b). These data were acquired using a

86hull-mounted Kongsberg EM300 multibeam system during two cruises (TAN1114
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87 in 2011 and TAN0810 in 2008). The bathymetry data were processed with CARIS

88 Hydrographic Information Processing System (HIPS) by accounting for sound

89 velocity variations, tides and basic quality control. A bathymetry grid with

90 25 25 m bin size was derived. The second dataset comprises high resolution 2D

91 multichannel seismic reflection data acquired during the TAN1404 cruise in 2014

92 (Fig. 42.2). The acquisition system entailed a 0.7 l GI Gun and a 150 m long

93 streamer with 96 channels. Processing included crooked line common midpoint

94 (CMP) binning (CMP spacing of 1.5 m), frequency filtering (Butterworth filter with

95 low-cut corner frequencies of 25 and 55 Hz), normal move-out correction, stacking

96 and 2D Stolt migration. All cruises were carried out on board the R/V Tangaroa.

97 42.4 Results

98 42.4.1 Morphology

99 The continental slope within the study area has an average slope gradient of 5.5!

100 towards SSE. The morphology is dominated by an elongated scar with a length of

101 8 km, width of 4 km, and 60 m depth (Fig. 42.2a). The downslope limit of the scar

102 coincides with the regional base of the continental slope where it is contiguous with

103 the Tuaheni sedimentary basin, at 975 m depth. Its headwall is located in the upper

104 continental slope, at a depth of 250 m. Smaller scars, sharing a similar morphology

105 and distal limit, are located 1 km to the north-east of the elongated scar. The seafloor

106 morphology across the upper section of the scar predominantly consists of a sub-

107 dued, repetitive pattern of ridges and troughs oriented parallel to the isobaths. In the

108 downslope section of the scar, the morphology is smoother and intersected by

109 lineations that are up to 3 km long, 5 m deep, and oriented perpendicular to the

110 isobaths. These lineations and the western boundary of the scar are intersected by a

111 4.5 km long and 20 m high SW-NE oriented escarpment. Circular depressions that

112 are up to 200 m wide and 30 m deep are located at the headwall of the scar.

113 42.4.2 Sub-seafloor Architecture

114 The seismic expression of the sub-seafloor in the study area comprises a sequence

115 of continuous, parallel, gently-dipping seismic reflectors that is at least 150 m thick

116 in places (assuming a seismic P wave velocity of 1600 m s�1 for depth conversion).

117 Two reflectors within this sequence are characterised by high amplitude and reverse

118 polarity, and are recorded at an average depth of 55 m below the seafloor

119 (Fig. 42.2b). These high amplitude reflectors occur across the upper continental

120 slope, but are either significantly weaker or entirely absent where the elongated scar

121 with the ridge and trough morphology is present. Here, the upper part of the seismic

122 sequence is generally characterised by a unit of irregular, chaotic, low amplitude
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123reflectors, although triangular blocks of coherent, parallel, downslope-dipping

124reflectors are visible. This unit has a variable thickness, with a maximum of

12540 m. The base of this chaotic unit is a planar reflector that connects with the

126high amplitude reflector further upslope. The chaotic unit is also covered by a

127draping unit of parallel reflectors, which is characterised by irregular thickness and

128reaches a maximum thickness of 35 m.

Fig. 42.2 (a) Bathymetric map of study area draped on a slope gradient map and showing

principal morphologic elements of the scar. (b) Seismic reflection profile P3106 across the scar.

(c) Enlarged section of profile P3106 showing reverse polarity of high amplitude reflector
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129 42.5 Discussion and Conclusions

130 42.5.1 Nature of Mass Movement

131 The downslope-dipping, parallel seismic reflectors across the study area are

132 interpreted as layers in a stratified sediment package (Mountjoy et al. 2009). We

133 infer that the material in this package is similar to that which failed in the adjacent

134 Tuaheni Landslide Complex. This consisted of muddy sedimentary deposits, which

135 accumulated during periods of eustatic sea level lowering, overlain by a Holocene

136 hemipelagic succession (Carter and Manighetti 2006; Paquet et al. 2009). The ridge

137 and trough morphology, and the chaotic seismic sequence with isolated blocks of

138 coherent reflectors, are signature characteristics of submarine spreading (Micallef

139 et al. 2007). We therefore interpret the upper section of the elongated scar

140 documented across the study area as evidence of a submarine spreading event that

141 comprised thin, extensional deformation of the lowstand units, occurring along

142 stratigraphic surfaces, and which was later draped by Holocene sedimentation.

143 This mode of failure corresponds to model 2 proposed by Micallef et al. (2007) for

144 the Storegga Slide, where a thin slab ruptures under tension into a series of coherent

145 blocks that translate and tilt downslope along a quasi-planar failure plane. The

146 downslope section of the scar has undergone a higher degree of sediment evacuation,

147 likely a result of translational sliding or more plastic deformation. The lineations

148 may correspond to furrows eroded by debris flows into the failure surface.

149 42.5.2 Role of Shallow Gas

150 Limit equilibriummodelling by Micallef et al. (2007) showed how spreading can be

151 pre-conditioned or triggered by three processes – loss of support, increase in total

152 weight upslope, and an increase in pore pressure. Loss of support is a potential

153 trigger of spreading in the region because of sediment evacuation in the downslope

154 section of the scar. We exclude increase in total weight upslope as a potential cause

155 because there are no indications of loading of sediment from a slope failure in the

156 seismic data. An increase in pore pressure is also a likely cause of spreading in the

157 study area. We interpret the high amplitude and reverse polarity reflectors in

158 Fig. 42.2b as the top of an accumulation of gas within the sediments. The circular

159 depressions, which we interpret as pockmarks, provide additional evidence of

160 sub-seafloor overpressure. We are not able to determine whether the gas has bio-

161 genic or thermogenic origin. In bubble phase, gas is known to markedly increase the

162 pore pressure, which decreases the effective stress of the seafloor sediment, creating

163 weak layers that are prone to failure (Crutchley et al. 2010; Field 1990). In our study

164 area this effect is enhanced by the low permeability of the fine-grained material that

165 failed. The absence or low quantities of shallow gas in the elongated scar, and the

166 correspondence of the depth of failure with that of the shallow gas, indicate that the
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167latter has played a key role in establishing the failure surface. Additionally, dynamic

168changes in pore pressure may have been triggered by two factors. The first is a drop

169in sea level during the Last Glacial Maximum, with an associated reduction in

170effective stress as gas came out of solution due to lower hydrostatic pressures.

171This could explain why the absence of gas is more noticeable in the deeper part of

172the slope, where the reduction of the hydrostatic pressure would have been more

173pronounced. The second factor is seismic loading. The active fault most proximal to

174the study area is the Ariel Bank Fault (Fig. 42.1b), which is inferred to have a late

175Quaternary displacement rate in the range of 3.0–6.5 mm year�1 (Barnes

176et al. 2002). Peak ground acceleration, estimated from probabilistic seismic hazard

177modelling of regional earthquake sources, is in the order of 0.3–0.4 g with a return

178time of 475 years (Stirling et al. 2002). Some moderately large magnitude historic

179earthquakes have also occurred in the vicinity (e.g. the 1931 M7.8 Napier earth-

180quake). The escarpment crossing the western boundary of the scar and the lineations

181may also be interpreted as the location of a recently-active fault.

182To evaluate the potential failure mechanisms and perform stability analyses that

183take into account the role of gas charging and seismic loading, there is the need to

184acquire long sediment cores and carry out in situ geotechnical measurements from

185the study area.

186Acknowledgments This research was supported by funding from Marie Curie Career Integration

187Grant PCIG13-GA-2013-618149 within the 7th European Community Framework Programme,

188New ZealandMinistry for Business Innovation and Employment, NIWACore Funding under Coasts

189and Oceans Research Programme 1 (2013/14 SCI), DFG (Deutsche Forschungsgemeinschaft), and

190the Royal Society of New Zealand International Mobility Fund contract ISATB09-37. We are

191indebted to the TAN1404 shipboard party, and the captain, crew and technicians of RV Tangaroa.

192We thank Nicole Baeten and David Amblas for their insightful reviews.

193References

194Alexander CR, Walsh JP, Orpin AR (2010) Modern sediment dispersal and accumulation on the

195outer poverty continental margin. Mar Geol 270:213–226

196Baeten NJ, Laberg JS, Forwick M et al (2013) Morphology and origin of smaller-scale mass

197movements on the continental slope off northern Norway. Geomorphology 187:122–134

198Barnes PM, Nicol A, Harrison T (2002) Late Cenozoic evolution and earthquake potential of an

199active listric thrust complex above the Hikurangi subduction zone, New Zealand. Geol Soc Am

200Bull 114:1379–1405

201Barnes PM, Lamarche G, Bialas J et al (2010) Tectonic and geological framework for gas hydrates

202and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272:26–48

203Beavan J, Tregoning P, Bevis M et al (2002) Motion and rigidity of the Pacific Plate and

204implications for plate boundary deformation. J Geophys Res 107:2261

205Carter L, Manighetti B (2006) Glacial/interglacial control of terrigenous and biogenic fluxes in the

206deep ocean off a high input, collisional margin: a 139kyr-record from New Zealand. Mar Geol

207226:307–322

208Crutchley GJ, Geiger S, Pecher I et al (2010) The potential influence of shallow gas and gas

209hydrates on sea floor erosion of Rock Garden, an uplifted ridge offshore of New Zealand.

210Geo-Mar Lett 30:283–303

42 Shallow Gas and the Development of a Weak Layer in Submarine Spreading. . . 425



211 Dikau R, Brunsden D, Schrott L et al (1996) Landslide recognition: identification, movement and

212 causes. Wiley, Chichester

213 Field ME (1990) Submarine landslides associated with shallow seafloor gas and gas hydrates off

214 Northern California, In: AAPG (ed) Fifth circum-pacific energy and mineral resources con-

215 ference, Honolulu

216 Field ME, Gardner JV, Jennings AE et al (1982) Earthquake-induced sediment failures on a 0.25!

217 slope, Klamath River delta, California. Geology 10:542–546

218 Gauer P, Kvalstad TJ, Forsberg CF et al (2005) The last phase of the Storegga Slide: simulation of

219 retrogressive slide dynamics and comparison with slide-scar morphology. Mar Petrol Geol

220 22:171–178

221 Kanibir A, Ulusay R, Aydan O (2006) Assessment of liquefaction and lateral spreading on the

222 shore of Lake Sapanca during the Kocaeli (Turkey) earthquake. Eng Geol 83:307–331

223 Kukowski N, Greinert J, Henrys S (2010) Morphometric and critical taper analysis of the Rock

224 Garden region, Hikurangi Margin, New Zealand: implications for slope stability and potential

225 tsunami generatin. Mar Geol 272:141–153

226 Kvalstad TJ, Andersen L, Forsberg CF et al (2005) The Storegga slide: evaluation of triggering

227 sources and slide mechanisms. Mar Pet Geol 22:245–256

228 Lastras G, Canals M, Urgeles R (2003) Lessons from sea-floor and subsea-floor imagery of the

229 BIG’95 debris flow scar and deposit. In: Locat J, Mienert J (eds) Submarine mass movements

230 and their consequences. Kluwer Academic Publishers, Dordrecht, pp 425–431

231 Lastras G, Canals M, Amblas D et al (2006) Eivissa slides, western Mediterranean sea: morphol-

232 ogy and processes. Geo-Mar Lett 26:225–233

233 Micallef A, Masson DG, Berndt C et al (2007) Morphology and mechanics of submarine

234 spreading: a case study from the Storegga Slide. J Geophys Res 112:F03023

235 Micallef A, Masson DG, Berndt C et al (2009) Development and mass movement processes of the

236 north-eastern Storegga Slide. Quat Sci Rev 28:433–448

237 Micallef A, Georgiopoulou A, Le Bas T et al (2013) The Malta-Sicily escarpment: mass move-

238 ment dynamics in a sediment-undersupplied margin. In: Krastel S et al (eds) Submarine mass

239 movements and their consequences. Springer International Publishing, Switzerland, pp

240 317–328

241 Mountjoy JJ, Barnes PM (2011) Active upper-plate thrust faulting in regions of low plate-interface

242 coupling, repeated slow slip events, and coastal uplift: example from the Hikurangi Margin,

243 New Zealand. Geochem Geophys Geosyst 12:Q01005

244 Mountjoy JJ, McKean J, Barnes PM et al (2009) Terrestrial-style slow-moving earthflow kine-

245 matics in a submarine landslide complex. Mar Geol 267:114–127

246 Paquet F, Proust JN, Barnes PM et al (2009) Inner-forearc sequence architecture in response to

247 climatic and tectonic forcing since 150 Ka: Hawke’s Bay, New Zealand. J Sediment Res

248 79:97–124

249 Pedley KL, Barnes PM, Pettinga JR et al (2010) Seafloor structural geomorphic evolution of the

250 accretionary frontal wedge in response to seamount subduction, poverty indentation,

251 New Zealand. Mar Geol 270:119–138

252 Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicentre of the

253 1929 Grand Banks earthquake: initiation of debris flows and turbidity currents inferred from

254 sidescan sonar. Sedimentology 46:79–97

255 Rohn J, Resch M, Schneider H et al (2004) Large-scale lateral spreading and related mass

256 movements in the Northern Calcareous Alps. Bull Eng Geol Environ 63:71–75

257 Stirling MW, McVerry GH, Berryman KR (2002) A new seismic hazard model for New Zealand.

258 Bull Seismol Soc Am 92:1878–1903

259 Vanneste M, Mienert J, Bünz S (2006) The Hinlopen Slide: a giant, submarine slope failure on the

260 northern Svalbard margin, Arctic Ocean. Earth Planet Sci Lett 245:373–388

261 Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krisek RJ (eds)

262 Landslides, analysis and control. National Academy of Sciences, Transportation Research

263 Board, Special Report 176, pp 11–33

426 A. Micallef et al.

View publication statsView publication stats

https://www.researchgate.net/publication/292605334



