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Abstract
Weconsider the non-equilibriumdynamics of a simple system consisting of interacting spin-1/2 par-
ticles subjected to a collective damping. Themodel is close to situations that can be engineered in
hybrid electro/opto-mechanical settings.Making use of large-deviation theory, wefind aGallavotti–
Cohen symmetry in the dynamics of the system aswell as evidence for the coexistence of two dynami-
cal phases with different activity levels.We show that additional damping processes smooth out this
behavior. Our analytical results are backed up byMonte Carlo simulations that reveal the nature of the
trajectories contributing to the different dynamical phases.

Understanding and controlling thedynamical behavior of quantum systemshas seenflourishing interest [1–3]
propelled by theoretical and experimental progress that hasmade it possible to observe andmanipulate such
systemswithunprecedented accuracy.Muchattention has also been devoted recently to thenotion of dynamical
phase transitions in such systems, relating them to thenonanalyticity of, e.g., the Loschmidt echo [4] or the
logarithmof a biased partition function in large-deviation (LD) theory [5], which has a natural interpretation in
termsof the statistics of rare trajectories observed in experiments. The studyof thedynamics of quantumsystems
throughLDmethods [6–8] emerged recently both as an extensionof the theory as applied to classical systems [9–
12] and as a dynamical complement to the standard analysis of equilibriumphase transitions inmany-body
systems [13].Here, nonanalyticities in the LD free-energy functionof a system, extracted from the equations
governing its dynamical behavior, are identified in the literaturewith dynamical phase transitionpoints [6].

Following [6], in this paper we are interested in studying the statistical properties of rare quantum-jump
trajectories [14] of a system that interacts with a heat bath driving the systemout of equilibrium.We consider the
dynamical LDproperties of a simple three-spin quantumopenmodel, which departs from those recently
studied in two respects: first, dissipation is due to nonclassical bilinear jump operators; and second, we consider
a current-like dynamical order parameter. The two central results in this paper are (a) the observation of
intermittency between dynamical phases of distinct activity, itself a consequence of the reducibility of the
dynamics in an appropriate limit due to the collective jumpoperators; and (b) the existence of aGallavotti-
Cohen symmetry in LD functions associatedwith the time-asymmetric order parameter, analogous to that
found in driven classical systems [15], which gives rise to afluctuation theorem [16] relating to the quantum
jump rate. Our system therefore provides aminimal but extendiblemodel that uncovers the effects of thermal
baths and the nontrivial interplay between local and global decay channels [17] on the non-equilibrium
dynamics of a quantum system.

We start with three spins-1/2, whichwe label =j 1, 2, 3, placed at the vertices of an equilateral triangle
(see figure 1), interacting via an Ising-type interaction, and in a uniformmagnetic field. Suppose that spin 1 is
in a harmonic trap, allowing it tomove on an axis parallel to the line joining the two other spins, whereas
spins 2 and 3 are held tightly pinned. Since the spin–spin interaction depends on the distance between each
pair of spins, themotion of spin 1willmodulate the interactions between them. By damping the harmonic
motion, we effectively couple the collective spin degree of freedom to this environment. Consequently, the
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thermal environment will act as a driving force on the spin system.More precisely, the thermal bathwill drive
the global degree of freedomof the spin chain. Thismechanism can be generalised to other systemswith similar
symmetry properties with respect to themotion of a particular component.We explore the trajectories of this
collective degree of freedom, finding evidence of coexisting dynamical phases and nontrivial dynamical
symmetries. It is worth pointing out that individual spins can be coupled to themotion of a harmonic oscillator
through the use of trapped ions [18], by embedding solid-state qubits intomechanically compliant structures
[19], in nanomechanical resonator arrays [20], on graphene layers [21], or on diamond surfaces [22].
Furthermore, this system lends itself well to being extended by addingmore spins, thereby changing the
symmetries of themodel.

Wewillfirst derive themaster equation for the spin systemby adiabatically eliminating themotion of spin 1.
The resulting reduced dynamics will be investigated first bymeans of the quantum version of LD theory,
following [6]. This procedure gives access to the statistics of the trajectories of the system, painting a clear picture
of its dynamical behavior. Following this, we complement these analytical insights through the use of quantum-
jumpMonte Carlo simulations [23] that give access to a transparent physical interpretation of the processes
occurring. TheHamiltonian describing the three-spin system interactingwith a harmonic oscillator as described
above can bewritten = + + −H H H Hˆ ˆ ˆ ˆ

s m s m with

∑ ∑ ∑α σ σ σ σ= + −
= =

H Bˆ ˆ ˆ ˆ ˆ , (1)
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being the spin-chainHamiltonian under uniformmagnetic fieldsα and α≪B , ω=H b bˆ ˆ ˆ
m m

†
the harmonic

oscillatorHamiltonian, and

σ σ σ= − + −− ( ) ( )H g b bˆ ˆ ˆ ˆ ˆ ˆ (2)s m
†

x
1

x
2

x
3

the interactionHamiltonian between the spin chain and the harmonic oscillator;〈 〉i j, denotes a sumover

nearest neighbours. −Ĥs m follows fromobserving that the interaction between any pair of spins depends on the
distance between them. In the geometry illustrated infigure 1, when spin 1moves in a direction parallel to the
line joining spins 2 and 3, the distance between particles 1 and 2 decreases (increases) by the same amount that

the distance between spins 1 and 3 increases (decreases). Upon identifying = +x b bˆ ˆ ˆ†
as the dimensionless

position operator for spin 1, we arrive at the given form for the interactionHamiltonian. Different geometries or
numbers of spins can also give rise to similarHamiltonians and effects as the ones we discuss below.

Wenowmove into the interaction picturewith respect to = +H H Hˆ ˆ ˆ
0 s m, setting → ω−b b eˆ ˜ i tm and

σ σ σ→ ++
−

−e eˆ ˜ ˜j j iBt j iBt
x , whereσ σ σ= ±± i˜ ˜ ˜j j j

x y is the spin–flip operator for the jth spin, and the tilde distinguishes
interaction-picture operators fromSchrödinger-picture ones. Assuming thatω = B2m and performing a
rotating-wave approximation allows us to consider only the time-independent terms in the interaction-picture

interactionHamiltonian −H̃s m, resulting in σ σ≈ − +− + −H g b b˜ ( ˜ ˜ ˜ ˜ )s m
†

, where the collective operators

σ σ σ σ= −± ± ± ±˜ ˜ (˜ ˜ )1 2 3 . Assuming that∣ ∣ga b sets the longest time-scale of the dynamics, we can adiabatically
eliminate the harmonic-oscillator degree of freedom [23]. To do so, we follow the projection operator technique
described in detail, e.g., in [24] and the supplemental information for [25].Wewrite amaster equation, valid up
to second order in g, that governs the evolution of the reduced interaction-picture densitymatrix ρ t˜( ) for the
spin-only system as

2 3

1

Figure 1.The systemwe consider. Three spins are arranged on the vertices of an equilateral triangle. Spin 1 is coupled to a harmonic
oscillator, represented by the springs, allowing it tomove in the horizontal direction. Themotion of spin 1modulates the spin–spin
interaction strengths andmediates an interaction between a collective spin degree of freedomand themechanical bath.
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   ∫ρ τ ρ∂ = τ
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− −{ }e˜ d Tr ˜ , (3)t
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m m s m s m m
m

where ρ ρ ρ= ⨂˜ ˜m m
ss, with ρm

ss the stationary solution of the harmonic oscillator,Tr {•}m denotes the trace over

themotional degree of freedom, = −− −i H• [ ˜ , •]s m s m , and
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† † † †

is the Lindblad-formdissipator associatedwith a damped harmonic oscillator connectedwith a damping rate κ
to a thermal bathwhose average number of excitations is n̄ [23, 26]. The resultingmaster equation for the spin-
systemdensitymatrix reads

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ρ Γ ρ Γ ρ∂ = + +↓ ↑( )n n˜ ¯ 1 ˜ ˜ ¯ ˜ ˜ , (5)t

withΓ κ= g 2 .We also have

 σ σ σ σ= −↓ − + + −{ }˜ [•] 2˜ • ˜ ˜ ˜ , • , (6)

with↑˜ [•]that is obtained from↓˜ [•]by exchangingσ−˜ andσ+˜ .Moving out of the interaction picture, we
obtain amaster equation for the reduced spin densitymatrix in the Schrödinger picture simplywritten as

ρ ρ∂ = [ ]t with the corresponding super-operator [•]defined as

⎡⎣ ⎤⎦  Γ Γ= − + + +↓ ↑( )i H n n[•] ˆ , • ¯ 1 [•] ¯ [•], (7)s

where =↑ ↓ ↑ ↓
−D e e: ˜iH t iH t

,
ˆ

,
ˆ

s s .We similarly defineσ±ˆ by transformingσ±̃ and shall drop the label twhen it can be
understood from the context. By tracing out themotion of the damped harmonic oscillator, we have obtained an
effective damping acting on a collective degree of freedomof the spin system through the jump operatorsσ±ˆ .
This collective damping is the source of the interesting behavior we shall explore in the following.

As a first step in exploring the LDbehavior of our system,we associate a counting process related to the flow
of excitations into or out of the systemwith the collective jump operatorsσ±ˆ . There are two counting processes

±K associatedwithσ±ˆ . +K counts excitations emitted into the bath and −K excitations absorbed from it.We then
define an overall counting processK, which counts the net number of excitations emitted into the bath due to the
collective spin flips = −+ −K K K: (in contrast to the total activity given by ++ −K K [6]). Next, we can unravel
themaster equation of the reduced densitymatrix by projecting it onto a particular number of jump events, i.e.,

ρ ρ∂ = P [ ]t
K K , where PK is a projector over trajectories withK net jump events, and

ρ ρ= =p t t P t( ) Tr { ( )} Tr { ( )}K
K K represents the probability of observing such a trajectory [14]. Themoment-

generating function associatedwith this probability pK(t) can bewritten [6]:

∑ ρ= =
=

∞
− { }Z t s e p t t( , ) ( ) Tr ( ) . (8)

K

sK
K s

0

with ρ ρ= ∑ =
∞ −t e t( ) ( )s K

sK K
0 the Laplace transformof the densitymatrix with respect to the net excitation

exchangesK between the system and the bath; we call s the ‘bias parameter.’The Laplace-transformed density
matrix evolves according to themodifiedmaster equation  ρ ρ∂ = +( )[ ]t s s s , where

⎡⎣ ⎤⎦ Γ σ σ σ σ= + − + −−
− + + −( )( ) ( )n e n e[•] ¯ 1 1 ˆ • ˆ ¯ 1 ˆ • ˆ . (9)s

s s

In the long-time limit, LD theory applies andwe canwrite → θZ t s e( , ) t s( ), whereθ s( ) represents the systemʼs
dynamical free energy [6, 27]. Consequently, we haveθ ρ= →∞ ( )s t( ) lim ln Tr { }t s

4.θ s( ) is also given by the

eigenvalue of  = +:s s with the largest real part [6] (which can be shown to be real [28]).
Derivatives of this dynamical free energy with respect to s can be used to obtain the activity (net count rate)

θ= −∂k s s( ) ( )s of the system. This quantity is represented infigure 2 for different values of the bath population n̄
. As is clearly visible from the upper plot, for the value of the bias parameter s=0,we have a nonanalytic point in
θ s( ) for any value of n̄. The lower curves show that this point presents two distinct values of the activity k(s).
Unbiased dynamics takes place at s=0; from this we can conclude the existence of two dynamical phases [6, 27].
These two phases have >−k (0 ) 0 and =+k (0 ) 0, i.e., one phase is active in the sense that the net rate of
excitations exchanged between the bath and the system is nonzero, whereas the other has an exact balance
between excitations emitted and absorbed. The two terms composing the dissipative part of themaster
equation (7) act at different rates; we thus deduce that this balanced phase is inactive and no emission or
absorption events occur. Focussing nowon the active phase corresponding to >−k (0 ) 0, we also notice that the

4
The transformation from the interaction picture results in small oscillations ofZ t s( , )with t as → ∞t ; we average over these oscillations

when calculatingθ s( ) from the spectrumof the superoperator.
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activity seems not to depend on the thermal population of the bath n̄, since all the curves converge to the same
point as →s 0. This effect, seen for small n̄, stems from theweak coupling between the bath and the system
(Γ α≪ ).

A feature of figure 2 that is not seenwhen considering a ‘symmetric’ dynamical observable such as the total
activity ++ −K K , as in [6, 27, 29–31], is the second point of nonanalyticity inθ s( ) that occurs for >s 0 when

>n̄ 0. Counting processes of the typewe consider, unlike ‘symmetric’ ones, are oddwith respect to time
reversal. This is related to aGallavotti–Cohen symmetry [15] due to the driven nature of the systemʼs dynamics
[32]. In contrast tomost studied examples of systems presenting such dynamical properties, the dynamics of a
global, rather than a local, degree of freedo are considered here. Based on the detailed balance exhibited by
equation (5), we have that for = +e n n( ¯ 1) ¯s0 wefindθ θ= −s s s( ) ( )0 , which yields afluctuation theoremof
the form

= ⟶∞
−
∞ ≫

p p e e , (10)K K
s K n K n¯ 1 ¯0

wherewe have defined =∞
→∞p p t: lim ( )K t K , that relates the infinite-time probability of observing a trajectory

with a net count ofK to onewith a net count of−K . This ratio approaches unity as → ∞n̄ inwhich case the rates
for the collective jumpprocess balance ( →s 00 ), such that =±k (0 ) 0 5. Conversely, as →n̄ 0, the probability for
observing negativeK goes to zero and the above ratio diverges.

Tomake themodelmore realistic, we now add independent damping channels acting on each spin and
explore the consequences of these channels on the dynamical behavior of the system. For simplicity, the single-
spin baths are also taken to have occupation n̄ and be coupledwith the rate γ. In equation (7)we set → ′:

   ∑ ∑γ γ′ = + + +
=

↓
=

↑( )n n[•] : [•] ¯ 1 [•] ¯ [•]. (11)
i

i

i

i

1

3

1

3

ρs evolves according to  ρ ρ∂ = ′ +( )[ ]t s s s , where ρ[ ]s s stays unchanged from its definition equation (9)when

γ Γ≪3 and neglecting correlation effects between the various damping channels.↑ ↓
i

, are the spin–flip
Liouvillians for spin i.

Asfigure 3 illustrates, introducing extra damping at the level of the individual spins has a strong effect on the
dynamical properties of the system. Concentrating on the dynamical free energy, we see that individual spin

Figure 2. Illustration of the dynamical free energy θ s( ) (top panel) and activity k(s) (bottom). Each plot shows the quantity as a
function the bias parameter s for different values of the thermal population of the bath n̄: =n̄ 0, 1, 2 and 5, respectively, from the thick
light blue curve to the thin black one. (α = 10,B=0.5, andΓ = 0.05.)

5
In this limit, therefore, barring the presence of any further nonanalyticities it is a straightforward consequence of this symmetry that both

θ s( ) and k(s) are continuous around s=0.
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dampingwill smooth out the nonanalyticity at s=0. The same holds for the second nonanalyticity at >s 0. This
smoothing effect is also visible in the activity, which becomeswell-defined everywhere.Meanwhile, as is clearly
visible infigure 3, for small values of the single-spin damping and low thermal population, the activity remains
approximately constant. Conversely, for high thermal population and strong single-spin damping, the activity
can switch sign and become negative. Physically, this corresponds to the case where the single-spin damping
channel upsets the balance,making itmore likely that excitations enter ( −K ) than leave the system ( +K ) through
the collective channel, leading to a thermally driven system.

The LD approach to dynamical phase transitions yields a transparent physical interpretation based on the
statistics of ensembles of trajectories of the system. To explore these statistics, we now conduct an analysis based
on aMonte Carlowave-function (MCWF) simulation (also known as quantum jumpMonte Carlo). For
classical systems,Monte Carlo simulations or other numericalmethods are currently used to obtain the LD
function [10, 12]; suchmethods have also occasionally been applied to a quantum system [27]. TheMCWF
technique is awell-establishedmethod to simulate open systemdynamics, such as the onewe are interested in,
following the ideas set forth in [23, 33]. Using this technique and starting off from a randomly chosen initial
condition, we simulate trajectories in equation (11) of jump events related to the operatorsσ± tˆ ( ). For each
trajectory generated, we estimate the activityk (0)by calculating the net rate of jump events.We consider a set of
2000 trajectories, each having approximatively 104 jump events, fromwhichwe obtain probability distributions
fork (0), as represented infigure 4. Thisfigure shows the probability distributions for thermal populations of

=n̄ 0 and 5, with (upper panel) ourwithout (lower panel) single-spin damping. Samples of the typical
trajectories obtained corresponding to different parts of the distributions are shown in the inset; each vertical
line corresponds to a jump event, with upper ones representing an emission from the system to the bath ( +K )
and lower ones the opposite ( −K ). It is clear that when γ = 0 (upper panel), the probability distribution is
bimodal, with one peak centred at an activity equal to =+k (0 ) 0 and the other at >−k (0 ) 0. In the former case
(see inset) the corresponding trajectories have no jump events.

The second peak is centred about the same value for both values of n̄, in agreementwithwhat is expected
from the lower panel offigure 2, wherewe saw that the activity is independent of the thermal population in the
low-temperature limit. Corresponding trajectories are shown in the inset, and as expected demonstrate jumps
associated onlywithσ−ˆ (i.e., the system losing excitations to the bath) for =n̄ 0; for =n̄ 5 jumps are observed in
both directions. It can be see infigure 4 that this second peak of the distribution broadenswhen the temperature

Figure 3. Illustration of the dynamical free energy θ s( ) (top) and the activity k(s) (bottom)without single-spin damping (γ = 0; full
lines) andwith (γ Γ= 0.01 ; dashed lines). Each plot illustrates =n̄ 0 (thick light blue curve) and =n̄ 5 (thin black). (Other
parameters as infigure 2.)
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increases. All this yields the interpretation that the Liouville space accessible to the system consists of two
disconnected subspaces, one active and one inactive, towhich the two peaks in the activity distribution are
related. Based on the fraction ofK=0 trajectories in our simulation, we can determine that 25%of the Liouville
space is inactive.

Consider now the case with damping on the individual spins, corresponding to the one shown infigure 4 in
the lower panel. In contrast to the γ = 0 case, we immediately see that the distribution becomes unimodal, with
themean activity decreasing by almost 25% compared to the active trajectories of the γ = 0 situation. This
fraction corresponds to the fraction of inactive trajectories observedwhen γ = 0 (upper panel). The unimodal
behavior and thementioned reduction lead to the interpretation that the single-spin damping channel connects
the two previously disconnected parts of the Liouville space. This interpretation is supported by the sample
trajectories shown in the inset of the lower panel offigure 4, where one can observe the trajectory ‘blinking,’ i.e.,
spontaneously switching between active and inactive behavior. In analogywithwhat occurs with the total
activity (see [27]), the intermittency in trajectories is a formof ‘mesoscopic’ (i.e., finite time) dynamical phase
coexistence, consistent with the fact that the dynamical free-energy is analytic in this case, and the transition
therefore becomes a crossover. A simple interpretation of this behaviour can be deduced by looking at the
eigenspace of Ĥs and the collective spin–flip operators.We start bywriting the Schrödinger-pictureHamiltonian

Ĥs and collective operatorsσ σ σ σ= −± ± ± ±ˆ ˆ ( ˆ ˆ )1 2 3 in the computational basis. The resulting 8 × 8matrices are not
trivial to diagonalize analytically. However, it is straightforward tofind an eigenvector ψ∣ 〉 such thatσ ψ∣ 〉 =±ˆ 0

and ψ ϵ ψ∣ 〉 = ∣ 〉Ĥs for some nonzero real number ϵ. Thefirst pair of conditions render ψ∣ 〉 a dark state of the
collective spin–flip operators, which are the operators that enter the dissipative part of the reducedmaster
equation, and the last condition assures that ψ∣ 〉 is an eigenstate of the dynamics, i.e., that a system in ψ∣ 〉will
remain in this inactive subspace. It can similarly be shown that no such ψ∣ 〉 also obeysσ ψ∣ 〉 =−ˆ 01 , and that no

state exists such thatσ ψ∣ 〉 =±ˆ 01 ; in other words, any inactive state is coupled through the dynamics to the active
subspacewhen single-spin damping is introduced. To sumup, one can find a subspace of the Liouville space that
is both inactive and isolated, in the sense that Ĥs does not couple it to the rest of the space, and a subspace that is
active.When γ ≠ 0, these two partitions are no longer isolated, and the system can switch dynamically between
the active and inactive subspaces.

To understand how closely ourMCWF results agree with the LD analysis, we present infigure 5 a
quantitative comparison between the two, wherewe plot the activity of the system at s=0 as a function of the
thermal populations, for both low and high temperatures. This plot shows that theMCWF results (data points)
agree closely with the results from the LD theory (solid curves). As visible in figure 4, increasing n̄ tends to
broaden the distribution of the activity. Consequently, the error bars shown infigure 5 grow quickly with n̄. As
discussed previously, we clearly see that both curves tend to zero as → ∞n̄ , where the rates of the two counting

Figure 4.Probability distribution of the net activity obtainedwith theMCWFmethod, applied to an ensemble of 2000 trajectories.
The upper plot corresponds to the case without single-spin damping (γ = 0), following equation (9), while the lower plot refers to
γ Γ= 0.01 (equation (7)). In both, light blue curves show results for =n̄ 0 and in dark gray for =n̄ 5. The inset shows sample
trajectories associatedwith different distributions. (Parameters as in figure 3.)
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processes ±K balance such that the net rate of jump events is zero. Note also that the decrease in activitymatches
the predicted 25%, independently of n̄.

We sumup by recalling ourmain results.We have explored a simple, yet intriguing, system consisting of
three equidistant spins interacting pairwise, one of whichmoves in a harmonic trap. Thismotion gives rise to
collective spin dynamics, which are dissipated through themechanical decay channel. Adopting an LD approach
to analyze this system, we observe that its dynamics consist of two distinct dynamical phases, one active and one
inactive, possessing different emission statistics.We observed that these two phases can bemixed by introducing
damping on the individual spins. All our observationswere confirmed throughMonte Carlo simulations, which
lend themselves to a natural interpretation in terms of ensembles of trajectories observed in repeated
experimental runs. The systemwe explore is not overly complex, but yields a surprisingly rich behavior.
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