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Abstract
We investigate the transport of phonons betweenN harmonic oscillators in contact with independent
thermal baths and coupled to a commonoscillator, and derive an expression for the steady state heat
flowbetween the oscillators in theweak coupling limit.We apply these results to an optomechanical
array consisting of a pair ofmechanical resonators coupled to a single quantized electromagnetic field
mode by radiation pressure as well as to thermal bathswith different temperatures. In theweak
coupling limit this system is shown to be equivalent to twomutually-coupled harmonic oscillators in
contact with an effective common thermal bath in addition to their independent baths. The steady
state occupation numbers and heatflows are derived and discussed in various regimes of interest.

1. Introduction

Heat conduction in a physical system is a notoriously complex issue to investigate, as the dynamics depend
strongly on the interaction between the system constituents as well as on the nature of the environmental baths
and their couplingwith the system [1–8].However, low-dimensional systems in contact with different energy or
particle baths represent an excellent test-bed for some of themost recent ideas in classical and quantumout-of-
equilibrium statistical physics [1]. For example, one can show that a chain of quantumharmonic oscillators in
contact with two heat baths at different temperatures exhibits a steady statefluctuation theorem, setting
constraints on the entropy production [9], in all respects equivalent to the fluctuation theorem for the
corresponding classical case [10]. Furthermore, chains of oscillators have been used asmodel systems to study
heat conduction in solids, in particular to test the validity of Fourier law, according towhich the heat current
across amaterial subject to a temperature gradient scales as the inverse of the system size [1].Motivated by the
growing interest in the thermodynamic properties of out-of-equilibriumquantum systems [11–13], we
investigate in this paper a prototypical system consisting of a set of quantumharmonic oscillators, each in
contact with an independent thermal bath, and all coupled to a commonoscillator, which is itself in contact with
its own bath. The coupling to the commonoscillator effectivelymediates an interaction between the different
oscillators and baths, which renders the description of the quantumdynamics quite complex in general.While
one can envisagemany situations that this systemmaymodel, our study is specificallymotivated by opto- or
electromechanical arrays [14–20, 22, 23], inwhich electromagnetic radiation can affect themotion of
mechanically compliant structures, thereby allowing effective transport of phonons between themechanical
elements [25]. In addition to their widespread use for sensing and for communication technologies, opto/
electromechanical systems havemade great progress towards operation in the quantum regime in the past
decade [23]. This hasmotivated, among other things, their potential application to quantum thermodynamics
and the investigation of quantumheat engines, pistons, etc [24–29]. Among their chief virtues is the highly
tunable couplingwith electromagnetic radiationwhich can be enhancedwith a resonator andwhich allows for
flexible engineering of interactions and readout. Arrays ofmechanical oscillators are particularly interesting as
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long-range interactions between themechanics can be engineered [20, 21] in awell-controlled fashion and
collective phenomena, such as self-oscillations, phonon lasing or synchronization, can occur [15, 62, 31–36].

In this workwe investigate phonon transport in an ensemble of identical oscillators in contact with
independent thermal bathswith (possibly) different temperatures and coupled to a commonoscillator—a single
electromagnetic fieldmode in an opto/electromechanical array setting—as illustrated schematically infigure 1.
We shall follow the standard treatment to adiabatically-eliminate this commonoscillator. Under these
conditions, this gives rise to a single shared bath for the rest of the system, which can bemathematically recast
without further approximation as a number of individual correlated baths, one connected to each oscillator. Our
calculation is valid in the regime typical of optomechanical experiments, where the approximationsmade (e.g.,
adiabatic elimination of the opticalmode)work verywell, but let us remark that the problem could alternatively
be tackled bymeans of the scatteringmatrix theory or the Landauer approach [1]. A full comparison between
our results and the exact results obtained using thesemethods is worth pursuing but lies outside the scope of the
present article.

We start by deriving a general expression, equation (9), for the heatflow through the individual elements in
steady state when the couplings to the commonmode areweak and thismode can be adiabatically eliminated.
After discussing and solving the special casewhere all the baths are at the same temperature (section 3), we
consider the general problem consisting of a two-mechanical-resonator array coupled to one electromagnetic
field and thermal baths with arbitrary temperatures.We show that, after the adiabatic elimination of the field, it
is equivalent to a generic two-oscillator systemwith an effectivemutual linear coupling, an effective common
bath and two independent baths (sections 4.1 and 4.2).We solve this generic problem for thermalMarkovian
baths and derive expressions, equations (39) and(40), for the steady state occupation and heat flows of the
mechanics. In section 4.3, we discuss the results in various parameter regimeswhich could be realized through a
suitable engineering of the optomechanical interaction and give an indication of the various systems that could
be used for investigating the effects we explore. Our results show the possibility for engineering heat flow and the
Fourier law in arrays of harmonic oscillators possessing only indirect coupling, andwe illustrate this by
proposing a practical application in optomechanical arrays. Systemswith several oscillators, where the
interaction between the different constituents can be easily tuned, and the local temperature can be precisely
controlled are highly desirable given the current interest in out-of equilibriumphysics, and so the set-upwe
propose can represent an advancement with respect to the experimental set-upswhich have been recently used
to study the entropy production in systems in contact with only two heat baths [37, 38]. Likewise, our system can
represent a test-bed to extend some of the concepts of stochastic thermodynamics [39] to the quantum case,
allowing one tomeasure, e.g., the heat current, and thus the entropy production in a quantumout-of-
equilibrium system. Finally, we conclude in section 5 by surveying our results and putting them in the context of
possible future work.

2.Heatflow forN oscillators coupled to a commonoscillator and independent thermal
baths

Weconsider a system composed ofN identical harmonic oscillators,mutually uncoupled, but all linearly
coupled to a common harmonic oscillator, and in contact with independent thermal baths.We denote by ϱ the

Figure 1. (a)N oscillators, each in contact with its own independent thermal bath and coupled to a commonoscillator, which is in
contact with its ownbath. (b) Equivalentmodel system for an arraywithN=2: after adiabatic elimination of the commonoscillator,
the oscillators are effectivelymutually coupled and in contact with both their initial thermal bath and a commonbath.
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densitymatrix for the +N( 1)-partite system. Themaster equation for ϱ can bewritten ( = 1) :

 ∑ϱ ϱ ϱ ϱ= − + +
=

H˙ i ˆ , , (1)
j

N

j

1

a
⎡⎣ ⎤⎦

where Ĥ is theHamiltonian governing the evolution,

 ϱ γ ϱ γ ϱ= + +( )n D b n D b1 ˆ ˆ , (2)j j j j j j j
†⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

with

ϱ ϱ ϱ ϱ= − −D b b b b b b bˆ 2 ˆ ˆ ˆ ˆ ˆ ˆ (3)
† † †⎡⎣ ⎤⎦

and b̂ j the annihilation operator of the jth oscillator ( ⩽ ⩽j N1 ), γj the coupling rate of the jth oscillator to its

bath, whosemean occupation number is nj, and

 ϱ κ ϱ= D â , (4)a
⎡⎣ ⎤⎦

with â the annihilation operator of the final harmonic oscillator, and κ its coupling constant to its own bath,
assumed at zero-temperature.We assume that Ĥ has the following form [25]:

∑ ∑Ω ω= + + + +
= =

( )( )H a a b b g a a b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (5)
j

N

j j

j

N

j j j
†

1

†

1

† †

whereω andΩ are the oscillators’ frequencies and gj, assumed real, represents the coupling strength of the jth
oscillator to the final one. If gj is small compared to the other frequencies of the problem, â can be adiabatically
eliminated from the dynamics4. For the interested reader, we reproduce this elimination procedure in
appendix A.

Let us indicate the reduced,N-partite, densitymatrix that results from this elimination process with ρ. The
heatflow into or out of the lth element5 is given by [5]

 ϱ= ( )J HTr ˆ . (6)l l

Wenowmake use of our adiabatic elimination procedure towrite, in steady state and to lowest order in the
coupling constants gj, ϱ ρ ρ= ⊗ss a, where ρa is the steady-state densitymatrix for the +N( 1)st harmonic
oscillator. Let usfirst take the trace with respect to thismode6:
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Following the usualmethodology, and under the assumption that the oscillator described by â is driven into a
coherent state, the state described by ρa has been shifted to describe a zero-mean vacuum state, so that

〈 + 〉 =a aˆ ˆ 0† and 〈 〉 =a aˆ ˆ 0† . The adiabatic elimination used to derive the above expression assumes aweak
coupling between the two subsystems. Consistently with this approximation, we keep our results at lowest order
in the coupling strength and neglect the effects of correlations betweenmode ‘a’ and the othermodes.We then
obtain

∑ω ρ=
=

J b bTr ˆ ˆ , (8)l

j

N

j j l

1

†

ss

⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎫
⎬
⎭

wherewe drop the subscript from the trace because there is no longer any ambiguity. By exploiting the bosonic
commutation relations and the cyclic property of the trace, we obtain an explicit expression for the steady-state

4
The assumptions of the adiabatic elimination procedure aremainly (i) that one subsystem evolves on amuch faster time-scale than the rest

of the system, (ii) that the coupling between the two is weak, and (iii) that the total densitymatrix is approximately a tensor product between
the fast and slow subsystems.
5
Weuse the conventionwhere positive heatflow corresponds to heat flowing into the system.

6
Weuse the notation ‘¬a’ to refer to the set of all themodes other thanmode ‘a’.
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heatflow:

ωγ ρ ωγ= − = −( )J n b b n b b2 Tr ˆ ˆ 2 ˆ ˆ . (9)l l l l l l l l l
†

ss

†⎜ ⎟⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

Thework in this section extends the treatments of [5] and [40] to the case where theN oscillators do not interact
directly, but via coupling to a common, adiabatically eliminated,mode. To proceed further, one needs an
expression for the average occupation of themechanical elements. Aswe shall now illustrate, there are various
situations under whichwe can calculate this quantity explicitly.

3. Case of identical baths

It is possible to obtain an analytic expression for the heat flow in the case inwhich the different thermal baths to
which the elements are connected are identical, i.e., they are characterized by one single coupling constant γ γ=j

and occupation number =n nj . To continue, it is convenient to introduce a normal-mode basis. Define

≔ ∑ ≠=g g 0j
N

j1
2 , =g g g g g g g( ... )N

(1)
1 2

T, and g l( ) ( ⩽ ⩽l N2 ) such that the set g{ }l( ) forms an

orthonormal basis7.We use this ‘collective’ basis to define a new set ofN normalized harmonic oscillator
annihilation operators b̃ j ( ⩽ ⩽j N1 ):
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whereby

 ∑ϱ ϱ ϱ ϱ= − + +
=

H˙ i ˆ , ˜ , (11)
j

N

j

1

a
⎡⎣ ⎤⎦

where each ̃ j is defined analogously to  j butwith b̂ j replaced by b̃ j. TheHamiltonian can be expressed as the
sumofHamiltonians for −N 1uncoupled and two linearly-coupled oscillators:

∑Ω ω= + + + +
=

( )( )H a a b b g a a b bˆ ˆ ˆ ˜ ˜ ˆ ˆ ˜ ˜ . (12)
j
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j j
†
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1 1

†

Note that it is only because the thermal baths all have the same temperature that the Liouvillians L̃ j are diagonal
in the newbasis. As shown in appendix A, the adiabatic elimination of â and application of the rotating-wave

approximation leads to a shift of the oscillator b̃
1ʼs frequency and amodification of its coupling to the baths. In

the single-oscillator case the adiabatic elimination leads to the appearance of an effective thermal bath. In the
newbasis, thismeans that we obtain an effectivemaster equation for the reduced oscillator-only subsystem

 ∑ρ ρ ρ ρ= − + ′ +
=

H˙ i ˆ , ˜ ˜ , (13)
j

N

jeff

2

⎡⎣ ⎤⎦

where

∑ω ω= ′ +
=
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†

and

 ρ γ ρ ρ ρ ρ ρ ρ′ = ′ ′ + − − + ′ − −( ) ( )( )n b b b b b b n b b b b b b˜ 1 2˜ ˜ ˜ ˜ ˜ ˜ 2˜ ˜ ˜ ˜ ˜ ˜ . (15)1 1
†

1
†
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†
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1 1
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The reducedmaster equation (13) has a steady-state solution ρss given by a tensor product ofN thermal states ρ j.

We define ′ = 〈 〉n b b˜ ˜
1
†

1 to be the occupation number of the state for j= 1, and = 〈 〉n b b˜ ˜
j j
†

for ⩾j 2.Writing the
heatflow in the normal-mode basis yields

7
Sincewe define gj such that they are all real, we can assume that the entire basis set is composed of entirely real vectors.
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∑ωγ= −
=

G GJ n b b2 ˜ ˜ . (16)l

j k

N

jl kl j k

, 1

†
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Because of the uncorrelated nature of the steady state, we can immediately write that 〈 〉 =b b˜ ˜ 0j k
†

if ≠j k, i.e.

∑ωγ= −
=

( )GJ n b b2 ˜ ˜ , (17)l

j

N

jl j j

1

2 †

wherewe have also taken the sumout of the parentheses by exploiting the properties of the orthonormalmatrix
G. By the very nature of the steady state, however,

δ= + ′ −( )b b n n n˜ ˜ , (18)j j j
†

,1

so that

ωγ ωγ= − ′ = − ′( ) ( )GJ n n n n g g2 2 . (19)l l l1
2 2 2

Therefore, the heatflowing into or out of themechanical subsystem is simply

∑ ωγ≔ = − ′
=

( )J J n n2 , (20)
l

N

lm

1

which is nonzero becausewe have traced out the +N( 1)st oscillator. Let us note that − ′ →n n 0when →g 0.
The heatflowing into or out of this oscillatormust therefore be

∑ ωγ≔ − = ′ −
=

( )J J n n2 , (21)
l

N

lc

1

tomaintain balance, i.e., + =J J 0m c .

4. Application to optomechanical arrays

4.1. Two-element optomechanical array
As an application, we consider a system composed of twomechanical oscillators inwhich each identical,
independent oscillator is dispersively coupled by radiation pressure to the same cavity fieldmode. The
mechanical oscillators have identical frequencyω and equal damping rate γ into two independentMarkovian
thermal baths held at possibly different temperatures, yieldingmean thermal occupation numbers n1 and n2 for
themechanicalmodes in absence of thefield.We assume operation in the linearized regime for the
optomechanical interaction [23] inwhich the number of intracavity photons is large.Without loss of generality
we also consider a situation inwhich the cavity field couples to the centre-of-massmotion of the pair of
mechanical oscillators, leaving the relativemode ofmotion uncoupled8. Under these conditions the
Hamiltonian and Liouvillian of the system are given by

Δ ω= − + + + + + + +( ) ( ) ( )( )H a a b b b b g a a b b b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 , (22)†
1
†

1 2
†

2
†

1 1
†

2 2
†⎡

⎣⎢
⎤
⎦⎥

   = + + . (23)a1 2

Wehave defined the cavity field detuning Δ Ω Ω= −L , where ΩL is the frequency of the driving field, assumed
to bemonochromatic, and have transformed our system to a frame rotating at the frequency ΩL. The enhanced
optomechanical coupling rate g and the Liouvillians 1(2) and a are defined as in equations (2) and (4),
respectively. Introducing the relative and centre-of-massmodes

= − = +( ) ( )b b b b b bˆ ˆ ˆ 2 , ˆ ˆ ˆ 2 , (24)r 1 2 c 1 2

these can be recast as

Δ ω= − + + + + +( ) ( )( )H a a b b b b g a a b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (25)†
r
†

r c
†

c
†

c c
†

    = + + + , (26)r c r,c a

with r,c a Liouvillian including the correlations between the rotated baths.

8
Note that the opposite situation can be realized in, e.g., a ‘transmissive’ configuration [20] or in the double-cavity geometry of [45].
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Adiabatically eliminating the cavity field in theweak optomechanical coupling regime leads to an effective
mechanical frequency ω ω Λ′ = + , due to the optical spring effect, as well as an effective damping rate
γ γ γ′ = + ¯, for the centre-of-massmode (see appendix A), where

Λ
Δ Δ ω κ

Δ ω κ Δ ω κ
=

− +

+ + − +

( )g2

( ) ( )
, (27)

2 2 2 2

2 2 2 2⎡⎣ ⎤⎦⎡⎣ ⎤⎦

γ β β κ
Δ ω κ

κ
Δ ω κ

= − =
+ +

−
− ++ −

G G
¯

( ) ( )
. (28)

2

2 2

2

2 2

Thefield fluctuations also give rise to an additional effective bath, coupling to the centre-of-massmode only,
whose Liouvillian has the form

 β β= ++ −D b D b¯ ˆ ˆ . (29)c c
†⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

Assuming a red-detuned cavity field (Δ < 0) for which β β>+ −, this termdescribes the couplingwith a thermal
bathwith coupling rate and occupation number defined by

β γ β γ γ β β
β

β β
= + = ⇒ = − =

−+ − + −
−

+ −
( )n n n¯ ¯ 1 , ¯ ¯ ¯ , ¯ . (30)

The effectiveHamiltonian and Liouvillian after adiabatic elimination then read

ω Λ ω= + +H b b b b( ) ˆ ˆ ˆ ˆ , (31)eff c
†

c r
†

r

    = + + + ¯ , (32)eff r c r,c

or, going back to the baremechanical basis,

ω Λ Λ= + + + +( ) ( )H b b b b b b b b( 2) ˆ ˆ ˆ ˆ ( 2) ˆ ˆ ˆ ˆ , (33)eff 1
†

1 2
†

2 1
†

2 1 2
†

   = + + ¯ . (34)eff 1 2

In the regime of interest, Λ ω≪ , so that wemay approximate

ω Λ= + + +( ) ( )H b b b b b b b bˆ ˆ ˆ ˆ ( 2) ˆ ˆ ˆ ˆ . (35)eff 1
†

1 2
†

2 1
†

2 1 2
†

These indeed describe the dynamics of a pair of oscillators,mutually coupledwith a strengthΛ and in contact
with two independent baths and a commonbath described by the Liouvillians 1,2 and ̄, respectively. The
master equation that emerges from thismodel is a special case of amore generalmaster equation; in the next
sectionwe shall describe thismore general situation and derive the steady state of the system.

4.2. Two oscillators with independent and common thermal baths
Ageneral treatment of the dynamics of a pair of coupled oscillators in contact with either independent baths or a
commonbath can be found in [4].Motivated by the results of the previous section, we consider the same
Hamiltonian as in [4]:

∑ω Λ= + +
=

( )H p x x xˆ
2

ˆ ˆ ˆ ˆ , (36)
j

N

j jeff

1

2 2
1 2

but focus on the case of two identical oscillators (equalmass and frequency) and each in simultaneous contact

with both an independent and a commonbath; we have defined = +x b bˆ ( ˆ ˆ ) 2j j j
†

and

= −p b bˆ ( ˆ ˆ ) (i 2 )j j j
†

(j=1, 2).We assume the baths to beMarkovian, the independent bath temperatures

being given by nj, and the commonbath temperature by n̄. In order to obtain an effectivemaster equation in the
limit γ γ Λ ω≪ ≪, ¯ , we employ these assumptions to follow the procedure of [4], whichwewill not detail
explicitly butfinally yields

∑

∑

ρ ρ γ ρ ρ

γ ρ ρ

= − − + +

− + +

=

=
+ +

( )

( )

{ }

{ }

( )

( )

H x p n x x

x p n x x

˙ i ˆ , i ˆ , ˆ , 2 1 ˆ , ˆ ,

¯

2
i ˆ , ˆ , 2 ¯ 1 ˆ , ˆ , , (37)

j

j j j j j

j
j j

eff

1

2

1

2

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦
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where = ++x x xˆ ˆ ˆ1 2. Under the rotating-wave approximation, where terms of the form b bˆ ˆ
1 2 and b bˆ ˆ

1
†

2
†
are

neglected based on the approximation that their effects average out over the longer time-scales of relevance to
the problem, themodel described by thismaster equation reduces to the optomechanicalmodel derived in
section 4.1. In the remainder of this sectionwe show that, under the conditions outlined below,we can solve this
more generalmodel explicitly and apply this solution to the situation in section 4.1.

From thismaster equation, and exploiting the standard commutation relations, we derive a closed systemof
equations describing the temporal evolution of the sixteen second-ordermoments, which is shown in
appendix B.Under the assumption that the initial state is Gaussian, the dynamics described by these equations
preserves theGaussian nature of the state at all time. From these equations it is straightforward to compute the
steady state occupation numbers of both oscillators,

′ = = + −n b b x pˆ ˆ ˆ ˆ 1 2, (38)j j j j j

† 2 2⎡
⎣⎢

⎤
⎦⎥

and thereby calculate the heatflow in this system from (9).One gets

γ γ
γ γ

γ
γ γ γ γ

γΛ

γ γ γ γ Λ

′ =
+
+

+
+ +

+
−

+ −
+ + +

−
=

( )( )

( ) ( )

n
n n n n

n

n n
j

2 ¯ ¯

2 ¯

¯

2 2 ¯ ¯ 2
¯

( 1)
2

2 ¯ 2 ¯ 2
( 1, 2), (39)

j
j

j

2
1 2

2

2 2

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

which leads to the following expression for the steady-state heat flows

ωγ γ
γ γ

γ
γ γ γ γ

γΛ

γ γ γ γ Λ

=
+

− +
+ +

−
+

− −
+ + +

− =

( )
( )( )

( ) ( )

J n n n
n n

n n j

4
¯

2 ¯
¯

¯

2 2 ¯ ¯
¯

2

( 1)
2 ¯ 2 ¯

( ) ( 1, 2). (40)

j j

j

2
1 2

2

2 2
1 2

⎜ ⎟
⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎪

⎭⎪

These expressions bring together thework of [4] and our generic expression for the heatflow, equation (9). It
expresses the heatflow through an array of two oscillators that are coupled not only to independent baths but
also to a third, ‘correlated’ or common, bath, which sets up an effective interaction between the two oscillators,
altering the nature of the heat transport. In the next section, we discuss this interplay between the independent
and commonbaths inmore detail.

4.3.Discussion
4.3.1. Two-oscillator case
It is interesting to look at these expressions in various regimes of interest. The regime of largemutual coupling
between the oscillators corresponds to the large optical spring regime, which can be achieved in the bad-cavity
limit of optomechanics, κ ω≫ . In this regime, and for Δ κ∼ − , equations (27) and (28) give
Λ κ γ ω κ∣ ∣ ∼ ≫ ∼g g¯ 22 2 2. In contrast, the regime of large coupling to the effective commonbath can be
achieved in the resolved sideband regime of optomechanics, ω κ≫ . For Δ ω= − , one obtains
Λ ω γ κ∣ ∣ ∼ ≪ ∼g g(2 ) ¯2 2 .

(i) In the large coupling regime Λ γ γ≫ , ¯, one has

γ γ
γ γ

γ
γ γ

′ = +
+

+
+

+
=

( ) ( )
n

n n
n j

2 ¯

2 ¯ 2

¯

2 ¯
¯ ( 1, 2) (41)j

1 2

whichwe can understand in two different limits. (a)When the coupling to the independent baths is larger
than that to the commonbath (γ γ≫ ¯), themean independent bath temperature +n n( ) 21 2 . (b)When
the damping into the commonbath dominates over themutual coupling, thewhole system equilibrates at
themean of the common and independent bath temperatures

′ = +
+

=n
n n n

j
¯

2 4
( 1, 2). (42)j

1 2

(ii) If the independent baths are held at the same temperature n, the term due to the mutual coupling vanishes
and one gets
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γ γ
γ γ

γ
γ γ

ωγ γ
γ γ

′ = +
+

+
+

=
+

− =
( ) ( )

( )n n n J n n j
2 ¯

2 ¯

¯

2 ¯
¯,

¯

¯
¯ ( 1, 2). (43)j j

This is consistent with the limit of radiation pressure cooling in optomechanics [41–44], which predicts
that the (centre-of-mass)mode coupled to the field is cooled down to n̄, γ γ≫¯ . Since the uncoupled
(relativemotion)mode’s occupancy remains n, thismeans that, in the bare basis, ′ → +n n n( ¯) 2j when
γ γ≫¯ .

As an illustration,figure 2 shows the individual heatflows J1 and J2, as well as the total heatflow through the
mechanics +J J1 2, as a function of Λ γ and γ γ¯ , in the casewhere the first oscillator is coupled to a higher
temperature bath than the second, and for a commonbath at zero temperature. The heatflow from the hotter
oscillator increases bothwithΛ and γ̄ , as both the commonbath and the other oscillator’s bath have a lower
temperature. The heatflow from the colder oscillator, however, becomes negative for a largemutual coupling, as
this coupling tends to equalize the temperature of both oscillators.Moreover, depending on the temperature
difference between the independent baths, the heatflow from the cold oscillator can be seen to either increase
(figure 2(b)) or decrease (figure 2(e)) with the couplingwith the commonbath, as the cold oscillator gets either
cooled or heated by the combined action of the cold commonbath and the other hot oscillator. The total heat
flow through themechanics is in contrast independent of themutual coupling and steadily increases with the
coupling to the commonbath, as the opticalfield globally takes away heat from themechanics.

4.3.2. N-oscillator case
In the case ofN baths all at equal temperature, one can use this formalism together with the ideas developed in
section 3 tofind

γ
γ γ

ωγ γ
γ γ

′ = +
+

− =
+

− = −( ) ( )n n
g

g
n n J

g

g
n n j N

¯

¯
¯ , 2

¯

¯
¯ ( 1 ). (44)j

j
j

j
2

2

2

2

Thismeans that the heat flow through the jthmechanical element is proportional to the temperature difference
between the independent thermal baths and the field bath, weighted by the branching ratio of the damping rates
η γ γ γ= +¯ ( ¯) and the relative optomechanical coupling strength of the jth element to the field. Note that,

Figure 2.Heat flows J1 (a), (d), J2 (b), (e), +J J1 2 (c), (f) (in arbitrary units) as a function of Λ γ and γ γ¯ , for the two-oscillator case.
Figures (a)–(c) and (d)–(f) correspond to a small ( =n n21 2) and a large ( =n n101 2) temperature difference between the independent
baths, respectively. The common bath has =n 00 in both cases.
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because of the normalization of the gj, the total heatflow through the array is independent of the system size9:

ωγη ωγ= − = − ′( )J n n n n2 ¯ 2 ( ) (45)m

where η η′ = − +n n n(1 ) ¯ is the final occupation number of the collectivemode b̃1. Let us also note that, while

the averaged heatflowper element, ≔ ∑ =J J J N¯
N j j
1

m , scales as the inverse of the length of the arrays, as

expected from the Fourier law [1], the local heatflowdepends on the formof the individual optomechanical
coupling. To take an example, for a fieldwhosewavelength is chosen such that thewhole array is ‘transmissive’,
the gj can be shown to have a sinusoidal dependencewith the element position in the array [20, 21]

π=
−

>g g
N

j

N
N

2
sin 2

1 2
( 2). (46)j

⎛
⎝⎜

⎞
⎠⎟

One sees from equation (44) that the currents flowing through the different oscillators have quite different
behaviours in the large-N limit. Indeed, as shown infigure 3, at the extremities (or the centre) of the array, one
has ∼J N1j

3 as → ∞N , while for ∼j N 4 or N3 4, one obtains ∼J N1j . Choosing the formof the
optomechanical couplings thus offers some freedom in tuning the heat flow through individual elements.

4.3.3. Experimental implementation
The generic features discussed previously could in principle be observed in a broad range of optomechanical
systems: in the optical domain, these could be arrays offlexiblemembranes [48], toroidal cavities with
indentations [49], optomechanical crystals [50], or ensembles of cold atoms in optical cavities [22, 51]; in the
microwave domain,micromechanical elements coupled to superconductingmicrowave resonatorfields
[62, 52] are one such possibility. Depending on the system considered, themeasurement of the oscillators’
thermal occupancy can be performed optically via sideband thermometry [53, 54] or collectivemode readout
[20, 51], or electrically by functionalizing the elements [55–57] or by coupling themechanical elements to
additionalmicrowave resonators or to artificial atoms, as demonstrated in, e.g., [58, 59]. The two-oscillator
scenario could be for instance realized using twomicromirrors [60, 61] in the double-cavity geometry of [45] in
which themotion of the centre-of-mass and relative-motionmodes can be addressed and readout by two optical
fields appropriately detuned from the cavity resonance. Alternatively, one could use a pair of partially
transmitting, flexiblemembranes positioned in an optical cavity driven by opticalfields with specific
wavelengths [20].

The variety of experimental implementations available implies that a large swathe of parameter space is
experimentally accessible. For example, in an electromechanical implementation as the one in [62], with
Ω π= ×2 7 GHz, κ π= ×2 6 MHz, Δ ω π− = = ×2 32MHz, and γ typically three orders ofmagnitude
smaller thanω [63], onewould expect ∼ −J 10m

19 W (∼ ×7 106 phonons/s) at 25 mK, and assuming efficient
optomechanical cooling ( ′ ≪n n). For optomechanical implementations with silicon nitridemembranes,
Ω π∼ ×2 282THz, κ π∼ ×2 1.0MHz, Δ ω π− = = ×2 136 kHz, and γ ω ∼ −10 6 [64], we find ∼ −J 10m

22

W (∼106 phonons/s) at 4 K.

Figure 3. (a)Heat flow Jj, in arbitrary units, for a 20-element arraywith the couplings given by equation (46). (b)Heatflow at the
beginning (j=1, blue) and at one-quarter ( = ⌊ ⌋j N 4 , magenta) of the array, as a function ofN. The averaged heat flowper element J̄
(mustard) is also shown.

9
We remark here that any intrinsic dependence of g itself on the system size can be counteracted by varying the driving strength

appropriately.
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5. Conclusion

Wehave investigated the transport of heat in a systemofN quantumoscillators coupled to common and
independent baths and derived analytical expressions for the steady state occupancy and heat flow. The obtained
results are, among others, relevant in the context of optomechanical arrayswhere by choosing the formof the
coupling between the opticalfield and themechanics one can engineer effective couplings and baths for the
mechanical oscillators, and thereby tune the heat flow through individual elements.While the present work
focussed on the situation of an optical field in a coherent state—a common oscillator coupled to a zero-
temperature bath—the same approach could be used to tackle the case of optomechanical interactions with
(Gaussian) fields exhibiting nonclassical correlations, such as squeezing [45, 46].
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AppendixA. Adiabatic elimination of the opticalmode from themaster equation

The purpose of this appendix is to introduce to the unfamiliar reader themain steps involved in the adiabatic
elimination of a fast system, in our case an opticalfield described by the annihilation operator â, from a coupled
system involving the opticalfield and amechanicalmode, described by the annihilation operator b̂. Our
treatment can easily be generalized tomanymechanicalmodes and follows very closely the exposition in the
Supplemental Information of [25].We refer the interested reader to alternative expositions, e.g., in [47], for
further detail. To start, we divide the totalHamiltonian of the system into three components. First is the free
Hamiltonian

Δ ω= − +H a a b bˆ ˆ ˆ ˆ ˆ , (47)free
† †

whichwewrite in the rotating fromof the driving field (introduced below), such that Δ Ω Ω≔ −L is the
difference between the resonance frequency ofmode ‘a’ and its driving field. Next, wemust consider the
Hamiltonian that couples the two subsystems,

= − +( )H g b b a aˆ ˆ ˆ ˆ ˆ. (48)int
† †

Finally, we add theHamiltonian that acts to drive the optical field to a non-zeromean value,

κ α= −( )H a aˆ i 2 ˆ ˆ ; (49)d in
†

here, the (coherent) driving field amplitude αin is taken to be real for simplicity. The compound system is also
acted on by dissipation, whichwe conciselymodel using the superoperators

ϱ ϱ ϱ ϱ≔ − −D c c c c c c cˆ 2ˆ ˆ ˆ ˆ ˆ ˆ, (50)† † †⎡⎣ ⎤⎦
and

≔ + +D c n D c nD cˆ ( 1) ˆ ˆ , (51)th
†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where n gives themean number of excitations present in the bath that ĉ is coupled to.We now label the
(amplitude) decay rates of â and b̂ by κ and γ, respectively, such that the fullmaster equation of the system takes
the form

ϱ ϱ κ ϱ γ ϱ= − + + + +H H H D a D b˙ i ˆ ˆ ˆ , ˆ ˆ . (52)free int d th
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Wenowproceed by defining two simplifying unitary transformations; we shift both â and b̂ by an as-yet
undetermined complex number:

α β= + = +U aU a U bU bˆ ˆ ˆ ˆ and ˆ ˆ ˆ ˆ . (53)a
†

a
†

m
†

m
†

Wedetermine α and β by demanding that they act to cancel out the contribution of Ĥd in themaster equation,

that â and b̂ are shifted to have zeromean value. Furthermore, we suppose that α∣ ∣ ≫ 1, such thatwe can
neglect the term in the transformed Ĥint that is proportional to a aˆ ˆ† . Finally, we obtain a transformed
Hamiltonian that is quadratic in the operators:
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Δ ω α α≔ − + − + +( )( )H a a b b g b b a aˆ ˆ ˆ ˆ ˆ ˆ ˆ *ˆ ˆ . (54)trans
† † † †

Wehave further redefinedΔ in order to absorb a shift in the cavity frequency introduced by β. It is now
convenient to consider the three termsmaking up Ĥtrans separately. In order to do this, we define the system

ω≔H b bˆ ˆ ˆ
s

†
, bath Δ≔ −H a aˆ ˆ ˆb

† , and interaction α α≔ − + +( )( )H g b b a aˆ ˆ ˆ * ˆ ˆi
† † Hamiltonians.We also define

the associated Liouvillians

 ϱ ϱ γ ϱ≔ − +H D bi ˆ , ˆ , (55)s s th
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

 ϱ ϱ γ ϱ≔ − +H D ai ˆ , ˆ , (56)b b
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

and

 ϱ ϱ≔ − Hi ˆ , , (57)i i
⎡⎣ ⎤⎦

respectively.With this notation, the transformedmaster equation acquires the simple form

  ϱ ϱ= + +( )˙ s b i . Our goal in this section is to derive an effective equation ofmotion for the density

matrix describing themechanical subsystem, withmode ‘a’ eliminated from it. In commonwith other such
eliminations, our results will only be valid to lowest order in the coupling strength g.

The approachwe follow uses projection operators to effectively project themaster equation and achieve this
elimination. Thefirst projection operator we require takes the form

ϱ ρ ϱ≔ ⊗ Tr , (58)a a

where ρa is the vacuum state formode ‘a’ and corresponds to the solution of themaster equation formode ‘a’
alone.We define  as the identity operator and a further projection operator = −  . Following [47, section
5.2.1] we note that

 =  0, and (59)i

   + = + ( ) ( ) . (60)s b s b

These projection operators are used to project the fullmaster equation, resulting in the two differential
equations

  ϱ ϱ ϱ= + +    ( )˙ , and (61)s b i

   ϱ ϱ ϱ= + + +    ( )˙ . (62)s b i i

Wenow invoke theweak-coupling approximation, assuming g to be small.We can then formally write

     ∫ϱ ϱ τ ϱ τ= + τ+ + − + + −    ( )( )( ) ( )t t( ) e d e ( ). (63)t t

t

t
t

0
( )

i
s b i] 0

0

s b i

Next, we substitute the lowest-order approximation

 ϱ τ ϱ= τ+ − ( ) t( ) e ( ) (64)t( )s b

in the integrand, andwe take the initial time → −∞t0 . Because of our lowest-order-in-g approximation, we
ignore the i in the exponent, yielding

 
    ∫

ϱ ϱ

τ ϱ

≈ +

+ τ τ
∞

+ − +

  

   

( )
( ) ( )

˙

d e e (t). (65)

s b

0
i i

s b s b

Next, we notice that  + =[ , ] 0s b , so that wemay simplify the above differential equation to

      ∫ϱ ϱ τ ρ ϱ≈ + + ⊗τ τ
∞

+ − +     ( ) ( )( ) ( )˙ d e e Tr (66)s b
0

i i a a
s b s b

     ∫ϱ τ ρ ϱ= + + ⊗τ τ
∞

+ −   ( ) ( )( )d e e Tr . (67)s b
0

i i a a
s b s

Wecannow trace outmode ‘a’, thereby obtaining an approximatemaster equation for the reduced density
matrix ρ ϱ≔ Tra ,

    ∫ρ ρ τ ρ ρ= + ⊗τ τ
∞

+ − ( )( )˙ Tr d e e . (68)s b a
0

i i a
s b s
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The integral can be evaluated by using the definition of i given above. Upon applying the rotating-wave
approximation, where quickly-rotating terms are neglected, and performing some algebra, the standard form

ρ ρ α ω ω ρ

α ω ρ ω ρ

= − + −

+ + −{ }
g S S b b

g S D b S D b

˙ i Im ( ) ( ) ˆ ˆ,

Re ( ) ˆ Re ( ) ˆ (69)

s
2 2 †

2 2 †

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

is recovered. In this expression, we have defined the spectral density of the cavity field to zeroth order in g, which
can be expressed as

∫ω τ τ
Δ ω κ

≔ + = −
+ −

ωτ
∞

S a t a t( ) d e ˆ ( ) ˆ ( )
1

i( )
. (70)

0

i †

By comparing equation (69) to the standardmaster equation for a damped harmonic oscillator, we can identify
an effectiveHamiltonian

α ω ω

α Δ Δ ω κ

Δ ω κ Δκ

= + + −

= +
− +

− − +

( )
( )

H H g S S b b

H
g

b b

ˆ ˆ Im ( ) ( ) ˆ ˆ

ˆ
2

(2 )

ˆ ˆ, (71)

eff s
2 2 †

s

2 2 2 2 2

2 2 2 2 2

†

aswell as the effective cooling and heating Liouvillians

 γ
α κ

Δ ω κ
≔ + +

+ +
n

g
D b( 1)

( )
ˆ , (72)cool

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

and

 γ
α κ

Δ ω κ
≔ +

− +
n

g
D b

( )
ˆ . (73)heat

2 2

2 2

†⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Appendix B. Equations ofmotion for the second-ordermoments

The equations ofmotion for the second-ordermoments obtained from equation (37) are

ω

ω

ω

ω Λ γ γ

γ

ω Λ γ γ

γ

ω Λ γ γ

γ

ω Λ γ γ

γ

ω Λ γ γ γ

γ γ

ω Λ γ γ γ

γ γ

∂ =

∂ =

∂ = ∂ = +

∂ = − − − +

−

∂ = − − − +

−

∂ = − − − +

−

∂ = − − − +

−

∂ = − − − + −

+ + + +

∂ = − − − + −

+ + + +

( )

( )

( )

( )

( )

{ }
{ }

{ } ( ) { }

{ } ( ) { }

{ } ( )
{ }

{ } ( )
{ }

{ } ( )
( ) ( )

{ } ( )
( ) ( )

x x p

x x p

x x x x x p x p

x p p x x x x p

x p

x p p x x x x p

p x

x p p p x x x x p

x p

x p p p x x x x p

x p

p x p x p p p p

n n

p x p x p p p p

n n

ˆ ˆ , ˆ ,

ˆ ˆ , ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ , ˆ 2 ˆ ˆ 2 ˆ ˆ 2 ¯ ˆ , ˆ

2¯ ˆ ˆ ,

ˆ , ˆ 2 ˆ ˆ 2 ˆ ˆ 2 ¯ ˆ , ˆ

2¯ ˆ ˆ ,

ˆ , ˆ 2 ˆ ˆ ˆ ˆ 2 ˆ 2 2 ¯ ˆ ˆ

¯ ˆ , ˆ ,

ˆ , ˆ 2 ˆ ˆ ˆ ˆ 2 ˆ 2 2 ¯ ˆ ˆ

¯ ˆ , ˆ ,

ˆ 7 ˆ , ˆ 2 ˆ ˆ 2 2 ¯ ˆ 2¯ ˆ ˆ

2 2 1 ¯ 2 ¯ 1 ,

ˆ ˆ , ˆ 2 ˆ ˆ 2 2 ¯ ˆ 2¯ ˆ ˆ

2 2 1 ¯ 2 ¯ 1 ,

t

t

t t

t

t

t

t

t

t

1
2

1 1

2
2

2 2

1 2 2 1 1 2 2 1

1 1 1
2

1
2

1 2 1 1

1 2

2 2 2
2

2
2

1 2 2 2

1 2

1 2 1 2 1 2 1
2

1 2

1 1

2 1 1 2 1 2 2
2

2 1

2 2

1
2

1 1 2 1 1
2

1 2

1

2
2

2 2 1 2 2
2

1 2

2

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
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ω Λ

γ γ γ γ

∂ = ∂ = − + − +

− + − + + +

( )
( )

( ) { } { }
( ) ( )

p p p p x p p x x p p x

p p p p n

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 2 ¯ ˆ ˆ ¯ ˆ ˆ ¯ 2 ¯ 1 .

t t1 2 2 1 1 2 1 2 1 1 2 2

1 2 1
2

2
2

Recall also that δ〈 〉 =x p[ ˆ , ˆ ] ij k j k, , which gives ∂ 〈 〉 =x p[ ˆ , ˆ ] 0t j k =j k( , 1, 2).
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