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We analyze the nature of the statistics of the work done on or by a quantum many-body system brought
out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the
initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single
projective measurements of observables. We highlight, in a physically clear way, the qualitative
implications for the statistics of work coming from considering processes described by operators that
either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a
quantum many-body system and derive an expression that allows us to give a physical interpretation, for a
thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with
the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an
intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to
operate fully within the single-measurement framework irrespectively of the size of the quench, some
difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance
makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of
the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas
with the example of the Ising model in a transverse field showing the interesting behavior of the high-order
statistical moments of the work distribution for a generic thermal state and linking them to the critical
nature of the model itself.
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I. INTRODUCTION

A considerable amount of effort has been made, recently,
on the study of the statistics of work in quantum systems
subject to a process [1–15]. One of the interests in this area
lies in the possibility to predict the exact value taken by
thermodynamically relevant quantities (such as work, free-
energy variations, and entropy) by analyzing the features
of explicitly finite-time, out-of-equilibrium dynamics. Such
a possibility, which is embodied by elegant fluctuation
theorems [16–21], has been demonstrated experimentally
in both the classical and quantum mechanical scenarios
[22–27]. The increasing level of control, at the quantum
level, of simple systems consisting of a few quantum
particles [27–32] thus makes this an exciting time to

investigate questions related to the thermodynamics of
explicitly nonequilibrium processes.
A quite natural step forward in this direction is given by

the extensions of such studies to the quantum many-body
domain, whose rich physics and phenomenology would
offer unmatched possibilities to explore thermodynamically
relevant questions from a genuine quantum mechanical
viewpoint. Interesting first attempts in this sense, for both
spin and harmonic systems, have been reported recently in
Refs. [31,33–38]. Yet, notwithstanding the key contribu-
tions that such endeavors embody in the quest for the
establishment of a bridge between thermodynamics and
the physics of quantumsystems, there is a pressing need for a
deeper comprehension of the links between quantum criti-
cality and the statistical mechanics of work and entropy
arising from out-of-equilibrium processes.
In fact, much remains to be understood in the way

thermodynamics emerges from quantum critical phenom-
ena in extended quantum systems and, in turn, how we can
signal the occurrence of criticality by looking at thermo-
dynamic quantities. This is exactly the goal of this paper,
which aims at providing a physical interpretation of the
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statistical moments of the work distribution following a
nonadiabatic transformation on a quantum many-body
system based on the commutation relations among the
various parts of the system’s Hamiltonian. To this aim, we
show that there are conditions under which it is possible to
retrieve the thermodynamic quantities by doing single
projective measurements.
We analyze in detail the full statistics of the work

distribution in a quantum many-body system. We report
explicit expressions for all the moments and cumulants of
the work distribution in the case of a sudden quench of a
Hamiltonian parameter. In particular, we analyze the case of
a system subject to a sudden switch of an external magnetic
field and show that, as long as the quenching process is
described by an operator that commutes with the unper-
turbed part of the Hamiltonian, the cumulants of the work
distribution have a fairly intuitive physical interpretation.
In order to address the case of an experimentally accessible

observable, we focus on the magnetization of a many-body
system and analytically link its cumulants to higher-order
susceptibilities. This allows us tomake explicit statements on
the possibility of observing signatures of quantum criticality
in the cumulants of the work distribution. We provide an
interesting paradigm of our investigation by studying the
work distribution for the Ising model in a transverse field.
Our study paves theway to the revelation of quantum critical
effects via the assessment of the full statistics of work, and it
strengthens the interesting connections between the emer-
gence of nonequilibrium thermodynamics and macroscopic
properties in many-body physics, whose investigation is
currently only in its infancy [31,33–37].
The remainder of this paper is organized as follows: In

Sec. II, we briefly review the formalism of quantum
fluctuation relations, introducing the explicit form of the
probability distribution of work and its characteristic
function for any generic initial state of the system. In
Sec. III, we discuss the validity of the sudden quench
assumption. Section VI provides the physical interpretation
of high-order cumulants of such distribution based on the
commutativity (or lack thereof) of the Hamiltonian of a
quantum many-body system before and after a quantum
process. In Sec. V, we use the transverse Ising model to
illustrate the key findings of our theoretical analysis,
demonstrating that the work statistics indeed brings about
information on the critical nature of the model at hand by
showcasing a neat singularity at low temperatures that is
progressively smeared out as soon as thermal fluctuations
start dominating. In Sec. VI, we summarize our findings
and discuss possible open routes.

II. QUANTUM FLUCTUATION RELATIONS:
A BRIEF REVIEW

Here, we give a brief summary of the formalism that
will be used throughout this work. We consider a process
undergone by a system S and described by a Hamiltonian

ĤðλtÞ depending on a work parameter λt, which is assumed
to be externally controlled. At t ¼ 0−, S is initialized in a
generic quantum state ρ̂0. At t ¼ 0þ, while keeping the
system isolated, we perform a process consisting of the
change of λt to its final value λτ. It is convenient to
decompose the Hamiltonians connected by the process as

Ĥðλ0Þ ¼
X
n;i

Enðλ0ÞjnðiÞðλ0ÞihnðiÞðλ0Þj ð1Þ

and

ĤðλτÞ ¼
X
m;j

EmðλτÞjmðjÞðλτÞihmðjÞðλτÞj; ð2Þ

where fEnðλ0Þ; jnðiÞðλ0Þig ½fEmðλτÞ; jmðjÞðλτÞig� is the nth
(mth) eigenvalue-eigenstate pair of the initial (final)
Hamiltonian, and i and j are quantum numbers labeling
the possible degeneracy of the eigenvalues. The corre-
sponding work distribution can be written as [19,39]

PðWÞ ≔
X
n;m

p0
npτ

mjnδ½W − ðEmðλτÞ − Enðλ0ÞÞ�: ð3Þ

Here, we have introduced the probability with which
the particular eigenvalue Enðλ0Þ is observed in the first
measurement performed over the system

p0
n ¼ Tr½P̂nðλ0Þρ̂0�; ð4Þ

where

P̂nðλ0Þ ¼
X
i

jnðiÞðλ0ÞihnðiÞðλ0Þj ð5Þ

is the projector onto the eigensubspace of the eigenvalue
Enðλ0Þ. The conditional probability of observing the
eigenvalue EmðλτÞ at time t ¼ τ, after the observation of
Enðλ0Þ at time t ¼ 0, is given by

pτ
mjn ¼ Tr½P̂mðλτÞÛτρ̂nÛ

†
τ �; ð6Þ

where

ρ̂n ¼
P̂nðλ0Þρ̂0P̂nðλ0Þ

p0
n

ð7Þ

is the state in which the system is found immediately after
the first measurement, and Ûτ is the evolution operator
describing the process.
PðWÞ encompasses the statistics of the initial state (given

by p0
n) and the fluctuations arising from quantum meas-

urement statistics (given by pτ
mjn). It is possible to show that

the characteristic function of work, for a generic initial state
ρ̂0, can be written as [39]
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χðu; τÞ ¼
Z

dWeiuWPðWÞ ¼ Tr½U†
τeiuĤðλτÞÛτe−iuĤðλ0Þρ̂00�;

ð8Þ

where

ρ̂00 ¼
X
n

P̂nðλ0Þρ̂0P̂nðλ0Þ ð9Þ

is the state of the system projected onto the eigenbasis of
the Hamiltonian Ĥðλ0Þ, hereafter called the initial projected
state. In particular, the following relation holds:

ρ̂00 ¼ ρ̂0 ⇔ ½ρ̂0; Ĥðλ0Þ� ¼ 0: ð10Þ

If we restrict our attention to the case in which the initial
state is a thermal state ρ̂Gðλ0Þ ¼ e−βĤðλ0Þ=Zðλ0Þ [40]
(where ZðλÞ ¼ Tre−βĤðλÞ is the partition function) at
inverse temperature β, then the relation in Eq. (10) trivially
holds, and from Eq. (8) the Jarzynski equality [21] is
found as

χGðiβ; τÞ ¼ he−βWiG ¼ e−βΔF: ð11Þ

The characteristic function is also crucial for the
establishment of the Tasaki-Crooks relation ΔF ¼
−ð1=βÞ ln½χGðu; τÞ=χ0Gðiβ − u; τÞ� [19,20], with χ0Gðv; τÞ
the characteristic function of the backward process
obtained by taking λτ → λ0 and evolving ρ̂GðλτÞ backward.
Here,ΔF is the net change in the equilibrium free energy of
S. This demonstrates the central role played by the
characteristic function in determining the equilibrium
properties of a system.

III. THE VALIDITY OF THE
SUDDEN-QUENCH ASSUMPTION

Most of the analysis made in this paper makes use of
sudden quench processes. This process is a sudden switch
of the work parameter from the initial value λ0 to the final
λτ, performed after detaching the system from the thermal
reservoir that determines its initial equilibrium state, if the
initial state is actually a thermal state. Regardless of the
specific nature of the process that we consider, a sudden
quench encompasses a very interesting case to study due to
its highly nonadiabatic nature. Our aim here is to provide a
semiquantitative criterion that any quench in a general
quantum many-body system should satisfy in order to be
rightly considered as sudden.
In such a transformation, the Hamiltonian changes so

quickly that the state of the system freezes. The time taken
to change the Hamiltonian should thus be much shorter
than the typical time scale of the evolution of the system.
Despite the quench being a nonperturbative process in
general, it is possible to determine the probability for a state
of the system to change, while changing the Hamiltonian,

in a perturbative treatment with respect to the time scale
required for such change to occur [41].
We can consider the general Hamiltonian

ĤðλtÞ ¼
�
Ĥðλ0Þ t ≤ 0;
ĤðλτÞ t > τ:

ð12Þ

For 0 < t < τ (with τ small enough), the Hamiltonian is
explicitly changing from Ĥðλ0Þ to ĤðλτÞ. For simplicity,
we will consider the case of a pure initial state and estimate
the probability that the system makes a transition to a
different state while we change the Hamiltonian.
We rewrite the Hamiltonian as

ĤðλtÞ ¼ ĤðλτÞ þ V̂ðtÞ; ð13Þ

where V̂ðtÞ ¼ ĤðλtÞ − ĤðλτÞ. With this simple rewriting of
the Hamiltonian, for τ small enough, we can treat the term
V̂ðtÞ, at every time t > 0, perturbatively with respect to
ĤðλτÞ. Let us decompose the actual state of the system in
terms of the eigenstates of ĤðλτÞ as

jψðtÞi ¼
X
m

amðtÞjmðλτÞi; amðtÞ ∈ C: ð14Þ

The time evolution of the coefficients amðtÞ of such a
decomposition is given by

i
d
dt

anðtÞ ¼
X
m

VnmðtÞe−iðE0
m−E0

nÞtamðtÞ; ð15Þ

where VnmðtÞ ¼ hnðλτÞjV̂ðtÞjmðλτÞi. Formally integrating
such an expression, we get

amðtÞ ¼ anð0Þ − i
X
m

Z
t

0

Vnmðt0Þamðt0Þe−iðE0
m−E0

nÞt0dt0:

ð16Þ

The perturbative parameter is considered to be Vnmτ ≪ 1,
so the potential term Vnm does not need to be small, but its
period of action must be small. If we assume that
ðE0

n − E0
mÞτ ≪ 1, then the exponential term in Eq. (16)

is approximately unity. The zeroth-order approxima-
tion coefficient, in the parameter Vnmτ, is given by
að0Þm ðtÞ ¼ amð0Þ, and we can substitute it into the right-
hand side of Eq. (16) to get the first-order perturbation term

að1Þn ðtÞ ¼ −iX
m

Z
t

0

hnðλτÞjV̂ðt0ÞjmðλτÞiamð0Þdt0: ð17Þ

If the initial state of the system is an eigenstate of Ĥðλ0Þ, let
us call it jii ¼ P

mamð0ÞjmðλτÞi, then the probability of the
state making a transition to the state jnτi is given by
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jað1Þn ðtÞj2 ¼
����
Z

t

0

hnðλτÞjV̂ðt0Þjiidt0
����2

¼
����
Z

t

0

hnðλτÞjðĤðλt0 Þ − ĤðλτÞÞjiidt0
����2: ð18Þ

This probability is clearly model dependent, so it is not
possible to make a general statement about the sudden
nature of the quench if we do not specify the context
explicitly. If, for example, we consider a Hamiltonian
model of the form

ĤðλtÞ ¼ Âþ λðtÞB̂; ð19Þ
the requirement of the sudden quench is translated into

jað1Þn ðtÞj2 ¼ jhnðλτÞjB̂jiij2
����
Z

t

0

ðλτ − λðt0ÞÞdt0
����2 ≪ 1 ∀ n;

ð20Þ
which is dependent on both the quenched operator matrix
elements and on the way we change the parameter λ. If,
for example, we assume a linear quench λðtÞ ¼ λτt=τ in
the short time interval 0 < t < τ, the upper bound on τ is
given by

τ ≪
2

λτjhnðλτÞjB̂jiij
: ð21Þ

We thus need to find jnðλτÞi such that jhnðλτÞjB̂jiij is
maximum and then change our Hamiltonian in a time τ
given by Eq. (21). This is a strong condition though, as if it
is fulfilled, the state is not changing at all. If, for example,
the quenched operator is not limited in the norm instead,
then there is no sharp condition of applicability of the
sudden quench. In this case, a more qualitative consid-
eration can be made in relation to the typical time scale of
evolution of the state. Indeed, we could, for example, take
the characteristic time of evolution of a relevant observable
for the system and give a looser condition requiring that τ
be smaller than this time scale.
It is worth stressing that the condition for a sudden

change in a quantum many-body system has been met
experimentally in different contexts ranging from ultracold
atomic systems to trapped ions [42].

IV. INTERPRETATION OF THE STATISTICAL
MOMENTS OF THE WORK DISTRIBUTION

FOR A SUDDEN QUENCH

The work characteristic function for a sudden quench
reads

χðu; τÞ ¼ Tr½eiuĤðλτÞe−iuĤðλ0Þρ̂00�: ð22Þ

Equation (22) can be expanded in a power series as

χðu; τÞ ¼
X∞
n¼0

ðiuÞn
n!

hWni; ð23Þ

where we have introduced the statistical moments

hWni ¼ ð−iÞn∂n
uχðu; τÞju¼0: ð24Þ

By considering log½χðu; τÞ�, on the other hand, one can
introduce the cumulants Kn as

Kn ¼ ð−iÞn∂n
u log½χðu; τÞ�ju¼0: ð25Þ

For a generic ρ̂00, the first and second moments of the work
are

hWi ¼ Tr½ðĤðλτÞ − Ĥðλ0ÞÞρ̂00�; ð26Þ

hW2i ¼ Tr½ðĤðλτÞ2 − 2ĤðλτÞĤðλ0Þ þ Ĥðλ0Þ2Þρ̂00�: ð27Þ

However, the initial projected state ρ̂00 commutes with the
initial Hamiltonian because it is the diagonal part of ρ̂0 in
the eigenbasis of Ĥðλ0Þ, so by using the cyclic permutation
invariance of the trace, we are able to link both the first and
second moments of the characteristic function to the net
variation of the Hamiltonian of the system as

hWji ¼ Tr½ðĤðλτÞ − Ĥðλ0ÞÞjρ̂00�; ð28Þ
for j ¼ 1, 2 and for any ρ̂0

0.
Equations (26)-(28) also hold for the case of a general

time-dependent protocol as long as the final Hamiltonian
ĤðλτÞ is replaced by the Heisenberg representation of the
Hamiltonian ĤHðλτÞ ¼ Û†

τĤðλτÞÛτ [43].
In order to gain a physical insight on these two

quantities, we consider the case of a many-body system,
e.g., a system composed of N spin-1=2 particles whose
Hamiltonian we cast into the form

ĤðλtÞ ¼ Ĥss − λt
XN
i¼1

σ̂zi ; ð29Þ

with Ĥss a generic spin-spin interaction term and σ̂ki ðk ¼
x; y; zÞ the k-Pauli spin operator. The second term in
Eq. (29) is proportional to the z magnetization M̂z ¼P

N
i¼1 σ̂

z
i of the collection of spins. In what follows, we

will make a clear distinction between the case ½Ĥss; M̂z� ¼ 0
and the case ½Ĥss; M̂z� ≠ 0, hereafter respectively called the
commuting case and the noncommuting case. In Eq. (29),
λt is the strength of an external magnetic field, given in
units of the characteristic spin-spin interaction rate that
characterizes Ĥss, and it embodies the work parameter of
our quenched process. The process we are interested in is
the sudden change of the magnetic field by the amount
Δλ ¼ λτ − λ0. The first moments of the work distribution
are obtained by plugging Eq. (29) into Eqs. (26), (27) and
(28). For the first moment, for any ρ̂00, we find
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hWi ¼ −ΔλhM̂zi; ð30Þ

where the average is taken over ρ̂ 0
0. This is in agreement

with our intuition, as the process at hand consists of
changing the Hamiltonian of the system through a varying
magnetic field. Then, the change of the energy in the
system, i.e., the work done on it, is expected to be
proportional to the magnetization. For the second moment,
we find, again for any ρ̂00,

hW2i ¼ ðΔλÞ2hM̂2
zi: ð31Þ

A. Commuting case: ½Ĥss; M̂z� ¼ 0

We now focus our attention on the physical meaning of
the cumulants of the work distribution. One of the reasons
for looking deeper at these quantities is given by the fact
that higher-order cumulants (such as the fourth-order and
higher ones) have been at the center of substantial studies
on the characterization of the quantum phase transition
occurring in many-body systems in light of their sensitivity
to the details of the corresponding distribution [44,45]. In
order to give a physical interpretation of the moments or
cumulants of the work distribution, let us consider the
commuting and noncommuting cases separately.
Let us start with the commuting case ½Ĥss; M̂z� ¼ 0.

Equation (31) also tells us that the variance of the work
distribution is proportional to the variance of the magneti-
zation distribution. In the commuting case, the variance
of the longitudinal magnetization, ½ΔM̂2

z �G ¼ hM̂2
ziG −

hM̂zi2G0 , evaluated over a thermal state, is proportional to
the magnetic susceptibility [46]

χM ≔
∂hM̂ziG
∂λ0 ¼ β½ΔM̂2

z �G: ð32Þ

Thus, the thermal state is a useful special case. Indeed, for
such a state and any given commuting model (i.e., any Ĥss
such that ½Ĥss; M̂z� ¼ 0), it is straightforward to gather a
physical intuition of the meaning of the first two cumulants
of the work distribution. These are given by the magneti-
zation and the magnetic susceptibility of the initial thermal
state, respectively. These embody two of the most relevant
and well-studied quantities in the physics of a magnetic
system [47].Moreover, we found out that Eq. (32) is actually
a specific case of a more general relation between the
derivatives of the average magnetization and the higher
cumulants of its distribution. Specifically, in AppendixAwe
show that, by introducing the proper moment-generating
function for the observable M̂z when the system is prepared
in a thermal state, i.e.,

½Gðv; λ0Þ�G ¼ Tr½eivM̂ze−βðĤss−λ0M̂zÞ�
Zðλ0Þ

; ð33Þ

and the associated cumulants

½Cnðλ0Þ�G ¼ 1

in
∂n log½Gðv; λ0Þ�G

∂νn
����
v¼0

; ð34Þ

the following general relation holds:

∂nhM̂ziG
∂λn0 ¼ βn½Cnþ1ðλ0Þ�G: ð35Þ

where hMziG is the average magnetization of the system
over the thermal state ρ̂Gðλ0Þ. Thus, Eq. (32) is exactly the
n ¼ 1 case of Eq. (35). This relation is very important as it
allows us to give a physical interpretation to the cumulants of
the distribution for the systemmagnetization. To do this, we
can think of a magnetic material, e.g., a classical magnet, for
which the commutation property holds, placed in amagnetic
field λ0, and we increase the magnetic field by the amount
Δλ ¼ λτ − λ0. In this scenario, the magnetization can be
expressed in terms of a power series of the applied field
variation as

hM̂ziGðλτÞ ¼ hM̂ziGðλ0Þ þ χð1ÞM ðλ0ÞΔλþ χð2ÞM ðλ0ÞΔλ2

þ χð3ÞM ðλ0ÞΔλ3 þ � � � ; ð36Þ

where

χðjÞM ðλ0Þ ¼
1

j!
∂jhM̂ziG

∂λj
����
λ¼λ0

ð37Þ

is the jth order magnetic susceptibility at field λ0.
Comparing Eqs. (35) and (37), we get

½Cnþ1ðλ0Þ�G ¼ n!
βn

χðnÞM ðλ0Þ: ð38Þ

From linear response theory, we know that the first-order
magnetic susceptibility χð1ÞM ðλ0Þ is sufficient to characterize
the response of the system to a small-amplitude external
magnetic field around λ0 [48]. Here, in a different way, we
are pushing the system far from equilibrium by applying a
strong-field variation Δλ, so we need the magnetic suscep-
tibilities at every order to characterize the full response of the
system. Now, we can say that it is possible to interpret any
cumulant of order (nþ 1) of the magnetization distribution
generated by the thermal state ρ̂Gðλ0Þ, as the nth-order
magnetic susceptibility of the system at the respective
field λ0.
Going back to the generic initial projected state ρ̂00, a

definition of the characteristic function in this case,
equivalent to the one given for the thermal state in
Eq. (33), can be given simply as

GðvÞ ¼ Tr½eivM̂z ρ̂00�: ð39Þ
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Thus, the moments hM̂n
z i and the cumulants Cn of the

magnetization distribution generated by a generic ρ̂00 can be
obtained by making use of this last function. Keeping
Eqs. (30) and (31) in mind, it is easy to show that in the
commuting case, we have

hWni ¼ ð−ΔλÞnhM̂n
z i ð40Þ

for any value of n and any ρ̂00. Furthermore, for the
commuting case, we have the equivalent relation for the
cumulants,

Kn ¼ ð−ΔλÞnCn: ð41Þ
Thus, if we are concerned with a thermal state, thanks to
Eqs. (38) and (41), we can say that in the commuting case
the (nþ 1)th cumulant of the work distribution is propor-
tional to the nth order magnetic susceptibility.
For a generic state, attaching a physical meaning to the

cumulants of work is instead not as simple as the thermal
case. However, for the commuting case, independently of
the initial state, we have shown that the whole statistics of
the work is entirely obtainable from the statistics of an
observable, the magnetization M̂z over the initial projected
state. So, in order to retrieve the statistics of work, we first
need to project the initial state over the eigenbasis of the
initial Hamiltonian and then measure the magnetization.
So, for a generic initial state, it is not possible to obtain the
statistics of work with just single projective measurements,
even for the simple case of the sudden quench. This result is
nontrivial, as for the sudden quench, we know that the state
of the system freezes; thus, we could have argued,
intuitively, that single projective measurements should
have been sufficient. For a thermal state instead, or in
general, for a state ρ̂0 such that ½ρ̂0; Ĥðλ0Þ� ¼ 0, the
projected state coincides with the actual initial one, so in
order to reconstruct the statistics of work, we need only
single projective measurements.
In the commuting case, the results for the general time-

dependent protocol are the same as for the sudden quench.
In fact, for the time-dependent protocol, the results
obtained so far are formally the same as long as we express
the final Hamiltonian in the Heisenberg representation.

However, such a change of picture is immaterial if the
Hamiltonian commutes with itself every time.

B. Noncommuting case: ½Ĥss; M̂z� ≠ 0

In the case of ½Ĥss; M̂z� ≠ 0, i.e., the case of a transverse
magnetization, Eqs. (40) and (41) do not hold anymore. In
fact, it can be shown (cf. Appendix B) that the correct
expression for the nth moment of the work distribution
reads

hWni ¼ Tr

"Xn
k¼0

ð−1Þk
�
n
k

�
ĤðλτÞðn−kÞĤðλ0Þkρ̂00

#
;

∀ n ∈ N: ð42Þ

We can see that hWni¼hðĤðλτÞ−Ĥðλ0ÞÞni¼ð−ΔλÞnhM̂n
z i

holds

for
�
n ¼ 1; 2 if ½ĤðλtÞ; Ĥðλ0Þ� ≠ 0

∀ n ∈ N if ½ĤðλtÞ; Ĥðλ0Þ� ¼ 0:

For a time-dependent protocol, Eq. (42) still holds as long
as the final Hamiltonian ĤðλτÞ is replaced by its
Heisenberg representation ĤHðλτÞ ¼ Û†

τĤðλτÞÛτ. Then,
for a thermal state, or in general, for a state ρ̂0 such that
ρ̂0 ¼ ρ̂00, in the noncommuting case, the first two moments
of the work are also given by the average magnetization
and the average of the square of the magnetization.
However, this time we need to pay attention to the physical
interpretation of these relations. In fact, although it is still
valid that

ΔW2 ¼ Δλ2ΔM̂2
z ; ð43Þ

the relation in Eq. (32) does not hold anymore. In fact, we
show in Appendix C that the magnetic susceptibility, in the
noncommuting case, can be written as

χM ¼ β½ΔM̂2
z �G þ ~χM; ð44Þ

where the correction term ~χM is given by [49]

~χM ¼ 1

Zðλ0Þ
Tr

"X∞
n¼1

Xn−1
k¼0

ð−βÞn
n!

½ðĤss − λ0M̂zÞk; M̂z�M̂zðĤss − λ0M̂zÞn−k−1
#
: ð45Þ

On one hand, this shows that even the simple case of a
sudden quench bears important consequences, as far as the
statistics of work is involved. In fact, although it is a well-
understood fact that work is not a quantum observable [1],
one may wonder whether specific protocols exist such that
the full statistics of work could be reproduced by the

statistics of a properly chosen quantum observable over the
initial state, therefore enabling its direct assessment via
single projective measurements. For example, it is known
that multiple-time probabilities can be recovered from a
one-time probability of a larger system [50]. We showed
that such a possibility is offered, for a sudden quench over a
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state that commutes with the initial Hamiltonian, by a
magnetization that commutes with the interaction part of
the model. However, by looking at Eq. (42), we see that, for
the special case of ρ̂00 ¼ ρ̂0 (e.g., the initial thermal state),
for every moment of work, we need to do single projective
measurements of an observable, which however, in the
noncommuting case, does not have such a simple physical
meaning as the magnetization for the commuting case.
The idea of going beyond the two-time measurement

approach is motivated by the issues concerning the appli-
cability of fluctuation theorems when some of the typical
assumptions made (e.g., initial thermal states, closed
system dynamics) are relaxed. Generalizations of fluc-
tuation theorems along the lines of noncommuting states
and observables have been put forward by Kafri and
Deffner in Ref. [2]. In Ref. [51], Watanabe et al. show
that, by using a particular type of generalized energy
measurements, the resulting work statistics is simply
related to that of projective measurements. Recently,
conditions have also been given for the fluctuating work
to be physically meaningful for a system that starts its
evolution from a nonequilibrium state [52]. A different
approach instead deals with the formulation of new
fluctuation theorems when the system is not described
by a (micro) canonical density matrix but is described by a
(micro) canonical distribution of wave functions [53]. A
fluctuation theorem for the nonequilibrium entropy pro-
duction in quantum phase space is instead derived in
Ref. [54], which enables a thermodynamic description of
open and closed quantum systems. Several works also
recently focused on the thermodynamic description of fully
open quantum systems by making use of the quantum
jump, the quantum trajectory description of the evolution of
the system [55–57].
As a last remark, we stress that the differences between

the commuting and noncommuting cases can also be seen
as a direct application to the case of a many-body system of
the comparison of two different definitions of work given in
Refs. [43,58]. The first definition is the most common one,
given in Eq. (3). In this case, we know that the work is a
stochastic variable. The second definition deals instead
with a work operator ΔÊðλ0; λτÞ ¼ Û†

τĤðλτÞÛτ − Ĥðλ0Þ,
but the Jarzynski equation is known to hold only for the
first definition of work. Indeed, while the averages of any
linear and quadratic function of the two definitions of work
are the same, higher-order functions reproduce the same
average only in the case in which the initial and final
Hamiltonians commute. Thus, for the many-body model
ĤðλtÞ ¼ Ĥss − λtM̂z, the work operator is given by

ΔÊðλ0; λτÞ ¼ Û†
τĤssÛτ − Ĥss − λτÛ

†
τM̂zÛτ þ λ0M̂z:

ð46Þ

For the sudden quench, we have

ΔÊðλ0; λτÞ ¼ −ΔλM̂z ð47Þ

so that, if in line with Eq. (33), we can define the
characteristic function of the work operator for the sudden
quench

χΔÊðv; λ0Þ ¼
Tr½eivΔÊe−βðĤss−λ0M̂zÞ�

Zðλ0Þ
ð48Þ

and the associated cumulants ðKΔÊÞn ¼ i−n∂n
ν log χΔÊjv¼0.

Equation (35) can be interpreted as a statement on the
cumulants of the characteristic function of the work
operator for the sudden quench

∂n
λ0
hΔÊi ¼ βnð−ΔλÞ−nðKΔÊÞnþ1: ð49Þ

C. Assessing the nonequilibrium thermodynamics via
the cumulants of the work distribution

We have clarified the useful role played by the initial
thermal state over the possibility of getting the statistics of
work from single projective measurements, and the physi-
cal meaning of the cumulants of the work done on a system
whose initial state is thermal. Keeping these results in mind,
we now focus just on this state, and so we will not use the
subscript G anymore to indicate averages over thermal
states. The importance of looking at the full statistics of the
work distribution is clear from the point of view of
nonequilibrium thermodynamics. In fact, we can use the
Jarzynski equality in the form ΔF ¼ −ð1=βÞ loghe−βWi
to show that we can express the free-energy difference ΔF
in term of a sum of cumulants Kn of the work distribution
as [21]

ΔF ¼
X∞
n¼1

ð−βÞn−1
n!

KnðβÞ: ð50Þ

The nonequilibrium nature of the transformation that we
are addressing here allows us to recast the second principle
of thermodynamics as hWi ≥ ΔF, which suggests the
existence of an irreversible form of work defined as
hWdissi ¼ hWi − ΔF. In turn, this allows the introduction
of the “nonequilibrium lag” Lirr ¼ βhWdissi ¼ βðhWi−ΔFÞ
that quantifies the degree of irreversibility of the quenched
dynamics in terms of the actual state lag between the actual
state ρ̂t of the system at a given time of the evolution and
the hypothetical thermal equilibrium state ρ̂eqt associated
with the Hamiltonian of the system at that time. In fact,
it can be shown that Lirr ¼ ΔS½ρ̂t∥ρ̂eqt �, with ΔS½ρ̂∥σ̂� ¼
Trðρ̂ log ρ̂ − ρ̂ log σ̂Þ the relative entropy between two
arbitrary states ρ̂ and σ̂ [59–62]. The nonequilibrium lag
can be cast in terms of the set of cumulants of fKn≥2g as
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Lirr ¼
X∞
n¼2

ð−βÞn
n!

KnðβÞ: ð51Þ

In the expressions above, we have explicitly shown the
dependence of the cumulants on the inverse temperature β
in order to stress that these formulas do not have the form of
a power-series expansion with respect to β. It is, in fact,
clear in Eq. (25) that the cumulants depend on β via the
characteristic function. Equations (50) and (51) allow us to
see clearly how the cumulants of the work distribution are
related to the free energy and the nonequilibrium lag.
Notably, the expression we obtained above is a generali-
zation of Eq. (60) in Ref. [63], which was found by the
authors just for the case of a small quench. Indeed, if we
take just the first term of the expression above, relating the
variance of the work to the derivatives of the free energy,
we obtain the very same expression. The expression we
obtained above is instead valid for every size of the quench.
To fix the ideas, let us assume that the spin-spin part of

the Hamiltonian in Eq. (29) commutes with the term
λt
P

N
i¼1 σ̂

z
i , which thus embodies the longitudinal magneti-

zation of the system. Referring to Eqs. (50) and (51), we
can now say that, in this case, the whole nonequilibrium
thermodynamics of the system can be obtained from the
full statistics of the magnetization itself and thus via single
projective measurements. Being in the commuting case, we
can refer to the time-dependent protocol and not just the
sudden quench. This highlights, in a physically very clear
way, the qualitative difference arising from considering
quenched operators that do commute with the unperturbed
Hamiltonian. Moreover, we can consider the possibility of
finding signatures of critical behavior of a quantum many-
body model by investigating the statistics of a thermody-
namical quantity. We know a priori that the statistics
of work following a global quench of the longitudinal
magnetization will indeed show evidence of critical behav-
ior. In fact, the statistics of work coincides with that of the
order parameter. In particular, if we are dealing with an nth
order phase transition, the (n − 1)th derivative of the order
parameter will be discontinuous.
We showed that in the commuting case, the thermody-

namics can be retrieved by looking just at the statistics
of a single quantum observable. This happens typically
for first-order quantum phase transitions that occur for
Hamiltonians that are the sum of two competing and
commuting terms giving rise, for any system size, to
energy crossings. Second-order phase transitions instead
emerge, for an increasing number of particles, from the
competition between two noncommuting operators.
Crucially, in this case, the statistics of work beyond its
second moment cannot be interpreted in terms of a simple
quantum observable [cf. Eq. (42)]. This ultimately can be
ascribed to the intrinsic noncommutativity of quantum
mechanics. In fact, for instantaneous quenches in classical
systems, the statistics of work can always be mapped onto

the equilibrium fluctuations of a classical observable,
namely, the difference of postquench and prequench
Hamiltonians ΔEðzÞ ¼ H1ðzÞ −H0ðzÞ, where z is a point
in the phase space of the classical system [64]. This feature
can be used as a witness of quantumness in the system. For
example, if the statistics of the observable ΔEðzÞ does not
obey the Jarzynski identity he−βΔEi ¼ e−βΔF, then the
system is nonclassical. An example of the evaluation of
the probability distribution of an Ising-like system with
mean-field interaction can be found in Ref. [65]. In the case
of the Ising model in a transverse field, which will be
introduced later in this paper, the classical counterpart of
the model has qualitative differences with the quantum
case, which go beyond the difference just in the commu-
tation between operators. An indirect confirmation of this
can be seen in the fact that the classical model gives a
magnetization that is different from the quantum case [66].
In light of our results, should the only difference between a
given classical model and its quantum counterpart be in the
commutation relations between the respective operators,
the first two moments of the corresponding quantum and
classical distributions of work should be equal.
As a final remark, we note that the characteristic function

of the distribution generated by the magnetization, defined
in Eq. (33), can also be reconstructed using the very same
setup suggested in Ref. [6] for the measurement of the
characteristic function of work. The scheme is reported in
Fig. 1 and implies the interaction, through a conditional
gate ĜðuÞ, of a suitably prepared controllable ancilla Awith
the system S under scrutiny. This is indeed exactly the same
as the simple illustrative case analyzed by Mazzola et al. in
Ref. [6], where the initial and final Hamiltonians commute
so that the gate G in this case is simply given by

ĜðuÞ ¼ 1 ⊗ j0ih0jA þ e−iMzu ⊗ j1ih1jA ð52Þ

and fj0iA; j1iAg is a basis of eigenstates of the Hilbert
space of the ancillary system used in the scheme. The
implementation of this proposal when S is embodied by a
quantum many-body system requires some considerations.
In fact, it would be particularly convenient to let the ancilla
interact only with one element of the many-body system, so
as to reduce the complexity of the implementation and the

FIG. 1. Circuit representation of the interferometric scheme
used to reconstruct the characteristic function of the magnetiza-
tion distribution. H represents a Hadamard gate, while G is the
main gate in the circuit given in Eq. (52).
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control required. A possible way forward is based on the
adaptation of the proposal discussed in Ref. [67]. A detailed
description of the protocol is beyond the scope of this
investigation and will be reported elsewhere.

V. THE TRANSVERSE ISING MODEL
AS A SPECIAL CASE STUDY

Having clearly identified the conditions under which the
statistics of work could reveal many-body features, in this
section we provide a clear example of a model for which an
observable that indeed does not commute with the spin-spin
Hamiltonian term remains, nevertheless, quite informative.
We have shown in Sec. IV that the second cumulant of
the work, for the noncommuting case, is not simply
proportional to the magnetic susceptibility of the model
[cf. Eq. (44)]. However, the second cumulant of the work
is proportional to the second cumulant of the magneti-
zation [cf. Eq. (43)]. If we instead move to the third
moment (cumulant) of the work, this is not even propor-
tional to the third moment (cumulant) of the magnetization
[cf. Eq. (42)]. This simple, yet fundamental, observation
makes the question of whether we can observe signatures of
quantum criticality in higher-order cumulants meaningful
and worth analyzing; in particular, this is one of the most
interesting and direct applications of our results found in
the previous sections.
We assess the statistics of work in a quantum Ising model

initially prepared in a thermal state and subjected to a
sudden quench of a transverse magnetic field. More
specifically, we consider a one-dimensional ring of N
spin-1=2 particles that interact with their nearest neighbors
via a ferromagnetic coupling along the x axis and with an
external field applied along the z axis. The zero-temperature
version of such a paradigmatic situation has been examined
in Ref. [33], while Dorner et al. [31] have analyzed the
nonzero temperature case to get insight into the dissipated
work. The Hamiltonian model reads

ĤðλÞ ¼ −XN
i¼1

σ̂xi σ̂
x
iþ1 − λ

XN
i¼1

σ̂zi ; ð53Þ

where σ̂kNþ1 ¼ σ̂k1ðk ¼ x; y; zÞ. In the thermodynamic limit
N → ∞ and at T ¼ 0, the spin system undergoes a second-
order phase transition at the critical value λc ¼ 1. The critical
point separates a ferromagnetic phase at λ < 1, where the
ground state is doubly degenerate (the spins all point in
either the positive or negative x direction), from a para-
magnetic phase at λ > 1 with a nondegenerate ground state
characterized by all the spins aligned with the mag-
netic field.
Following the formalism introduced in Ref. [31], we

report in Appendix D the typical diagonalization procedure
for the Ising model in a transverse field. The diagonal form
of the prequench Hamiltonian reads

Ĥðλ0Þ ¼
X
k∈Kþ

ϵkðλ0Þ
�
γ̂†kγ̂k − 1

2

�
ð54Þ

with Kþ ¼ fk ¼ �πð2n − 1Þ=Ng and n ¼ 1;…; N=2, as
we are restricting our attention to the even-parity subspace
of the model, and γ̂k, γ̂

†
k are fermionic operators labeled by

the values of pseudomomenta in the set Kþ. The post-
quench Hamiltonian is found to be given by the diagonal
model

ĤðλτÞ ¼
X
k∈Kþ

ϵkðλτÞ
�
γ̂0†k γ̂

0
k − 1

2

�
; ð55Þ

where the fermionic operators γ̂0k, γ̂
0†
k are different from their

prequench counterpart γ̂k, γ̂
†
k. The characteristic function

for this system is obtained by evaluating the trace in
Eq. (22) over the eigenstates of the initial Hamiltonian
with the result

χðu; τÞ ¼ 1

Zðλ0Þ
Y
k∈Kþ
k>0

× feðiuþβÞϵkðλ0Þ½C−
k ðu; λτÞ þ Sþk ðu; λτÞ�

þ e−ðiuþβÞϵkðλ0Þ½Cþ
k ðu; λτÞ þ S−k ðu; λτÞ� þ 2g;

ð56Þ

where C�
k ¼cos2ðΔk=2Þe�iuϵkðλÞ, S�k ¼sin2ðΔk=2Þe�iuϵkðλÞ,

and Δk ¼ ϕ0
k − ϕk is the difference in the prequench and

postquench Bogoliubov angles. The availability of the
analytical expression of the characteristic function allows
for the exact evaluation of both the cumulants and the
moments of the work distribution.
In what follows, we focus on the occurrence of signa-

tures of a quantum phase transition in the statistics of the
work done on the system by means of the quenched
process. Although quantum phase transitions are rigorously
defined by the nonanalyticity of the energy of the ground
state with respect to a Hamiltonian parameter, evidence of
their occurrence at finite temperature can be found [68]. It
is in this spirit that we will develop our analysis, i.e., by first
studying the case of T ¼ 0 and then moving towards a
nonzero temperature scenario to see the emergence of
irreversibility from the microscopic quantum fluctuations
responsible for the occurrence of the quantum phase
transition.
We start our investigation by studying the variance of the

work distribution versus the initial magnetic field λ0
[cf. Fig. 2]. A sharp transition from a flat region in the
ferromagnetic phase to a monotonically decreasing region
in the paramagnetic phase can be clearly seen. Furthermore,
the transition becomes sharper as the size of the system
grows. This is indicated in the figure by theN arrow. This is
due to the fact that, in the thermodynamic limit, the energy
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gap between the two lowest-lying states closes at the
critical point. Correspondingly, a ferromagnetic phase
transition is enforced. As the variance of the work dis-
tribution is proportional to the variance of the magnetiza-
tion over the initial thermal state [cf. Eq. (43)], such a
transition appears neatly in the behavior of ΔM̂2

z=N. We
want to stress that this transition is not solely ascribed to the
discontinuity of the transversal susceptibility of the model
since, as we stressed earlier, the susceptibility of the model
has an additional term ~χM, other than the variance of the
magnetization [cf. Eq. (44)]. In Fig. 2, we also examine the
influence of temperature on the variance: Needless to say,
albeit the same trend exhibited can still be appreciated, high
temperatures clearly smoothen out the sharp edge of the
transition, yet leave it clearly recognizable. This is indi-
cated by the β arrow.
In Fig. 3, we show the behavior of the correction term

~χM, normalized with respect to the number of particles,
arising from the noncommutativity between the magneti-
zation and the interaction part of the Hamiltonian
[cf. Eq. (44)]. We study this quantity with respect to the
initial magnetic field λ0, observing a transitionlike behavior
when the temperature is lowered and the number of particles
is increased. Notably, ~χM goes to zero as soon as the
temperature is increased. Thus, in the high-temperature
regime, the system behaves classically and the correction
term ~χM goes to zero.Despite the term ~χM being negative, the
susceptibility χM is always positive and it shows the typical

divergence behavior near the critical point, which we do not
report here.
Figure 4 reports the trend followed by the normalized

skewness γ
ffiffiffiffi
N

p
of the work distribution as the amplitude of

the initial magnetic field λ0 grows. Here, γ ¼ K3=σ3 with

σ ¼
ffiffiffiffiffiffiffiffiffiffi
ΔM̂2

z

q
the standard deviation of the distribution. The

skewness quantifies the asymmetry of a probability dis-
tribution and is thus quite informative. As γ is always
positive, we can infer that the area underneath the right tail
of the distribution is larger than the one under the left one.
We can see that the skewness, alongside the variance, has a
transition from an almost flat region in the ferromagnetic
phase to a monotonically increasing region in the para-
magnetic phase. This qualitatively means that the work
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FIG. 3. An additional term of the susceptibility ~χM, normalized
with respect to the number of particles, arising from the non-
commutativity between the magnetization and the interaction part
of the Hamiltonian. (Lower part of the figure) The short-dashed
line (purple) is for N ¼ 10 and β ¼ 100, the long-dashed line
(orange) is for N ¼ 20 and β ¼ 100, and the solid line (black) is
for N ¼ 100 and β ¼ 100. (Upper part of the figure) The short-
dashed line (blue) is for N ¼ 100 and β ¼ 1, the long-dashed line
(red) is for N ¼ 100 and β ¼ 5, and the solid line (green) is for
N ¼ 100 and β ¼ 20. The quench is Δλ ¼ 0.01.

FIG. 4. Normalized skewness of the work distribution γ
ffiffiffiffi
N

p
plotted against the initial value of the magnetic field λ0. The
dashed line is for N ¼ 100 and β ¼ 100, the solid one is for
N ¼ 10 and β ¼ 100, while the dotted one is for N ¼ 100 and
β ¼ 1. The quench is Δλ ¼ 0.01.

FIG. 2. Normalized variance of the work distribution ΔW2=N
plotted against the initial value of the magnetic field λ0. The solid
lines are for different numbers of spins (red for N ¼ 10, blue for
N ¼ 20, and black for N ¼ 100) at inverse temperature β ¼ 100.
The dashed lines are instead for different inverse temperatures
(purple for β ¼ 1 and green for β ¼ 5) for N ¼ 100 spins. The
process consists of a sudden quench of amplitude Δλ ¼ 0.01,
which is smaller than the minimum value of the gap in the model
ΔEmin ≈ 0.06. All the energies are considered to be in units of the
interaction coupling J between the spins, since the model in
Eq. (53) is indeed obtained by dividing the complete Hamiltonian
by J, so that λ is actually the ratio between the magnetic field
and J.
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distribution for a quench done on a spin chain initially in
the paramagnetic phase is more asymmetric than if the
system had been initially in the ferromagnetic phase. The
transition is also sharper for a higher number of spins (as
indicated in Fig. 4 by an arrow), again in light of the effects
arising when approaching the thermodynamic limit.
Figure 4 also shows the skewness at a given number of

spins for two different temperatures. The same behavior
can be appreciated, and considerations in line with those
made for Fig. 2 can be made. By varying the amplitude of
the quench Δλ, we get qualitatively similar results to those
that we have already described, thus hinting at the inde-
pendence of the results discussed so far from the size of the
quench. Thus, quite remarkably, we have demonstrated the
possibility to use the variance and the skewness of the work
distribution as witnesses of the quantum phase transition in
a transverse Ising model. This is even more interesting in
light of the fact that, as we showed, the variance of the work
is not directly proportional to the susceptibility as in the
commuting case, and the third cumulant entering the
skewness is not even proportional to a power of magneti-
zation (cf. Appendix B). Yet, the signatures of the quantum
phase transitions are very evident.
Qualitatively very similar results have been found for

any other higher cumulant of the work distribution that we
have been able to address. The irreversible work was
instead already studied in Ref. [31]. As we did for the
moments of the work, the authors analyzed the scaling of
the irreversible work with respect to the temperature and the
size of the system, finding again similar results such as
the presence of a marked signature of phase transition at the
critical point of the thermodynamical limit of the model, a
peak in that case. They also found a difference in the value
of the irreversible work between the two phases.
We now move to the assessment of the distribution

itself. In Fig. 5, we show the contour plot of the real
part of the characteristic function Re½χðuÞ� for different
sizes of the system. The contour plot is the plot of
several equipotential curves, i.e., curves ucðλ0Þ for which
ℜfχðuc; λ0 þ ΔλÞg ¼ c). As Re½χðuÞ� turns out to be an
even function of u, we restrict our attention to positive values
of this quantity.
A rather distinct functional behavior of the characteristic

function emerges between the ferromagnetic region (λ0 < 1)
and the paramagnetic one (λ0 > 1), with a discontinuity
located approximately at the interface between the two
regions. Although we have been able to study explicitly
only the case of a finite number of spins (because of the
difficulty inherent in the explicit evaluation of Re½χðuÞ� for
very large sizes of the system), the trend shown in Fig. 5
suggests a nonanalytic behavior of the characteristic function
at the critical point of the infinite model. In order to gather
further evidence of such a conjecture, we have turned to the
numerical study of the derivative of the characteristic
function with respect to the work parameter.

In Figs. 6 and 7, we show the derivatives of the curves
extracted from the contour plots. We can see in Fig. 6 that
for N ¼ 100, the derivatives display a very pronounced
change of behavior in proximity to the critical point of the
model, while in Fig. 7, for the case N ¼ 10, it is quite
evident that this flattens out. Again, the change in behavior
is more neatly pronounced when the number of particles in
the system grows, and it gets closer to λ0 ¼ 1 as the size of
the system grows.
Finally, in Fig. 8, we show Re½χðuÞ� for N ¼ 100 and

β ¼ 0.1 (thus corresponding to a high-temperature situa-
tion). As already noticed for the plots of the variance and
the skewness, also in the characteristic function we see that
the signature of the transition is sharp as long as we stay in

FIG. 5. Contour plot of the real part of the characteristic
function of work, i.e., plot of several equipotential curves [curves
ucðλ0Þ for whichℜfχðuc; λ0 þ ΔλÞg ¼ c]. The curves are plotted
for β ¼ 100, various sizes of the system, and amplitude of the
quench. In panel (a), we take N ¼ 100, Δλ ¼ 0.01, while in (b),
we have N ¼ 10, Δλ ¼ 0.1.
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the low-temperature regime, while the increase of the
temperature washes out any evidence of criticality
[cf. Fig. 5(a)]—in line with the expectation that large
temperatures would enforce the emergence of classical
thermodynamic irreversibility, masking any effects arising
from genuine quantum fluctuations [31]. These features are
strong suggestions that, also in the characteristic function
of the work, done by quenching the transverse field in the
Ising model, we can observe a signature of the phase
transition.
It is also known that the Loschmidt echo is the modulus

square of the work characteristic function [33]. Indeed, the
authors of Ref. [69] found that, for the case of the
transverse Ising model, the Loschmidt echo can be used
as a witness of the quantum phase transition. Using a

numerical analysis, Ref. [69] predicts a nonanalytical
behavior of the echo and conjectures invariance under
the transformation Δλ → αΔλ and N → N=α. This is
confirmed by our investigation. In fact, we observed the
very same scaling in our numerical analysis, as shown, for
example, in Figs. 5(a) and 5(b) obtained, respectively, for
the values N ¼ 100, Δλ ¼ 0.01 and N ¼ 10, Δλ ¼ 0.1.
Our analysis in the quest for a signature of the phase
transition in the work characteristic function can thus be
seen as complementary to the one in Ref. [69], albeit based
on different analytical tools.

VI. CONCLUSIONS

We have studied in detail the statistics of the work done
on a quantum many-body system by quenching its work
parameter. We obtained a simple relation that links the
cumulants of the distribution generated by the system
magnetization to the susceptibilities of the magnetization
itself. This gives a simple physical interpretation to all the
cumulants of the work distribution in a special case: a
process that involves an observable that commutes with the
unperturbed Hamiltonian of the system. We showed that
there are processes for which the whole nonequilibrium
thermodynamics can be obtained by simply looking at the
statistics of some quantum observables, and thus doing
single projective measurements, and other processes for
which this is not sufficient. Notably, one of the conse-
quences of this is clear when we come to study a many-
body system with a criticality. It is, in fact, nontrivial that
we should expect to observe signatures of the phase
transition in high-order moments of the work distribution.
In fact, we showed that the variance of the work is not

FIG. 6. First derivatives with respect to λ0 of some equipotential
curves of the real part of the characteristic functions for N ¼ 100,
Δλ ¼ 0.01 [cf. Fig. 5(a)]. The equipotential curves are the curves
ucðλ0Þ for which ℜfχðucðλ0Þ; λ0 þ ΔλÞg ¼ c.

FIG. 7. First derivatives with respect to λ0 of some equipotential
curves of the real part of the characteristic functions for N ¼ 10,
Δλ ¼ 0.1 [cf. Fig. 5(b)]. The equipotential curves are the curves
ucðλ0Þ for which ℜfχðucðλ0Þ; λ0 þ ΔλÞg ¼ c.

FIG. 8. Contour plot of the real part of the characteristic
function of the work for N ¼ 100 spins for temperature
β ¼ 0.1. The increase of the values of the function goes from
violet (small values) to the white (large values).
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solely ascribed to the susceptibility, and the skewness is not
proportional to a cumulant of the magnetization distribu-
tion. However, we observed a signature of the transition in
both this quantity and even in the probability distribution
itself. Recently, a procedure to experimentally measure the
characteristic function of the work by making use of a
simple interferometric scheme has been proposed [6] and
used to measure the real part of the characteristic function
of the work in a quantum system [27]. Our results thus
suggest the possibility to experimentally observe signatures
of quantum phase transitions in systems with criticality by
looking at the full statistics of the work.
We have shown that the study of the full statistics of the

work in a quantum many-body system, even in the simple
case of a sudden quench of the Hamiltonian, is not trivial.
In particular, as the work distribution strongly depends
upon the structure of the energy levels during the protocol,
there could be several physical properties of a quantum
many-body system that could be studied by making use of
the full statistics of work. The identification of the
connection between physical observables and the cumu-
lants of the work in the most general scenario, in addition
to helping us in assessing the statistics of work via single
projective measurements, could be very important in
understanding the emergence of macroscopic thermody-
namics from the fully quantum microscopic description
of the system. Indeed, this topic is one of the main
motivations behind the study of thermodynamics, and we
believe that much work still has to be done in the future in
this direction. The role played by the model that we have
studied in detail in this paper, the Ising model, as a key
benchmark in quantum many-body physics makes our
study relevant to a widespread realm of disciplines, from
condensed matter and solid-state physics to statistical
mechanics.
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APPENDIX A: RECURRENCE RELATION
BETWEEN THE CUMULANTS OF THE
MAGNETIZATION DISTRIBUTION

Given the Hamiltonian ĤðλÞ ¼ Ĥss − λM̂z, under the
hypotheses ½Ĥss; M̂z� ¼ 0, in this appendix we derive
Eq. (35). Here, we are concerned with only the thermal
state, so we will drop the subscript G used to indicate this
state. The average value of the observable M̂z in the initial
thermal state is given by

hM̂zi ¼
Tr½M̂ze−βðĤss−λ0M̂zÞ�

Zðλ0Þ
: ðA1Þ

It is easy to show that the average value of M̂n
z , for every

finite positive integer n, is obtained from the nth order
derivative of the moment generating function

Gðv; λ0Þ ¼
Tr½eivM̂ze−βðĤss−λ0M̂zÞ�

Zðλ0Þ
; ðA2Þ

similarly to the definition of the characteristic function of
the work, but with the important difference that here
we take just one projective measurement of the observ-
able M̂z. We can define the cumulants of the statistics of
M̂z as

Cn ¼
1

in
dn

dvn
logGðv; λ0Þ

����
v¼0

: ðA3Þ

Given these definitions, in this appendix we show the
validity of the relation

dn

dλ0n
hM̂zi ¼ βnCnþ1 ðA4Þ

by mathematical induction of the integer n.
The validity of Eq. (A4) for n ¼ 1 is the known result

that relates the magnetic susceptibility to the variance of the
magnetization, which is valid for ½Ĥss; M̂z� ¼ 0. Now we
suppose the validity of Eq. (A4) for n and see if it is still
valid for nþ 1,

dnþ1

dλ0nþ1
hM̂zi ¼ βn

d
dλ0

Cnþ1

¼ βn
1

inþ1

dnþ1

dvnþ1

�
d
dλ0

logGðv; λ0Þ
�����

v¼0

:

ðA5Þ
Thus, we need to evaluate the last term inside the round
brackets,
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d
dλ0

logGðv; λ0Þ ¼
d
dλ0

log

�
Tr½eivM̂ze−βðĤss−λ0M̂zÞ�

Zðλ0Þ
�

¼ 1

Gðv; λ0ÞZðλ0Þ2
�
Zðλ0Þ

d
dλ0

Tr½eivM̂ze−βðĤss−λ0M̂zÞ� − Tr½eivM̂ze−βðĤss−λ0M̂zÞ� d
dλ0

Zðλ0Þ
�
: ðA6Þ

In the last equation, the two derivatives inside round
brackets are given, respectively, by

d
dλ0

Tr½eivM̂ze−βðĤss−λ0M̂zÞ� ¼ Tr½eivM̂zβM̂ze−βðĤss−λ0M̂zÞ�
ðA7Þ

and

d
dλ0

Zðλ0Þ ¼ βZðλ0ÞhM̂zi: ðA8Þ

Plugging Eq. (A7) and Eq. (A8) into Eq. (A6), we get

d
dλ0

logGðv; λ0Þ ¼ β

�
1

i
d
dv

logGðv; λ0Þ − hM̂zi
�
: ðA9Þ

Eventually plugging the previous equation into Eq. (A5),
we obtain

dnþ1

dλnþ1
0

hM̂zi ¼ βnþ1
1

inþ2

dnþ2

dvnþ2
logGðv; λ0Þjv¼0

¼ βnþ1Cnþ2: ðA10Þ

APPENDIX B: CALCULATION OF THE nTH
MOMENT OF THE WORK DISTRIBUTION

In this appendix, we calculate the explicit expression for
the nth moments of the work following a sudden quench of
λ. To achieve this task, we need the derivatives of the
characteristic function for the sudden quench,

∂uχðu; τÞ ¼ iTr½eiuĤðλτÞðĤðλτÞ − Ĥðλ0ÞÞe−iuĤðλ0Þρ̂00�:
ðB1Þ

Thus, for the first moment, we get the well-known result

hWi ¼ Tr½ðĤðλτÞ − Ĥðλ0ÞÞρ̂00�: ðB2Þ

We now differentiate (B1) once more to get

∂2
uχðu; τÞ ¼ −Tr½eiuĤðλτÞfĤðλτÞðĤðλτÞ − Ĥðλ0ÞÞ − ðĤðλτÞ − Ĥðλ0ÞÞĤðλ0Þge−iuĤðλ0Þρ̂00�

¼ −Tr½eiuĤðλτÞfĤðλτÞ2 − 2ĤðλτÞĤðλ0Þ þ Ĥðλ0Þ2ge−iuĤðλ0Þρ̂00�: ðB3Þ

In general, ½ĤðλτÞ; Ĥðλ0Þ� ≠ 0, and this makes the term in
the curly brackets in Eq. (B3) different from ðĤðλτÞ−
Ĥðλ0ÞÞ2. Thus, when we address the second moment of the
work characteristic function, we find

hW2i ¼ Tr½ðĤðλτÞ2 − 2ĤðλτÞĤðλ0Þ þ Ĥðλ0Þ2Þρ̂00�: ðB4Þ

Using the commutation relation ½ρ̂00; Ĥðλ0Þ� ¼ 0 [ρ̂00 is the
projected part of ρ̂0 onto the eigenbasis of Ĥðλ0Þ] and the
cyclic permutation invariance of the trace, we get

hW2i ¼ Tr½ðĤðλτÞ − Ĥðλ0ÞÞ2ρ̂00�: ðB5Þ

However, for the higher moments, we have

hWni ≠ Tr½ðĤðλτÞ − Ĥðλ0ÞÞnρ̂00� ∀ n > 2: ðB6Þ

By extending the approach used in order to obtain Eq. (B3),
further, it is straightforward to see that the nth moment of
the work characteristic function can be written as

hWni ¼ Tr

"Xn
k¼0

�
n
k

�
ĤðλτÞðn−kÞĤðλ0Þkð−1Þkρ̂00

#
ðB7Þ

for any finite value of n and for any initial state ρ̂ 0
0.

APPENDIX C: CORRECTION TO THE
MAGNETIC SUSCEPTIBILITY IN THE

NONCOMMUTING CASE

In this appendix, we will show that, in the case
½M̂z;Hss� ≠ 0, the relation

χM ¼ βΔM̂2
z þ ~χM ðC1Þ

holds, and we find an explicit expression for ~χM. The
Hamiltonian under scrutiny reads ĤðλÞ ¼ Ĥss − λM̂z.
According to the definition of susceptibility, we have
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χM ≔
dhM̂zi
dλ0

¼ 1

Zðλ0Þ2
ðZðλ0Þ∂λ0Tr½M̂ze−βðĤss−λ0M̂zÞ�

− Tr½M̂ze−βðĤss−λ0M̂zÞ�∂λ0Zðλ0ÞÞ: ðC2Þ
We thus first need to calculate the derivative of the partition
function with respect to λ0, which can be cast into the form

∂λ0Z ¼ ∂λ0Tr

�
1̂ − βðĤss − λ0M̂zÞ

þ ð−βÞ2
2!

ðĤss − λ0M̂zÞ2 þ � � �
�
: ðC3Þ

Although we can invert the order of tracing and differ-
entiating, we must pay attention to the noncommutativity of

the operators. By using the cyclic permutation property
inside the trace, a straightforward calculation leads us to

Tr½∂λ0ðĤss − λ0M̂zÞn� ¼ Tr½−nM̂zðĤss − λ0M̂zÞn−1�;
ðC4Þ

which in turn gives us Tr½∂λ0e
−βðĤss−λ0M̂zÞ� ¼

Tr½βM̂ze−βðĤss−λ0M̂zÞ� and finally

∂λ0Z ¼ βZðλ0ÞhM̂zi; ðC5Þ

which is exactly the relation in Eq. (A8) that we have now
proven to be valid also for ½M̂z;Hss� ≠ 0. A very similar
calculation leads to

Tr½M̂z∂λ0ðĤss − λ0M̂zÞn� ¼ −Tr

"Xn−1
k¼0

M̂zðĤss − λ0M̂zÞkM̂zðĤss − λ0M̂zÞn−k−1
#
; ðC6Þ

which can be used to obtain

∂λ0Tr½M̂ze−βðĤss−λ0M̂zÞ� ¼ Tr½βM̂2
ze−βðĤss−λ0M̂zÞ� þ Tr

"X∞
n¼1

Xn−1
k¼0

ð−βÞn
n!

½ðĤss − λ0M̂zÞk; M̂z�M̂zðĤss − λ0M̂zÞn−k−1
#
:

ðC7Þ
Therefore, for ½M̂z;Hss� ≠ 0, the relation in Eq. (C1) holds, with the correction term given by

~χM ¼ 1

Zðλ0Þ
Tr

"X∞
n¼1

Xn−1
k¼0

ð−βÞn
n!

½ðĤss − λ0M̂zÞk; M̂z�M̂zðĤss − λ0M̂zÞn−k−1
#
: ðC8Þ

APPENDIX D: DIAGONALIZATION OF THE
ISING MODEL IN A TRANSVERSE FIELD

In this appendix, we diagonalize the model

ĤðλÞ ¼ −XN
i¼1

σ̂xi σ̂
x
iþ1 − λ

XN
i¼1

σ̂zi ; ðD1Þ

by mapping the spin operators into spinless fermionic ones
defined as

ĉj ¼
1

2

Yj−1
l¼1

σ̂zl ðσ̂xj þ iσ̂yjÞ; ĉ†j ¼
1

2

Yj−1
l¼1

σ̂zl ðσ̂xj − iσ̂yjÞ:

ðD2Þ

We can define the parity operators

P̂� ¼ 1

2

"
1�

YN
j¼1

ð1 − 2ĉ†j ĉjÞ
#
; ðD3Þ

which are projectors on subspaces with even (Pþ) and odd
(P−) numbers of c quasiparticles, and H� are the corre-
sponding reduced Hamiltonians,

Ĥ ¼ P̂þĤþP̂þ þ P̂−Ĥ−P̂−: ðD4Þ

The only difference between Hþ and H− is that in Hþ, we
impose the antiperiodic boundary condition ĉNþ1 ¼ −ĉ1,
and in H− we impose the periodic boundary condition
ĉNþ1 ¼ ĉ1. The parity of the chain is a good quantum
number, so the dynamics does not mix the two parity
subspaces. The state we deal with is a thermal state, so in
principle, wewould need to take both subspaces into account.
However, we are interested in the thermodynamical limit, and
in this limit, it is known that the results are also exact when
considering only one parity projection of the Hamiltonian.
That is why, in general, in this paper we make the identi-
fication Ĥ ¼ Ĥþ and we do not distinguish between them
anymore. The following step in the diagonalization is a
Fourier transformation, which is accomplished by
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ĉj ¼
e−iπ=4ffiffiffiffi

N
p

X
k∈Kþ

ĉkeikj ðD5Þ

with Kþ ¼ fk ¼ �πð2n − 1Þ=ng and n ¼ 1;…; N=2, as
we are restricting our attention to the even-parity subspace of
the model. Then, we apply the Bogoliubov transformation

ĉ�k ¼ γ̂�k cosðϕk=2Þ ∓ γ̂†∓k sinðϕk=2Þ; ðD6Þ

with the Bogoliubov angles defined as

cosðϕkÞ ¼
λ − cosðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ðkÞ þ ½λ − cosðkÞ�2
p

sinðϕkÞ ¼
sinðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ðkÞ þ ½λ − cosðkÞ�2
p ; ðD7Þ

andfγ̂k; γ̂†kg is a set of fermionic operators.With this notation,
the diagonal form of the prequench Hamiltonian reads

Ĥðλ0Þ ¼
X
k∈Kþ

ϵkðλ0Þ
�
γ̂†kγ̂k − 1

2

�
; ðD8Þ

with the dispersion relation

ϵkðλÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðkÞ þ ½λ − cosðkÞ�2

q
: ðD9Þ

Following an analogous approach, the postquench
Hamiltonian is found to be given by the diagonal model

ĤðλτÞ ¼
X
k∈Kþ

ϵkðλτÞ
�
γ̂k

0†γ̂0k − 1

2

�
ðD10Þ

obtained from Eq. (D8) with λ0 → λτ and γ̂k → γ̂0k. The
characteristic function for this system is obtained by evalu-
ating the trace in Eq. (22) over the eigenstates of the initial
Hamiltonian. Thus, we need to express the postquench
Hamiltonian eigenbasis in terms of the prequench eigenbasis.
To this aim, we first need to connect the two classes of
fermionic operators. This is done by simply inverting
Eq. (D6) for both the prequench and postquench fermionic
operators, obtaining the relations

γ̂0k ¼ γ̂k cosðΔk=2Þ þ γ̂†−k sinðΔk=2Þ
γ̂0−k ¼ γ̂−k cosðΔk=2Þ − γ̂†k sinðΔk=2Þ; ðD11Þ

and Δk ¼ ~ϕk − ϕk is the difference in the prequench and
postquenchBogoliubov angles. The relation between the two
vacuum states is

j0k; 0−ki ¼
�
cos

�
Δk

2

�
þ sin

�
Δk

2

�
γ̂0†k γ̂

0†
−k
�
j00k; 00−ki:

ðD12Þ
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