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SUMMARY  

     

   Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by 

myokymia and attacks of ataxic gait precipitated by stress events.  Several genetic mutations have 

been identified in the Shaker-like K
+
 channel Kv1.1 (KCNA1) of EA1 individuals, including the 

V408A which results in remarkable channel dysfunction.  By inserting heterozygous V408A 

mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1
V408A/+

).  Here, we 

hypothesized that dysfunction of Kv1.1 channels in sciatic nerve of Kv1.1
V408A/+

 ataxia mice leads to 

neuromuscular hyperexcitability and to abnormal susceptibility to different stressors.  By using in 

vivo preparations of lateral gastrocnemius (LG) nerve–muscle from Kv1.1
+/+

 and Kv1.1
V408A/+

 mice, 

we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated 

singlets, duplets or multiplets, despite sciatic nerve axotomy.  Two-photon laser scanning 

microscopy from the sciatic nerve, ex vivo, revealed spontaneous Ca
2+

 signals that occurred 

abnormally only in preparations dissected from Kv1.1
V408A/+

 mice.  The spontaneous bursting 

activity, as well as that evoked by motor nerve stimulation, was exacerbated by muscle fatigue, 

ischemia and low temperatures.  These stressors also increased the amplitude of muscle compound 

action potential.  Such abnormal neuromuscular transmission did not alter fiber type composition 

neuromuscular junction and vascularization of LG muscle analyzed by light and electron 

microscopy.  These findings indicate that dysfunction of Kv1.1 channels results in sciatic nerve 

hyperexcitability and myokymia/neuromyotonia in Kv1.1
V408A/+

 ataxia mice.  Moreover, this study 

sheds new light on the functional role played by K
+
 channels segregated under the myelin sheath, 

which becomes crucial in certain situations of physiological stress.  
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INTRODUCTION 

     

   Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder affecting both the 

central nervous system (CNS) and peripheral nervous system (PNS) that results from heterozygous 

mutations in the Shaker-like K
+
 channel Kv1.1 (KCNA1; for review see Pessia and Hanna, 2010; 

Kullmann, 2010; Rajakulendran et al., 2007).  The hallmark of EA1 is continuous myokymia 

(muscle twitching with a rippling appearance, intermittent cramps and stiffness) and episodic 

attacks of generalized ataxia with jerking movements of head, arms, legs and loss of balance.  How 

dysfunction of Kv1.1 channels triggers these episodes is entirely unknown. Other neuromuscular 

findings include unusual hypercontracted posture, abdominal wall muscle contraction, elbow, hip, 

and knee contractions and shortened Achilles tendons that may result in tiptoe walking.  Myokymia 

is commonly detected in individuals with EA1 during and between attacks and, usually, it is evident 

as a fine rippling in perioral or periorbital muscles and by lateral finger movements when the hands 

are held in a relaxed, prone position.  Electromyographic (EMG) recordings show that spontaneous 

myokymia is distinguished by a pattern of either rhythmically or arrhythmically occurring singlets, 

duplets, or multiplets.  Both attacks of ataxia and periods of more intense myokymic activity are 

precipitated by a number of stresses including exercise or fatigue.  In some individuals myokymic 

discharges may become apparent or gradually rise in frequency and intensity after the application of 

regional ischemia.  Temperature changes may affect myokymia and trigger attacks of ataxia 

(Eunson et al 2000).  It is has been postulated that myokymia and neuromyotonia result from motor 

unit hyperexcitability, although, the neurophysiological mechanisms underlying these symptoms 

remain largely obscure.  

A knock-in animal model of EA1 has been generated by inserting the heterozygous EA1 mutation 

V408A in one Kv1.1 allele: Kv1.1
V408A/+

.  These animals displayed abnormal cerebellar basket cell 

─ Purkinje cell synaptic transmission.  Furthermore, isoproterenol administration to Kv1.1
V408A/+

 

animals, a procedure that produces stress-fear responses, induced motor dysfunctions in 
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Kv1.1
V408A/+ 

animals similar to EA1 (Herson et al., 2003).  This evidence clearly demonstrated that 

dysfunction of Kv1.1 channels, caused by a very subtle heterozygous mutation in Kcna1 (valine to 

alanine substitution), alters the transmission of signals within a distinct cerebellar circuitry.  To 

date, the neuromuscular transmission of Kv1.1
V408A/+ 

animals has not been investigated. 

Action potentials (AP) propagate rapidly in myelinated axons by saltatory conduction.  The 

juxtaparanodal regions of myelinated axons express a macromolecular membrane complex 

composed of Kv1.1, Kv1.2, their accessory subunit Kv1.2 and the contactin-associated protein 

Caspr2 (Vacher et al.,  2008; Wang et al., 1993; Poliak et al., 1999).  This macromolecular complex 

has been found also at the level of the axons branching in both the CNS and PNS (Tsaur et al., 

1992; Wang et al., 1994).  The absence of myelin-covered K
+
 channels Kv1.1, caused by genetic 

inactivation of Kcna1, results in temperature-sensitive neuromuscular transmission (Zhou et al., 

1998, 1999, 2001).  Here, we postulated that dysfunction of Kv1.1 channels in Kv1.1
V408A/+

 ataxia 

mice leads to sciatic nerve hyperexcitability and to abnormal susceptibility of the neuromuscular 

transmission to physiologically relevant stressors.  Indeed, by using both in vivo and ex vivo LG 

muscle-nerve preparations from Kv1.1
+/+

 and Kv1.1
V408A/+

 mice we show that such mutation results 

in spontaneous muscle discharges and abnormal Ca
2+

 signaling in sciatic nerve.  Moreover, stresses 

such as fatigue, ischemia and lower temperatures induce delayed repetitive discharges in mutant 

mice only.  Overall, this study sheds new light on the functional role played by juxtaparanodal K
+
 

channels composed of Kv1.1 subunits which becomes crucial under certain situations of 

physiological stress.  
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METHODS 

 

Surgical procedures  

This study was carried out on laboratory bred adult (P90±10 days) Kcna1
+/+

 and Kcna1
V408A/+

 male 

mice. The procedures that involve the use of animals are in accordance with the regulations of the 

Italian Animal Welfare Act and approved by the local Authority Veterinary Service and in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals.  Sodium penthotal at 

the indicated dosage (50 mg Kg
-1

 i.p.) was used to induce and maintain anesthesia. The level of 

anesthesia was verified by a stable heart rate and pupillary diameter throughout the experiment. The 

trachea was cannulated and end-tidal CO2 concentration was monitored throughout all experiments. 

When necessary, the animals were artificially ventilated. The femoral blood pressure was measured 

and maintained at a constant level within the physiological range. The body temperature was 

controlled by maintaining the rectal temperature close to 37.5 °C using a feedback-regulated 

heating blanket. Under a dissecting microscope, the nerve and the LG muscle were isolated in the 

poplitea fossa and all other hindlimb muscles were denervated. The central stump of the sciatic 

nerve was sectioned at its entry into the posterior leg fossa. The legs were fixed by clamping the 

hip, knee and ankle. The Achilles’ tendon was detached from its distal insertion and connected to a 

strain gauge.  A recording chamber bordering the surgery site was applied in order to submerge the 

LG muscle and its nerve in mineral oil that was maintained at 37 °C by using a servocontrolled 

thermoresistance. A pair of platinum stimulating wires were placed on the sciatic nerve, with the 

cathode towards the muscle. To activate motor fibres, single pulses of 0.1 ms duration and with 

0.18—0.22 µA intensity were delivered.  The intensity of the stimulus was adjusted in order to 

evoke half-maximal mCAP.  
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EMG recording 

For bipolar recordings of spontaneous or evoked EMG activity, paired hook wires (0.1 mm 

diameter, copper) were inserted by hollow needles into the medial portion of the LG muscle, 

approximately 1 mm above nerve entry.  The electric signal was amplified by using a Grass P511 

amplifier (Quincy, MA, USA) with the filters set at 10-500 Hz and stored using an ATMIO 16E10 

acquisition and analysis system (National Instrument, Austin, TX, USA).  The EMG activity was 

rectified and integrated. To exclude the noise from the signal, any electrical activity of amplitude 

lower than any recognizable motor unit EMG activity was eliminated. 

 

Muscular tension  

LG muscle tension was measured by using a force transducer (F03 Grass, Quincy, MA, USA).  The 

optimal muscle length (L0) for the maximal twitch force was determined and all force recordings 

were then performed at this optimal length.  Most of the muscle mechanical recordings were 

performed in isometric condition with the external load exceeding the maximal force production (4 

g load).  Some experiments were performed in quasi-isotonic condition with a minimal load (10 mg 

load).  Contractions were elicited by electrical stimulation delivered by bipolar platinum electrodes 

placed on the isolated nerve of the LG muscle.  

 

Muscle fatigue 

LG muscle fatigue was induced by high frequency stimulation (HFS) trains delivered to the LG 

motor nerve (a train lasted 600 ms at a fusion frequency of 85 Hz, with a 1 s interval between each 

train).  To induce different degrees of fatigue, HFS trains lasting 30, 60, 180 s were applied.  The 

effect of fatigue on the muscle force was evaluated by measuring both the force decay during HFS 

trains and the twitch peak tension elicited 10 s before and after stimulation.  Fatigue index was 

calculated as the area on the envelope around the force curve for the second minute divided by that 

for the first minute of the test. 
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Muscular ischemia and temperature 

To provoke muscle ischemia, the artery and venous vessels supplying the LG muscle were 

temporarily occluded for 3 minutes at their entry into the muscle using a micro-bulldog clip. The 

effect of ischemia on twitch force was recorded in combination with the EMG activity. The 

recording temperature was lowered in two degree steps from 36°C to 22°C and raised again to 36°C 

by changing the setting point of the thermoresistence.  

 

Analysis of EMG recordings 

The EMG activity was integrated in 1 sec epoch. The values were normalized with respect to the 

integrated value of the muscle compound action potential (mCAP) evoked  at the beginning of each 

experiment (EMG integration/mCAP integration) to compare the responses obtained from different 

experiments. This procedure is based on the assumption that the mCAP are not different between 

Kcna1
+/+

 and Kcna1
V408A/+

 mice. To examine the time course of the responses elicited by the 

electrical stimulation during the early periods, EMG integration was performed in 100 msec epoch.  

These values were multiplied by a factor of 100 in order to obtain data comparable with those 

calculated in 1 second epoch.  The statistical analysis was performed by using Student’s paired t-

test and ANOVA. A difference of p<0.05 was considered to be statistically significant. 

 

LG nerve-muscle dissection and dye loading 

Mice from both groups were anaesthetized with an intraperitoneal injection of chloral hydrate (4% 

in saline solution) and an incision was made under a surgical microscope on the left side at mid 

thigh level to expose the sciatic nerve via blunt dissection.  The sciatic nerve in the thigh was 

removed along with the underlying part of the caudofemoralis muscle (still attached to the nerve by 

the posterior mesoneurium) and immediately transferred in a holding chamber containing aCSF 

gassed with 95% O2 and 5% CO2 at room temperature. The aCSF was composed of (mM) 126 

NaCl, 3.5 KCl, 1.3 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 25 NaHCO3, and 10 glucose, pH 7.4.   
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To image Ca
2+

 signals in the sciatic nerve the whole preparation was incubated for 2 h in Fluo3-AM 

(Invitrogen) according with a previously published procedure (MacLean and Yuste 2005).  Briefly, 

Fluo-3 AM (50µg) was dissolved in 48µl of DMSO and 2 µl of 20% pluronic acid to make a 1mM 

solution.  This stock solution was then added to 5ml of oxygenated aCSF to give a final 

concentration in the bath of 10µM fluo-3 AM.  To the same mixture, the red emitting Ca
2+

 

insensitive reference indicator sulforhodamine 101 (SR-101) was added to a final concentration of 

100µM (Ren et al., 2000).  The Ca
2+

 indicator was chosen for several reasons. Most importantly, 

the quantum efficiency of fluo-3 AM is relatively high and the signal-noise ratio can be greater than 

many of the other commercially available dyes.  The SR-101 was used to image axon profiles in the 

nerve and to confirm through a series of image pairs collected simultaneously from both detector 

channels (red and green) that the regions of interest (defined by the appearance of Ca
2+

 signals) 

were localized within the axonal profiles. 

 

Two-photon laser scanning microscopy 

The whole LG nerve-muscle preparation was then transferred to a mini submerged chamber (0.5ml) 

with a coverglass bottom (Warner Instrument Corporation, Hamden, CT) mounted on the stage of 

an upright multiphoton microscope.  To prevent movement during image acquisition, the 

preparation was secured by means of a nylon mesh glued to a U shaped platinum wire that totally 

submerged the tissue in a continuously flowing aCSF at a rate of 3 ml/min (oxygenated with 95% 

O2/5% CO2; warmed to 33±1°C) and washed for 1h before recording.  High-resolution ex vivo two-

photon imaging was performed with a custom-modified Olympus BX50W1 upright microscope 

(Olympus, Tokyo, Japan) designed for low dispersion. The system includes Keplerian beam 

expanders with IR introduction light paths to achieve perfect excitation efficiency and highly 

resolved multiphoton images.  A mode-locked MaiTai HP DeepSee laser system (Spectra-Physics) 

with a tuneable Ti: sapphire oscillator (690-1040 nm) used as the excitation light source (pulse 

width < 100fs; pulse repetition rate 80Mhz) and controlled through an acousto-optical-modulator to 
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allow for precise changes in laser intensity.  The Group Velocity Dispersion was electronically 

compensated by a prism-coupled pre-chirper and the beam diameter adjusted by a Keplar telescope. 

Images where acquired with a water-based 25X Olympus XLPLN25xWMP multiphoton objective 

(NA 1.05, WD 2.0) and FluoView imaging software using time-series. Excitation wavelength was 

810nm.  Two-channel detection of emission wavelength was achieved by using a 565-nm dichroic 

(Chroma) and two external photomultiplier tubes.  A 515/560 bandpass filter (Chroma) was used to 

detect fluo-3 AM emission wavelength, and a 590/650 bandpass filter (Chroma) was used to detect 

SR-101 signals.  Time series of fluorescent images were collected with the following parameters: 

128 x 128 pixel images, optical zoom 4 x with x25 objective (N.A. 1.05), 200 frames, 850 

ms/frame, 3-µs pixel dwell time, laser power of about 50 mW at sample.  Bidirectional scanning 

was used to increase scan speed and scanners were always calibrated for XY alignment before each 

acquisition. Ca
2+

 signals were recorded as changes in mean pixel intensity in defined regions of 

interest (axonal fibres) over time and expressed as the change in fluorescence divided by the 

baseline fluorescence (ΔF/F0) (Ren et al 2000; MacLean and Yuste 2005).  To compare the changes 

in fluorescence intensity recorded from the sciatic nerve of both Kv1.1
+/+

 and Kv1.1
V408A/+

 mice, a 

moving average smoothing was performed, i.e. an average of every five consecutive data points was 

calculated and plotted on a graph.  Three standard deviations were then added to the moving 

average.  Any data points of F that lay outside these three standard deviations were regarded as a 

significant change from the mean.  χ
2
 analysis was then performed to assess for any statistical 

significant difference between the number of data points outside three standard deviations for both 

groups of animals. 

 

Optical and electron microscopy  

LG muscles were snap-frozen in isopentane/liquid nitrogen, and maintained in liquid nitrogen until 

use. Routine haematoxylin and eosin, Gomori-modified Trichrome and NADH staining were 

performed by using 8 μm-thick cryosections. A small fragment of muscle tissue from contralateral 
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LG was fixed in 4% glutaraldehyde in phosphate buffer, post-fixed in 2% osmium tetroxide, 

dehydrated and embedded in Spurr resin. Ultrathin sections were stained with uranyl acetate and 

lead citrate and examined with a Philips 410 electron microscope.  

Capillary density and diameters were measured on griffonia simplicifolia lectin I (GSL I)-stained 

sections at 40X magnification using the NIH Image software version 1.62 

(http://rsb.info.nih.gov/nih-image) as previously described (Zanotti et al., 2005). Twenty fields from 

each animal were analyzed. Briefly, fields of equal size were photographed and digitalized. By 

using a software, a threshold was applied to the micrographs to obtain black and white images with 

areas positive for lectin I in black and negative areas in white. The number of capillaries was 

counted and the diameters measured in each field. The mean±SD was then obtained for each group 

from the total of all analyzed fields. Cryosections were incubated for 120 min at room temperature 

in biotinylated GSL I diluted 1:200 (Vector Laboratories, Burlingame, CA, USA) and followed by a 

60 min incubation in Rhodamine Red
TM

-X-conjugated avidin diluted 1:250 (Molecular Probes, 

Eugene, OR, USA). Sections were examined under a Zeiss Axioplan fluorescence microscope. 
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RESULTS 

 

Spontaneous neuromuscular activity in Kv1.1
V408A/+ 

ataxia mice  

EMG recordings were carried out, in vivo, from LG muscle of Kv1.1
+/+

 (n =10) or Kv1.1
V408A/+ 

(n = 

10) mice in isometric condition at L0.  The motor nerve supplying LG muscle was centrally severed 

to eliminate the influence of the CNS on EMG activity.  Spontaneous EMG activity was observed 

in 6 out of 15 Kv1.1
V408A/+ 

 mice, while it was never observed in Kv1.1
+/+

 mice (Fig. 1A).  The 

bursting activity observed in the Kv1.1
V408A/+

 mice consisted of patterns of singlets, duplets or 

multiplets of variable amplitudes (50-500 V).  The burst frequency varied among the Kv1.1
V408A/+ 

 

animals and ranged from 1 to 5 bursts/s.  In Kv1.1
V408A/+ 

mice, displaying spontaneous EMG 

activity, the integrated EMG value (1 sec epoch)
 
was similar to that of the muscle compound action 

potential (mCAP), evoked by electrical stimulation, so the EMG/mCAP ratio was ~1 (Fig. 1C).  

This normalized value was significantly different from that calculated for Kv1.1
+/+

 mice (p<0.001).  

In the same group of mice, single electric pulses were delivered every one second to the peripheral 

stump of the LG motor nerve.  Electric shocks evoked direct EMG responses in both groups of mice 

mostly characterized by typical triphasic mCAPs occurring with a distinct delay (Fig.1B).  The 

electric shock also elicited early and delayed bursting activity in all Kv1.1
V408A/+ 

 mice but not in 

Kv1.1
+/+

 (Fig.1B).  By normalising the integrated area of the delayed evoked activity for 

Kv1.1
V408A/+ 

(EMG/mCAP) we observed a significant increase of this value compared to either that 

evoked in Kv1.1
+/+

 or spontaneously occurring in Kv1.1
V408A/+ 

 mice (Fig.1C).  The delayed 

discharges reached a maximal intensity within 300-600 msec after the electric shock and declined 

thereafter (Fig. 1D). Thus, the EMG response elicited by axon stimulation displayed a biphasic 

shape, denoting a sequence of events that leads to early and rebound abnormal activity.   
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The sciatic nerve of Kv1.1
V408A/+ 

 mice displays spontaneous Ca
2+

 signals  

To investigate the role played by the sciatic nerve in the myokymic activity observed form 

Kv1.1
V408A/+ 

ataxia mice, Ca
2+ signals were recorded by fluorescent imaging of the sciatic nerve, ex 

vivo, previously loaded with the calcium sensitive dye fluo-3 AM (Lev-Ram and Ellismann 1995).  

In one set of experiments, the sciatic nerve branching over the LG muscle was visually localized.  

Afterward, two-photon laser scanning microscopy (2P-LSM) imaging of this structure from 

Kv1.1
V408A/+

 mice revealed intense Ca
2+

 signals occurring spontaneously (Fig.2B,E).  In another set 

of experiments, the localization of Ca
2+

 signals within sciatic nerve branches, dissected from 

Kv1.1
V408A/+

 mice, were confirmed by using the Ca
2+

 insensitive reference indicator sulforhodamine 

101 (SR-101) that allowed the direct visualization of the axon profiles in the nerve.  Therefore, the 

fluorescence values (∆F/F0) determined in both experimental conditions were combined.  In nerves 

from Kv1.1
V408A/+

 mice, Ca
2+

 signals occurred in bursts characterized by singlets, duplets or 

multiplets of variable amplitude and frequency that ranged from 0.8 to 4.5 bursts/s (Fig.2B).  To 

estimate the overall intensity of these signals the fluorescence values (∆F/F0) were integrated and 

averaged.  The values for Kv1.1
V408A/+

 nerves (n = 5) were remarkably higher then the Kv1.1
+/+

 (n = 

5; Fig.2C; ANOVA; p<0.001).  Although such dramatic Ca
2+

 transients were never observed from 

preparations dissected from Kv1.1
+/+

 mice and imaged as described above, some recordings 

displayed oscillations in fluorescence intensity (Fig. 2A).  To provide for these changes, a moving 

average smoothing was calculated for each set of data of every experiment and any data points of 

F that lay outside three standard deviations were regarded as a significant change in fluorescence 

from the mean (see methods).  The χ
2
 analysis revealed a remarkable statistical difference between 

the Kv1.1
+/+

 and Kv1.1
V408A/+

 data sets (Fig.2D; p<0.001).  These results strongly suggest that the 

abnormal Ca
2+

 signals in sciatic nerve of Kv1.1
V408A/+

 mice are due to the insertion of a 

heterozygous V408A mutation in their Kcna1 gene. 

 

 



13 

 

Influence of muscle fatigue on LG muscle force and EMG activity 

To study the responses of LG muscle to stress which typically mimic muscle fatigue, trains of high 

frequency stimulations (HFS) were applied to the LG motor nerve.  In isometric condition at L0, 

HFS trains induced similar muscle fatigue in both Kv1.1
+/+

 (n = 15) and Kv1.1
V408A/+ 

 (n= 15) mouse 

types. This is shown by the similar reductions of tetanic and twitch peak tension in both groups of 

animals (Fig.3A,C). The tension decreases were 62±1.5% and 63±2%, respectively (p>0.05; 

Fig.3C).  The time constants (τ) of the tetanic tension decay and the fatigue index (FI) were also 

similar (Kv1.1
+/+

: τ = 21±1 s and FI =0.53; Kv1.1
V408A/+

: τ =25±3s and FI = 0.52; p>0.05; 

Fig.3D,E). Complete twitch tension recovery occurred within 25-30 min.  This and its progression 

over time occurred similarly in both groups of mice (p>0.05; Fig.3F).  HFS trains were also 

delivered while keeping the Kv1.1
V408A/+ 

muscle in ―quasi-isotonic‖ condition.  In this condition 

there was a twitch tension decrease of less than 5%, indicating that muscle fatigue was minimal 

(Fig.3B).  

LG muscle tension measurements were performed concomitantly with EMG recordings (Fig.4 

inset). The EMG activity in Kv1.1
+/+

 
 
mice remained silent before and after the tetanic stimulation 

throughout the entire recovery period from fatigue (Fig.4A).  Conversely, fatigue stimulation 

increased spontaneous EMG bursting activity by eliciting singlets, duplets and multiplets from 

Kv1.1
V408A/+ 

 mice (Fig.4B). EMG bursting was enhanced when the resting activity was present (4 

out of 10 animals), while it become apparent and more intense when the spontaneous activity was 

absent (6 out of 10 animals).  The value of the integrated spontaneous EMG activity for Kv1.1
V408A/+ 

 

mice became maximal ~10-15 min after the end of HFS trains, reaching ~2.5-fold increase 

compared to pre-fatigue values. Thereafter, it diminished to approach the pre-fatigue value 

(Fig.4B,C).  Statistical comparison of the EMG integrated values calculated after the end of fatigue 

stimulation for Kv1.1
+/+

 and 
 
Kv1.1

V408A/+ 
 mice were significantly different (p< 0.001).  In another 

group of mice the activity evoked in response to electric pulses delivered to the motor nerve was 

examined. The EMG activity following electric shocks remained silent in all Kv1.1
+/+

 
 
animals (n = 



14 

 

15) before and after muscle fatigue induction (Fig.4A).  By contrast, a delayed bursting activity was 

recorded from Kv1.1
V408A/+

 mice (n =15) both in silent pre-fatigue muscles (9 out of 15) and in 

bursting muscles (6 out of 15). The post-stimulus activity was maximal ~10 min after HFS, when it 

reached ~12-fold increase compared to pre-fatigue level and, then, declined to approach the control 

value 25-30 min later (Fig.4B,D).  The after-discharges increased immediately after the electric 

shock, presented a second peak at ~300-400 msec post-stimulus and declined thereafter (Fig.4E).  

The analysis of the muscle compound action potential (mCAP) was also performed by integrating 

the evoked three-phasic waves before and after HSF trains. In Kv1.1
+/+

 mice, the evoked responses 

showed ~15% reduction immediately after the fatiguing stimulation and returned to control level 

(Fig.5A,C).  Conversely, mCAPs increased remarkably in Kv1.1
V408A/+ 

 muscles, reaching a 

maximal amplitude (~5-fold increase) ~15 min after HSF trains (Fig.5B,C).   

To assess the role of the degree of muscle fatigue on the induction of bursting, HFS trains were 

delivered while keeping the Kv1.1
V408A/+ 

muscle in ―quasi-isotonic‖ condition.  Under this condition 

muscle fatigue was minimal (see Fig.3B) and EMG bursting activity was neither significantly 

increased when spontaneously present nor elicited in silent Kv1.1
V408A/+ 

muscles (Fig.6A; p>0.05).  

Also the duration of HFS trains were changed in isometric conditions to induce different degrees of 

muscle fatigue in Kv1.1
V408A/+ 

mice.  HFS trains lasting 30, 60 and 180 sec induced muscle tension 

decrease of ~35%, ~55% and ~62%, respectively.  In all these different fatigue conditions the 

bursting activity, as well as the mCAP were enhanced (Fig.6A,B).  In particular, mCAP amplitude 

(measured just after HFS delivery) increased linearly with tension decrease while it did not change 

in ―quasi-isotonic‖ condition (R =0.98, p<0.001; Fig.6B).  

 

Optical and electron microscopy analysis of LG muscle and nerve preparations  

The repetitive firing of the Kv1.1
V408A/+

 muscle fibers combined with clinical findings reporting 

enlargement of gastrocnemius fiber type I and II diameters in some EA1 individuals (Van Dyke et 

al., 1975) prompted us to perform morphological studies on LG muscle sections and nerves derived 



15 

 

from Kv1.1
+/+

 and Kv1.1
V408A/+ 

 adult mice (Fig.7A).  LG muscles dissected from these animals had 

similar muscle mass.  This is demonstrated by the insignificant statistical difference between the 

ratios of the muscle-to-body weight, which were 5.4±0.03mg/g and 5.3±0.04mg/g, respectively 

(n=30; p>0.05).  Histograms of the frequency distribution for fiber type I and type II diameters were 

constructed for both Kv1.1
+/+

 and Kv1.1
V408A/+

 LG muscles and the average diameters for both fiber 

types were similar (Fig.7B-G).  Finally, the electron microcopy analysis of the neuromuscular 

junction also revealed not obvious differences (Fig.7A).  We also investigated the possible effects of 

repetitive firing on muscle vascularization.  However, neither the capillary density nor the capillary 

diameter of LG muscles for both Kv1.1
+/+

 and Kv1.1
V408A/+

 mice were significantly different 

(Fig.8A-C).  Taken together these findings imply that the spontaneous and fatigue-induced LG 

neuromuscular hyper-excitability do not results in major morphological changes in LG muscles 

from Kv1.1
V408A/+ 

mice.  

 

Ischemia exacerbates LG nerve-muscle excitability in Kv1.1
V408A/+ 

 mice  

To induce ischemia, the artery and venous vessels supplying the LG nerve and muscle of Kv1.1
+/+

 

(n=5) and Kv1.1
V408A/+ 

(n=5) mice were temporarily occluded (3 min; Fig.9 inset). The effectiveness 

of ischemia was evaluated indirectly by measuring muscle twitch tension in isometric conditions 

(Fig.9A). Twitch tension decreased ~60% at the end of the ischemic period, without significant 

differences between Kv1.1
+/+

 and Kv1.1
V408A/+ 

 muscles (p>0.05; Fig.9A).  After vessel re-opening, 

twitch tension gradually recovered within ~30 min in both groups of animals.  EMG activity was 

recorded before, during ischemia and reperfusion while delivering single electric shock to sciatic 

nerve.  In none of these conditions after-discharges were ever detected in Kv1.1
+/+

 mice (Fig.9B).  

Whereas, in 4 out 5 Kv1.1
V408A/+

 animals ischemia elicited delayed activity consisting of singlets, 

duplets and multiplets (Fig.9C). In the remaining mouse, the spontaneous activity was present in 

resting conditions and it was increased by ischemia.  The dynamics of the EMG activity 

enhancement and of the twitch tension decrease differed.  Indeed, the former continued to increase 
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during the early period of reperfusion reaching a peak of activity ~5 min after vessel re-opening 

(Fig.9D).  Thereafter, EMG activity decreased over a period of 20-30 min (Fig.9D). The electric 

shock induced a biphasic increase of the after-discharges which reached an early peak soon after the 

stimulus and a second peak at 400 msec. This activity declined within 1 sec (Fig.9F).  Moreover, 

the mCAP elicited in Kv1.1
V408A/+ 

mice increased progressively, starting 2 min after ischemia 

induction, reached ~6-fold increase ~5 min after vessel reopening and declined thereafter (Fig.9E).  

Conversely, ischemia reduced the mCAP in Kv1.1
+/+

 mice (Fig.9E).  Interestingly, both the bursting 

activity (Fig.9D) and the mCAP enhancement induced by ischemia (Fig.9E) displayed a similar 

time course.  The overall statistical evaluation of the effects of ischemia on the integrated values of 

bursting activity and mCAP calculated for Kv1.1
+/+

 and Kv1.1
V408A/+ 

 mice resulted in significant 

differences (p<0.01).   

 

V408A mutation in Kv1.1 channels confers marked temperature-sensitivity to neuromuscular 

transmission in adult mice 

EMG recordings were performed from Kv1.1
+/+

 (n=7) and in Kv1.1
V408A/+ 

(n=7) mice while the 

temperature was lowered in two degree steps from 36°C to 22°C and raised again to 36°C by 

changing the setting point of the thermoresistence (Fig.10 inset).  Single electrical motor nerve 

stimulation never elicited abnormal delayed discharges from Kv1.1
+/+

 mice when the recording 

temperature was lowered (Fig.10A).  By contrast, cooling induced post-stimulus discharges were 

either brought about in 5 out of 7 Kv1.1
V408A/+ 

 mice or increased in the remaining 2 animals, in 

which discharges were present, spontaneously (Fig.10B).  The EMG recordings were characterized 

by the presence of randomly distributed singlets, duplets and multiplets that resembled those 

observed under fatigue and ischemia.  The analysis of the integrated EMG activity (calculated 

during the post-stimulus periods and every two degrees of cooling) showed that bursting was either 

evoked or enhanced when temperature was lowered below 28-26°C (Fig.10C).  It reached a 

maximal intensity at 22°C, whereby ~12-fold increase compared to the control value was 
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calculated.  Bursting was more intense immediately after the electric shock and declined thereafter 

(Fig.10D).  The analysis of mCAP at 22°C yielded a slight decrease for Kv1.1
+/+

 and a slight 

increase for Kv1.1
V408A/+

muscles, which resulted in a significant difference between the two groups 

of animals (Fig.10E). 

 

 

DISCUSSION 

 

The main finding of this study is that Kv1.1
V408A/+

 ataxia mice display hyper-excitability of the 

motor units which is exacerbated by stress events such as fatigue, ischemia and lower temperatures.  

The hyper-excitability is demonstrated by the abnormal presence of EMG bursting activity and Ca
2+ 

signals in resting conditions and by the stress-induced enhancement of both bursting and mCAP.  

This bursting and such large Ca
2+ signals have never been observed in Kv1.1

+/+
 mice.  These 

findings are pertinent to the understanding of the mechanisms underlying EA1 symptoms caused by 

the altered transmission of impulses in myelinated PNS nerves such as neuromyotonia/myokymia, 

difficulty in breathing (Shook et al 2008) and their abnormal susceptibility to stressors.  

Furthermore, this study highlights the crucial role played by Kv1.1 channels in the PNS also during 

physiologically relevant stress events. 

 

Hyper-excitability of the sciatic nerve 

The peripheral source of spontaneous and evoked bursts from Kv1.1
V408A/+

 mice is confirmed in our 

in vivo experimental setting since they are observed in the presence of centrally severed sciatic 

nerve.  The hyper-excitability of the sciatic nerve of Kv1.1
V408A/+

 mice is also demonstrated by the 

presence of abnormal Ca
2+

 signals in branches of the nerve, ex vivo.  Noteworthy, the pattern of 

both EMG activity and of the Ca
2+

 signals recorded from Kv1.1
V408A/+

 preparations is remarkably 

similar, denoting close correlations between these events.  It has been shown that the sources of the 
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Ca
2+

 signals associated with sciatic nerve activity are Ca
2+

 entry through plasma membrane 

channels as well as the release of Ca
2+

 from intracellular stores in both axons and Schwann cells 

(Lev-Ram and Ellismann 1995; Zhang et al., 2006, 2010; Chiu et al., 1999, 2011).  Based on this 

and our evidence, we suspect that the spontaneous electrical discharges occurring in the axon of 

sciatic nerve from Kv1.1
V408A/+

 animals activates Ca
2+

 influx and Na
+
 dependent release of Ca

2+
 

from mitochondria at nodes of Ranvier.  Furthermore, such discharges are expected to depolarize 

the nearby Schwann cells, inducing Ca
2+

 entry through plasma membrane channels as well as Ca
2+

 

activated Ca
2+

 release from ryanodine-dependent stores.  Taken together these findings reveal that a 

point mutation that causes well documented Kv1.1 and Kv1.1/Kv1.2 channel dysfunction (Adelman 

et al., 1995; D’Adamo et al., 1998, 1999; Zerr et al., 1998), triggers spontaneous electrical 

discharges in peripheral motor units and increases their responsiveness to electrical stimuli.  The 

presence of Kv1.1 channels at both juxtaparanodal regions and branch points of sciatic nerves and 

their absence at both the end-plate and muscle fibers (Arroyo et al., 1999; Vacher et al., 2008; Zhou 

et al., 1998) suggest that the place of induction of hyper-excitability is the axon and its terminals. 

Experiments performed by using Kv1.1 knock-out mice indicate that the sources of abnormal 

activity are the terminals of the motor nerve.  It has been proposed that the progressive reduction of 

inter-nodal length and the lack of juxtaparanodal Kv1.1 channels lead to re-entrant excitation of 

nodes (Zhou et al., 1998, 1999).  Our evidence obtained by using Kv1.1
V408A/+

 animals and Ca
2+

 

imaging experiments indicates that the spontaneous discharges occur in branches of the nerve, 

although it does not exclude the involvement of the terminals.   

It has been shown that both homomeric Kv1.1 and heteromeric channels comprised of Kv1.1 and 

Kv1.2 subunits contribute significantly to setting the resting potential of transfected cells and that 

EA1 mutations impair this function.  Moreover, the mutation V408A reduces markedly both the 

mean-open duration and the deactivation rates of the channel and slightly lowers surface expression 

(D’Adamo et al., 1999).  These effects may increase the excitability of branch points and axons, 

where Kv1.1/Kv1.2 channels are highly clustered, by shifting their resting potentials to more 
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depolarized values.  As a consequence, discharges may occur spontaneously in axons and action 

potential propagation failures at branch points may be reduced.  During intense neuronal activity the 

C-type inactivation of Kv channels accumulates modifying both the firing rate and the shape of the 

action potential (Aldrich et al., 1979).  V408A channels enter the C-type inactivated state with a 

faster rate constant (D’Adamo et al., 1999).  Thus, during high frequency spiking, the accumulation 

of this inactivation process may further reduce the availability of channels, further increasing the 

juxtaparanodal membrane resistance.  As a result, the length constant of the axon would increase 

and the current is able to spread further along the inner conducting core.  These effects may 

contribute to further exacerbate bursting activity during fatigue in Kv1.1
V408A/+

 mice where this 

mutation has been inserted.  Thus, in physiological conditions Kv1.1 channels may enable sciatic 

nerve to dampen the node-inter-node electrotonic coupling and prevent re-entrant excitation. 

It should also be mentioned that during intense activity K
+
 ions accumulate in the tiny peri-

internodal space reaching concentrations ranging between 20 to 100 mM.  Thus, the above 

mentioned V408A channel dysfunctions may decrease K
+
 accumulation in the peri-internodal 

space.  Low extracellular K
+
 concentrations during high frequency spiking may render the nerve re-

excitable and result in repetitive discharges. 

 

Super-excitability induced by muscle fatigue, ischemia and temperature 

It is know that fatigue intensifies myokymia and body stiffness and precipitates attacks of 

generalized ataxia in individuals affected by EA1.  Here we found that fatiguing stimulations of LG 

nerve-muscle of Kv1.1
V408A/+

 mice, in isometric condition, enhance spontaneous and evoked EMG 

activity.  Also an enhancement of the mCAP was observed from Kv1.1
V408A/+

 mice that is consistent 

with increased nerve excitability in response to electrical stimuli.  In fact, the electrical stimulation 

(which was set at 50% of the intensity required to evoke the maximal mCAP amplitude) may be 

able to recruit other motor units, normally under-threshold, or vary their conduction to increase 

synchrony.  Spontaneous and evoked activities increased a few minutes after fatigue and then 
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decreased in parallel with fatigue recovery.  The causative role of nerve hyper-activation and 

muscle movement in the excitability enhancement seems to be of minor importance, since it was not 

observed after the delivery of HFS trains in ―quasi isotonic‖ condition, whereby the nerve was 

hyper-activated, as in isometric condition but, the muscle presented large displacements in response 

to each stimulation train and did not exhibit fatigue.  Moreover, there was a direct relationship 

between the mCAP amplitude increase and the degree of fatigue.  Therefore, muscle fatigue is 

crucial for triggering bursting activity and it may depend on a ―muscular factor‖ which modulates 

pathways also interfering with nerve excitability.  The activity-induced K
+
 efflux, lactic acid 

production, pH changes and inorganic phosphate (Pi) accumulation are some of the events 

mediating muscle fatigue.  The concentration of these factors change remarkably in the interstitium 

during fatigue and by diffusing to nerve structures may contribute to the phenomena observed from 

Kv1.1
V408A/+

 mice.  On the other hand, normally functioning Kv1.1 channels present at the level of 

the axon of Kv1.1
+/+

 animals appear to counterbalance this effect maintaining the excitability of 

these structures within a physiological range.   

As regards the super-excitability induced by ischemia, it is known that in some EA1 individuals 

myokymic activity becomes apparent from the EMG recording only after the application of regional 

ischemia (Pessia and Hanna, 2010).  We observed, from mutated animals only, that ischemia 

induced abnormal bursting activity characterized by random singlets, duplets and multiplets and 

mCAP enhancement.  However, there was no difference in the effect of ischemia on muscle tension 

in either mutated or wild-type animals, as shown indirectly by the twitch amplitude decay, during 

the ischemic period and its recovery.  Noteworthy, Brunt and Van Weerden (1990) reported a 

recruitment of new and large multiplets, enlargement of pre-existing complexes with extra spikes 

following ischemia in EA1 individuals.  This excess of activity began 0.5-1 min after reversal of 

ischemia, reached a maximum at 2-5 min and gradually declined over 10-15 min.  Strikingly, both 

the time course and the overall appearance of burst activity in Kv1.1
V408A/+

 mice, during ischemia 

and reperfusion, match that reported for affected individuals, suggesting that similar mechanisms 
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underlie these responses in rodents and humans.  During the initial ischemic insult there is a 

conversion of muscle metabolism from aerobic to anaerobic that provokes increased concentrations 

of H
+
, ATP depletion, release of K

+
 and of Pi.  Noticeably, some of these events also induce muscle 

fatigue.  It is then possible that these factors, individually or jointly, may exacerbate the excitability 

of myelinated nerves and trigger bursting activity in Kv1.1
V408A/+

 mice since the mutated channels 

are unable to counteract their effects.  

The action of temperature is less straightforward in EA1 patients.  The exposure of the forearm to 

warm or cold temperatures may increase or decrease myokymic activity recorded from a hand 

muscle.  We consistently observed that temperatures lower than 28°C induce bursting activity in 

response to nerve stimulation of adult Kv1.1
V408A/+ 

mice only.  In addition, it is likely that the effect 

of cooling is always to enhance the evoked response, since a low temperature slightly reduced the 

amplitude of mCAP in Kv1.1
+/+

 mice, whereas it slightly enhanced the mCAP in Kv1.1
V408A/+

 mice.  

These findings demonstrate that the V408A mutation in Kv1.1 channels confers marked 

temperature-sensitivity to neuromuscular transmission in adult Kv1.1
V408A/+

 ataxia mice, similarly to 

young Kv1.1 knock-out mice (Zhou et al., 1998).  A number of cellular mechanisms may explain 

the cold induced hyper-excitability, including the temperature-dependence of ion channel kinetics 

and of the AP shape.  Zhou and colleagues (1998) proposed the mechano-induced and cholinergic 

autoreceptor-induced activity as the two likely mechanisms involved in the temperature-sensitivity 

of Kv1.1 knock-out mice. Whether or not these apply to Kv1.1
V408A/+

 ataxia mice still remains to be 

investigated.  

 

Abnormal bursting activity does not alter the morphology of LG muscle of Kv1.1
V408A/+

 mice 

Bilateral calf hypertrophy, enlargement of type I and type II gastrocnemius muscle fibers and 

variable glycogen depletion have been observed in some EA1 individuals (Van Dyke et al., 1975; 

Demos et al., 2009; Kinali et al., 2004).  Since these changes have not been consistently reported 

among patients, a noticeable interfamilial and intrafamilial phenotypic variability can be invoked to 
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account for these observations.  The optical and electron microcopy analysis of LG muscles from 

Kv1.1
V408A/+

 mice did not reveal obvious changes in fibers types, neuromuscular junction and 

vascularization.  This evidence suggests that anomalous bursting activity may not be sufficiently 

intense so as to induce muscle transformation and mechanical changes in Kv1.1
V408A/+

 mice, during 

their development through adulthood.  Whether the variability in repetitive muscle activation and 

excitability increment observed in EA1 individuals underlies the inconsistent effect on muscle 

morphology remains to be explored.   

Overall, this study points out that Kv1.1
V408A/+

 ataxia mice recapitulate some neuromuscular defects 

reported for EA1 individuals and represent an excellent animal model for the study of  mechanisms 

precipitating attacks of disabling symptoms.  In addition, the insertion of V408A mutation in 

mammals provides a unique tool for the manipulation of neuromuscular transmission, which cannot 

be achieved by pharmacological intervention and, helps in the identification of the physiological 

workings of the PNS.  

 

Conclusion 

We show that Kv1.1 channels with altered function result in hyper-excitability of the sciatic nerve 

that generates discharges spontaneously, without the influence of the CNS.  Stress events such as 

fatigue, ischemia and lower temperatures further exacerbate motor units excitability.  Furthermore, 

our study sheds new light on the functional role played by axonal Kv1.1 channels that appear to 

regulate motor units excitability during the course of muscle fatigue, when the motor nerve could be 

exposed to physiological factor(s) that interfere with nerve excitability and impulse conduction.  
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FIGURE LEGENDS 

 

Figure 1 

Kv1.1
V408A/+

 ataxia mice display spontaneous muscle discharges 

EMG recordings from LG muscles of Kv1.1
+/+

 (top traces) and Kv1.1
V408A/+ 

(bottom traces) 

showing the spontaneous activity (A) and that following the nerve-evoked mCAP (B). 

Enlargements of the traces are reported below to show the shape of the spontaneous and evoked 

repetitive muscle activity for Kv1.1
V408A/+

 that was absent in all Kv1.1
+/+

 mice tested. (C) Bar graphs 

showing the averaged values of the integrated bursting activity normalized to the integrated mCAP 

(EMG/mCAP) either in resting conditions (spontaneous) or during the post-stimulus periods 

(evoked) for both Kv1.1
+/+

 (open bars, n = 10) and Kv1.1
V408A/+

 mice (dashed bars, n = 10). Note 

that for Kv1.1
V408A/+

 mice the evoked EMG activity is remarkable higher also compared to their own 

spontaneous level of activity
 
 (**p<0.01, ***p<0.001). (D) Plot of the EMG activity evoked in 

Kv1.1
V408A/+ 

mice as a function of time. The integrated values were calculated just after the mCAP 

and multiplied by 10. Note that the single shock stimulation of the motor nerve elicited an 

immediate induction of EMG activity, followed by a second peak 400-600 msec later that gradually 

decayed. Data are means  SEM of 10 animals. 
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Figure 2 

Ca
2+

 signals occur spontaneously within the sciatic nerve of Kv1.1
V408A/+

 ataxia mice 

Representative traces showing changes in Ca
2+ 

signals over time recorded from the sciatic nerve of 

Kv1.1
+/+

 (A) and Kv1.1
V408A/+ 

(B) mice.  (C) Bar graph showing the averaged values of the 

integrated fluorescence signals (∆F/Fo) for both Kv1.1
+/+

 (open bars, n = 5) and Kv1.1
V408A/+

 mice 

(dashed bars, n = 5).  Note that the integrated Ca
2+ 

fluorescence recorded in resting conditions from 

the sciatic nerves of Kv1.1
V408A/+

 mice is remarkable higher then in normal animals  

(ANOVA;***p<0.001).  (D) Bar graph showing the number of F data points that lay outside three 

standard deviations from the mean fluorescence recorded from the sciatic nerves of both Kv1.1
+/+

 

(open bars) and Kv1.1
V408A/+

 (dashed bars; χ
2
 analysis: ***p<0.001).  (E) Representative series of 

two-photon imaging acquired before (top panel) and during the occurrence of abnormal Ca
2+

signals 

(bottom panel, boxed area) in a small branch of the sciatic nerve visualized within a LG muscle 

dissected from a Kv1.1
V408A/+

 mouse. 

 

Figure 3 

Fatigue of LG muscle induced by high frequency motor nerve stimulation  

Sample traces showing muscle fatigue induced from Kv1.1
V408A/+

 mice by HFS trains in isometric 

condition (A) and ―quasi-isotonic condition‖ (B). Twitch (arrow) and tetanic (filled circle) muscle 

contractions were elicited before and after fatiguing stimulation. Note the remarkable tension 

decrease that occurred only in isometric condition. (C-E) Bar graphs showing the effect of fatigue, 

induced in isometric condition, on muscle tension decrease (C; the values were calculated at the end 

of HFS trains), time constants of tetanic tension decay (D; peak tension values were fitted with a 

single exponential function) and fatigue index (E; tension (2’ min)/ tension (1’ min) for Kv1.1
+/+

 (open 

bars) and Kv1.1
V408A/+ 

(dashed bars) mice. (F) Time course of the recovery from muscle fatigue for 

Kv1.1
+/+

 (open square) and Kv1.1
V408A/+ 

(filled square). Concerning the overall effects of fatigue, 
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note that there is no significant difference between the two groups of animals (p>0.05). Data are 

means  SEM of 15 animals.  

 

Figure 4 

Fatiguing HFS trains enhance spontaneous and evoked bursting activity in Kv1.1
V408A/+ 

 mice 

Cartoon showing the experimental configuration for EMG recording and muscle fatigue induction 

(inset on the left hand side up). (A,B) Sample traces of EMG recorded from LG muscles of Kv1.1
+/+

 

(A) and Kv1.1
V408A/+ 

(B) mice showing the spontaneous activity and that evoked by motor nerve 

stimulation. Recordings were performed before (pre) and at different periods elapsing from the 

delivery of HFS trains (time reported on the left side). (C,D) Plots showing the spontaneous (C; 

n=10) and evoked (D; n= 15) integrated EMG activity determined before and after fatiguing 

stimulation (indicated by a horizontal bar: HFS) for both Kv1.1
+/+

 (open square)  and Kv1.1
V408A/+ 

(filled square) mice. The time course of the recovery of twitch tension from fatigue (dotted line) is 

reported above each plot for direct comparison. Note that only in Kv1.1
V408A/+ 

 mice fatiguing 

stimulations increase remarkably both the spontaneous and evoked EMG activity. Respectively, 

these bursting activities reached a peak ~15 and ~10 min after HFS trains. (E) Plot of the integrated 

EMG activity for Kv1.1
V408A/+ 

mice determined during 1 sec epoch elapsing from the sciatic nerve 

stimulation. Note that the electric shock induces an immediate increase of the EMG activity, 

followed by a second peak 300-400 msec later. 

 

Figure 5 

Fatiguing HFS trains increase the mCAP of Kv1.1
V408A/+ 

 mice  

mCAP evoked from LG muscles of Kv1.1
+/+

 (A) and Kv1.1
V408A/+ 

(B) mice and recorded before 

(pre) and after the delivery of HFS trains (the time at which the evoked potentials are recorded and 

analyzed is reported on the left hand side). (C) Plot of the integrated mCAP as a function of time 

elapsing from HFS trains delivery and normalized to pre-fatigue value for  Kv1.1
V408A/+

 (filled 
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square; n= 15) and Kv1.1
+/+

 (open square; n= 15) mice. The time course of the recovery of twitch 

tension from fatigue (dotted line) is reported above the plot for direct comparison. Note that 

fatiguing stimulations increase remarkably the mCAP of Kv1.1
V408A/+

 mice, which reached a peak 

15 min after the delivery of HFS trains. Conversely, the same procedure reduced slightly the mCAP 

of Kv1.1
+/+

 muscles. 

 

Figure 6 

Dependence of EMG responses to nerve stimulation intensity 

(A) Bar graph of the evoked EMG bursting activity elicited by HFS trains and integrated in either 

isometric or ―quasi-isotonic‖ condition (n= 5). Note that the bursting activity in isometric condition 

was significantly higher than quasi-isotonic condition (***p<0.001). (B) Integrated mCAP values 

were determined in either ―quasi isotonic‖ condition, upon the delivery of HFS trains lasting 180 

sec (isotonic) or in isometric condition by varying the duration of HFS trains from 30 to 180 sec. 

This procedure was used to induce different degrees of fatigue. The circles include the responses of 

four Kv1.1
V408A/+ 

mice under the conditions indicated on the right hand side. Linear regression was 

used to fit the data points (dashed line). Note that the integrated mCAP values increase linearly with 

the intensity of the stimulations. 

 

Figure 7 

Normal morphology of LG nerve-muscle of Kv1.1
V408A/+ 

mice. 

(A) Representative photomicrographs of LG muscles and of neuromuscular junctions from 

Kv1.1
V408A/+ 

(top panels) and Kv1.1
+/+

 (bottom panels) mice. The morphology of the muscle was 

analyzed by Gomori Trichrome (GTR) and Hematoxylin-Eosin (H&E) and the fiber type 

composition by NADH (x200). (ElM) Electron microscopy photomicrographs of the neuromuscular 

junctions (x4400). Frequency distribution for type I (B, C) and type II (E, F) muscle fibers 

calculated for the mouse strains indicated on top.  Bar graphs showing the average diameter of fiber 
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type I (D) and type II (G) for Kv1.1
+/+

 and Kv1.1
V408A/+ 

 muscles. Note that muscle morphology and 

fiber type composition were normal for both Kv1.1
+/+

 and Kv1.1
V408A/+ 

 mouse strains. 

 

Figure 8 

The distribution and dimension of capillaries in LG muscle is similar between Kv1.1
+/+

 and 

Kv1.1
V408A/+  

mice  

(A) Immunostaining of capillaries with GSL I for the indicated mouse strains (x400). Bar graphs 

showing the mean diameter of capillaries (B) and the number of capillaries per mm
2
 (C) in the LG 

muscle dissected from the two groups of animals.  

 

Figure 9  

Effects of ischemia on the mechanical responses and EMG activity of LG muscle  

Cartoon showing the experimental configuration (inset on the left hand side up). (A) Muscle twitch 

tension decrease during and after 3 min of occlusion of artery and venous blood vessels supplying 

the LG muscle of Kv1.1
+/+

 (open squares) and Kv1.1
V408A/+ 

(filled squares) mice. The horizontal 

bars marked I (ischemia) in panels A, D, E indicate the period during which ischemia was induced. 

(B,C) EMG recordings from LG muscles of Kv1.1
+/+

 (B) and Kv1.1
V408A/+ 

mice (C) after sciatic 

nerve stimulation by single electric shock. The representative traces were recorded before (pre), 

during ischemia and at different periods following the reperfusion of the LG nerve and muscle 

(indicated on the left hand side of traces). Note that while this procedure does not affect the EMG 

responses from Kv1.1
+/+

, it exacerbates delayed bursting activity in Kv1.1
V408A/+

 animals. (D) Time 

course of integrated and normalised EMG bursting activity for Kv1.1
+/+

 (open squares; n =5) and 

Kv1.1
V408A/+ 

(filled squares; n =5) before, during and after ischemia. The twitch tension decrease 

(dotted line) is timely matched above plots D and E for direct comparison. (E) Plot of the integrated 

mCAP before, during and after ischemia for both Kv1.1
+/+

 (open squares) and Kv1.1
V408A/+ 

(filled 

squares) mice. Note that both bursting activity and the mCAP were increased remarkably by 
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ischemia in Kv1.1
V408A/+

 mice. These effects were maximal just after blood re-perfusion, while the 

twitch tension reduction was maximal at the third minute of ischemia (dotted line). Conversely, 

ischemia reduced slightly and temporarily the mCAP in Kv1.1
+/+

 mice (n=5; *p<0.05). (F) Plot of 

the integrated EMG activity for Kv1.1
V408A/+ 

mice determined during 1 sec epoch elapsing from the 

sciatic nerve stimulation. Note that the electric shock induces an immediate increase of the EMG 

activity followed by a second peak ~400 msec later and a gradual decay to pre-stimulus values. 

 

Figure 10  

Effects of temperature on EMG activity of LG muscle  

Cartoon showing the experimental configuration (inset on the left hand side up). EMG recordings 

from LG muscles of Kv1.1
+/+

 (A) and Kv1.1
V408A/+ 

(B) upon sciatic nerve stimulation. The 

representative traces were recorded while varying the temperature of the LG muscle-nerve 

preparation gradually from 36°C to 22°C and back to 36°C (reported on the left hand side of sample 

traces). Note that cooling exacerbates delayed bursting activity in Kv1.1
V408A/+

 while it does not 

affect the responses of Kv1.1
+/+

 animals. (C) Averaged EMG activity estimated as integral of the 

entire post-stimulus periods and every two degrees of cooling for Kv1.1
+/+

 (open squares; n = 7) 

and Kv1.1
V408A/+

 (filled squares; n = 7). Note that bursting activity was exacerbated by cooling 

below ~28°C and reached maximal intensity at 22°C. (D) Averaged EMG activity recorded at 22°C, 

expressed as integrated values and plotted as a function of the post-stimulus duration for both 

Kv1.1
+/+

 (open square) and Kv1.1
V408A/+ 

(filled square) mice. Note that bursting activity reached the 

maximal intensity ~100 msec after the electric shock and declined thereafter. (E) Bar graph of the 

integrated mCAP recorded at 22° from Kv1.1
+/+

 (open bar) and Kv1.1
V408A/+ 

(dashed bar) mice 

normalized to the mCAP recorded at 36°C (n=7; *p<0.05). 
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