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Abstract In this paper we extend our previous semi-Markov reward model which
attached costs to duration in states, by including costs of making a transition from
one state to another. Theoretical results concerning the moments and consequently
the distribution of interval costs for every member and of the total cost per unit
period at any time and also through time intervals are obtained and provided in
analytic form for the semi Markov reward model with discounting. The results are
applied to an open healthcare system. In the healthcare domain such transition
costs allow us to evaluate the overall costs of therapy or clinical intervention where
an operation or other treatment may be an option. This model can be used for
strategic approaches to planning and evaluating long-term patient care. The results
demonstrate the potential of the model to demonstrate differential costs of different
therapeutic strategies and explore optimal solutions.
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1 Introduction

We have previously used semi-Markov systems to describe movements of individuals
between states (McClean et al. 2004, 2008; Papadopoulou 2001, 2004, 2010; Vassiliou
and Papadopoulou 1992). The movements may be actual or virtual and described by
a phase-type distribution (McClean and Millard 2006). This model can be extended
to a semi Markov reward model (Howard 1971) for open and closed systems, with
Poisson admissions and an absorbing state. The distribution of costs at any time and
in a given time interval were also previously evaluated and expressions found for the
corresponding means and variances. In literature, basic definitions and theoretical
results for the homogeneous semi-Markov reward processes can be found in Howard
(1971). De Dominicis and Manca (1986) provided the first results on the transient
behaviour of the semi-Markov reward processes and applied them to insurance
disability problems. In Balcer and Sahin (1986) two extensions of a semi-Markov
reward model of pension accumulation are examined and expressions for the mean
expected benefits are derived. A multivariate reward process defined on a semi-
Markov process is studied in Masuda and Sumita (1991) and transform results for
the distributions of the multivariate reward processes are derived. In Masuda (1993)
partially observable semi-Markov reward processes are examined and the condi-
tional distribution of the vector with total rewards is studied. A general definition of
rewards can be found in Limnios and Oprisan (2001) and the study of the asymptotic
behaviour of semi-Markov reward process in Reza Soltani and Khorshidian (1998).
Later, in Papadopoulou (2004) closed analytic forms for the main formulas of the
expected reward that the semi Markov system generates are provided. In Jianyong
and Xiaobo (2004) average reward semi-Markov decision processes with multichain
structure are examined. Also, McClean et al. (2004) provides formulas for semi
Markov rewards by means of probability generating functions. In Papadopoulou and
Tsaklidis (2007) reward paths for semi Markov models with stochastic selection of the
transition probabilities are studied. Furthermore, transition rewards are studied in
Janssen and Manca (2007) and higher order moments and variance for semi-Markov
rewards are treated numerically in Stenberg et al. (2006) for the homogeneous case
and Stenberg et al. (2007) for the non-homogeneous case.

In this paper we have extended the previous semi-Markov reward model to
include costs of making a transition from one state to another. Thus in the healthcare
domain, for example, we may evaluate the overall costs of therapy or a clinical
intervention by adding additional costs and states. This model can be used to de-
termine costs for the entire system for different strategies thus facilitating a systems
approach to planning and a holistic approach to costing. For the healthcare domain
such models can help us to assess the complex relationship between hospital and
community care where there may be possible trade-offs between hospital treatment
costs and community care costs. An advantage of our approach is that it allows
us to compare different strategies for groups of patients moving through hospital
and community care. Stroke disease is particularly amenable to such an approach
as patients that do not receive appropriate therapy or rehabilitation in a timely
manner may subsequently build up huge costs over time within Social Services
in nursing homes and other care facilities. Modeling can assess where and how
stroke patients should be treated. In particular, thrombolysis (clot busting drugs), if
administered at the right time can produce substantial improvements, both in terms
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of cost and quality of life, by preventing patients from incurring longer term costs in
the community.

In this paper we extend our previous semi-Markov reward model to an open
system that includes costs of making a transition from one state to another, as well
as occupancy costs. This model can be used for strategic approaches to planning
and evaluating long-term patient care. The results demonstrate the potential of
the models to incorporate differential costs of different therapeutic strategies and
explore optimal solutions. In Section 2 we provide theoretical results concerning
the moments and consequently the distribution of interval costs for every mem-
ber of the system and of the total cost per unit period at any time and also
through time intervals are obtained and provided in analytic form for the semi
Markov reward model with discounting. In Section 3 an example application of
the model in the healthcare domain is presented. The model and the results of
Section 2 are used for costing thrombolysis services within a hospital. Finally,
in Section 4 conclusions for the theory and the application of the present are
provided.

2 Moments and Distribution of the Semi Markov Cost Model with Discounting

Let us consider a discrete time semi Markov system with finite state space S =
{1,2,. . . ,k} and the embedded chain defined by the transition probability matrix P =
{pij}i, j∈S and the holding time mass function matrix H(m) = {hij(m)}i, j∈S. Holding
time mass functions hij(m) express the probabilities that a member that entered state
i at the last transition holds m time units in i before the next transition, given that state
j has been selected. Let also kij be the cost of making a transition from state i to j and
ci the cost for occupying state i during a time interval of length 1. Now, if β denotes
a discount factor, then the present value of a unit sum paid n time units in the future
equals βn, 0 < β ≤ 1 (Howard 1971). Thus, the present value of cost produced by a
member of the system who entered state i at time s and decided to make a transition
to state j after m time units in state i, equals (1 − β)−1 βs(1 − βm)ci + βs+mkij. In
paragraph 2.1 we provide for every r the analytic form of the present value of the
r-th moments of cost spent by the system for a member through a time interval.
In paragraphs 2.2 and 2.3 we provide results concerning the present value of the
moments of the total cost for the system for one time unit interval and also for the
interval (0, n).

2.1 Moments of Interval Cost for the Chain with Discounting

The Mean Costs Let us now define by Ti
t,n,β the present value of cost spent by the

system for a member until time n given that the member is recruited at time t to
state i and the discount factor is β. Let also vi (t, n, β) be the expected value of
Ti

t,n,β , i.e., vi(t, n, β) = E(Ti
t,n,β) and v(t, n, β) = [v1(t, n, β), ..., vk(t, n, β)]′ the vector

of the expected present values of cost through the interval (t, n], with v(n,n,β) = 0.
In the following theorem a closed analytic form in relation with the basic parameters
is provided for the vector v(t,n,β).
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Theorem 2.1 The vector v(t,n,β) of the present value of the expected cost through the
interval (t, n] is described by the following equation

v(t, n, β) = (G(n − t)1′)♦c1(t, n, β) + b1(t, n − t, β)

+
n−t∑

j=2

[E( j − 1)] [(G(n − t − j + 1)1′)♦c1(t + j − 1, n, β)

+ b1(t + j − 1, n − t − j + 1, β)
]

(2.1)

where

G(n) = diag

⎧
⎨

⎩

k∑

j=1

p1 j

∞∑

m=n+1

h1 j(m), ...,

k∑

j=1

pkj

∞∑

m=n+1

hkj(m)

⎫
⎬

⎭ ,

c1(t, n, β) = [
(1 − β)−1(β t − βn)c1, ..., (1 − β)−1(β t − βn)ck

]′
,

♦ denotes the Hadanard (elementwise) product,

b1(t, n, β)=
n∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]
1′

=
⎧
⎨

⎩

k∑

j=1

pij

n∑

m=1

hij(m)[(1−β)−1β t(1−βm)ci+β t+mkij]
⎫
⎬

⎭
i=1,2,...k

,

and E(n) = {eij(n)}i, j∈S stands for the matrix of the entrance probabilities to a state after
time n, whose E(n) analytic form is:

E(n) = [P♦H(n)] +
n∑

j=2

[P♦H( j − 1)][P♦H(n − j + 1)]

+
n∑

j=2

j−2∑

x=1

S j(x, mx)[P♦H(n − j + 1)],

where

E(0) = I, S j (x, mx) =
j−x∑

mx=2

j−x+1∑

mx−1=1+mx

· · ·
j−1∑

m1=1+m2

x−1∏

r=−1

[P♦H(mx−r−1 − mx−r)]

if j ≥ x + 2, and S j (x, mx) = 0, if j < x + 2.

Proof Using probabilistic argument we derive the following recursive equation

vi(t, n, β) =
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)(1 − β)−1(β t − βn)ci

+
k∑

j=1

pij

n−t∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]

+
k∑

j=1

pij

n−t∑

m=1

hij(m)v j(t + m, n, β).
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In matrix notation the previous equation becomes

v(t, n, β)=(G(n−t)1′)♦c1(t, n, β)+b1(t, n−t, β)+
n−t∑

m=1

[P♦H(m)]v(t+m, n, β). (2.2)

From Eq. 2.1 by applying a similar methodology with that of Papadopoulou (2004)
we can derive the vector of the mean costs through the interval (t, n] for every
member in closed analytic form which is given in Eq. 2.1. �	

The Expected Squared Costs Define as

v2
i (t, n, β) = [

the expected present value of the squared cost for (t, n] given that a

member entered state iat time t and the discount factor is β
]
.

Now we define the following matrices:
CKx(t, m, β) is a k×k matrix, CKx(t, m, β)={

((1−β)−1β t(1−βm)ci+β t+mkij)
x
}

for every x = 1,2,..., and CK0(m) = U, cx(t, n, β) is a k × 1 vector, where cx(t, n, β) ={
cx

i [(1 − β)−1(β t − βn)]x
}

for every x = 1,2,..., vx(t, n, β) = {
vx

i (t, n, β)
}

is a k × 1
vector where vx

i (t, n, β) is equal to the present value of the x-th moment of cost until
time n given that a member entered state i at time t, for every x = 2,3,..., bx(t, n, β),
x = 1,2,..., is a k × 1 vector such that,

bx(t, n, β) =
n∑

m=1

[[P♦H(m)]♦CKx(t, m, β)
]
1′

=
⎧
⎨

⎩

k∑

j=1

pij

n∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]x

⎫
⎬

⎭
i=1,2,...k

.

Thus, if we denote by v2(t, n, β) = [v2
1(t, n, β), ..., v2

k(t, n, β)]′ the vector of the present
value of the expected squared costs we can provide by the following theorem a closed
analytic form for v2(t, n, β) in relation with its basic parameters.

Theorem 2.2 The vector of the present value of the expected squared costs for the
interval (t, n] is given by the equation

v2(t, n, β) = D(t, n, β) +
n−t∑

j=2

[E( j − 1)][(D(t + j − 1, n, β)], (2.3)

where

D(t, n, β) = (G(n−t)1′)♦c2(t, n, β) + b2(t, n−t, β)+2
n−t∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]

×
⎡

⎣(G(n − t − m)1′)♦c1(t + m, n, β) + b1(t + m, n − t − m, β)

+
n−t−m∑

j=2

[E( j − 1)][(G(n − t − m − j + 1)1′)♦ c1(t + m + j − 1, n, β)

+ b1(t + m + j − 1, n − t − m − j + 1, β)]
⎤

⎦ .
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Proof Using probabilistic argument we can result to the following recursive
equation

v2
i (t, n, β) = E

[(
Ti

t,n,β

)2
]

=
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)
[
(1 − β)−1

(
β t − βn)]2

c2
i

+
k∑

j=1

pij

n−t∑

m=1

hij(m)E
[(

(1 − β)−1β t(1 − βm)ci + β t+mkij + T j
t+m,n

)2
]

=
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)[(1 − β)−1(β t − βn)]2c2
i

+
k∑

j=1

pij

n−t∑

m=1

hij(m)E
[[(1 − β)−1β t(1 − βm)ci + β t+mkij]2

]

+
k∑

j=1

pij

n−t∑

m=1

hij(m)E
[
2[(1 − β)−1β t(1 − βm)ci + β t+mkij]T j

t+m,n,β

]

+
k∑

j=1

pij

n−t∑

m=1

hij(m)E
[
[T j

t+m,n,β ]2
]

=
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)[(1 − β)−1(β t − βn)]2c2
i

+
k∑

j=1

pij

n−t∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]2

+2
k∑

j=1

pij

n−t∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]v j(t + m, n, β)

+
k∑

j=1

pij

n−t∑

m=1

hij(m)v2
j (t + m, n, β) . (2.4)

Then, using the previous definitions we can derive Eq. 2.4 in matrix notation as
follows

v2(t, n, β) = (G(n − t)1′)♦c2(n, t, β) + b2(t, n − t, β)

+2
n−t∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]
v(t + m, n, β)

+
n−t∑

m=1

[[P♦H(m)]]v2(t + m, n, β), (2.5)

with initial condition v2(n, n, β) = 0.
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Equation 2.5 expresses recursively the expected squared costs for the interval
(t, n]. Now, by applying the result of Theorem 2.1 in relation with Eq. 2.5 and
following a similar technique with that of Papadopoulou (2004) we can prove
Eq. 2.3 �	

Moments of Costs Similarly we define the present values of the r-th moments of
cost as follows

vr(t, n, β) = {
vr

i (t, n, β)
}

i ,

vr
i (t, n, β) = [

the present value of the r-th moment of the cost of a member for the

interval (t, n] given that the member entered state i at time t
]
.

Then vr
i (t, n, β) = E

[(
Ti

t,n,β

)r]
, and thus we have:

Theorem 2.3 The vector of the present values of the r-th moments of the cost for the
interval (t, n] is given by the following equation

vr(t, n, β) = A(r, t, n, β) +
n−t∑

j=2

[E( j − 1)][(A(r, t + j − 1, n, β)], (2.6)

where

A(r, t, n, β) = (G(n − t)1′)♦cr(n, t, β) + br(t, n − t, β)

+
r−1∑

x=1

(
r
x

) n−t∑

m=1

[[P♦H(m)]♦[CKx(t, m, β)]]vr−x(t + m, n, β),

with initial condition vx(n, n, β) = 0.

Proof If we use probabilistic argument we get

vr
i (t, n, β) =

k∑

j=1

pij

∞∑

m=n+1−t

hij(m)[(1 − β)−1(β t − βn)]rcr
i

+
k∑

j=1

pij

n−t∑

m=1

hij(m)E
[(

(1 − β)−1β t(1 − βm)ci + β t+mkij + T j
t+m,n,β

)r]

=
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)[(1 − β)−1(β t − βn)]rcr
i

+
k∑

j=1

pij

n−t∑

m=1

hij(m)

[
r−1∑

x=0

(
r
x

)
[(1 − β)−1β t(1 − βm)ci + β t+mkij]x

[vr−x
j (t + m, n)]

]

+
k∑

j=1

pij

n−t∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]r. (2.7)
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Equation 2.7 in matrix notation becomes

vr(t, n, β) = (G(n − t)1′)♦cr(t, n, β)

+
r−1∑

x=0

(
r
x

) n−t∑

m=1

[[P♦H(m)]♦[CKx(t, m, β)]]vr−x(t + m, n, β)

+ br(t, n − t, β), (2.8)

where vx(n, n, β) = 0.
Finally, if we define

A(r, t, n, β) = (G(n − t)1′)♦cr(t, n, β) + br(t, n − t, β)

+
r−1∑

x=1

(
r
x

) n−t∑

m=1

[[P♦H(m)]♦[CKx(t, m, β)]]vr−x(t + m, n, β)

and apply the methodology followed in the previous theorems, Eq. 2.8 can be
equivalently written as

vr(t, n, β) = A(r, t, n, β) +
n−t∑

j=2

[E( j − 1)][(A(r, t + j − 1, n, β)].

�	

The Variances of Costs We define the variances of costs as follows:

var(t, n, β) = {vari(t, n, β)}i,

vari(t, n, β) = [
the present value of the variance of the cost for the interval (t, n]
given that a member entered state i at time t

]
.

Then we have

Corollary 2.1 The vector of the variances of the costs through the interval (t, n] is given
by the following equation

var(t, n, β)=D(t, n, β)+
n−t∑

j=2

[E( j−1)][(D(t+ j−1, n, β)]−[v(t, n, β)♦v(t, n, β)]

(2.9)
for every t ≤ n,
where

D(t, n, β) = (G(n − t)1′)♦c2(t, n, β) + b2(t, n − t, β)

+ 2
n−t∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
] [

(G(n − t − m)1′)♦c1(t + m, n, β)

+ b1(t + m, n − t − m, β) +
n−t−m∑

j=2

[E( j − 1)][(G(n − t − m − j + 1)1′)

♦ c1(t + m + j − 1, n, β) + b1(t + m + j − 1, n − t − m − j + 1, β)]] .
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and

v(t, n, β) = (G(n − t)1′)♦c1(t, n, β) + b1(t, n − t, β)

+
n−t∑

j=2

[E( j − 1)][(G(n − t − j + 1)1′)♦c1(t + j − 1, n, β)

+b1(t + j − 1, n − t − j + 1, β)].

Proof By definition we have that var(t, n, β) = v2(t, n, β) − [v(t, n, β)♦v(t, n, β)].
Now, if we apply the results of Theorems 2.1, 2.2 we can derive Eq. 2.9. �	

The Distribution of Costs It is known that for a discrete random variable X with
values x, x = 0,1,2,. . . ,N, yields

P[X = k] = 1

k!
N−k∑

j=0

(−1) j

j! μ(k+ j),

where μ(r) stands for the r-th factorial moment of X, which can be found by means of
the moments about zero. Thus, by setting X = Ti

t,n,β the probability function of Ti
t,n,β

can be evaluated by means of the factorial moments or equivalently the moments
about zero as follows:

P[Ti
t,n,β = k] = 1

k!
N−k∑

j=0

(−1) j

j! μ
β

(k+ j),

where

μ
β

(k+ j) = E(Ti
t,n,β)(Ti

t,n,β − 1)...(Ti
t,n,β − k − j + 1) =

k+ j−1∑

r=0

(−1)rsr E
(
(Ti

t,n,β)k+ j−r)

=
k+ j−1∑

r=0

(−1)rsrv
k+ j−r
i (t, n, β),

with sr = ∑
1≤ j1< j2...< jr≤k+ j

j1... jr, so = 1.

2.2 System’s Mean and Variance of the Total Cost for One Time Unit Interval
with Discounting

Let us consider an open system with Poisson admissions and let Ri(t) be the total
number of individuals recruited at time t, where Ri(t) ∼ Poisson(λi) for every i =
1,2,.., k. We have previously defined as Ti

t,n,β the present value of cost spent by
the system for a member until time n, given that the member was recruited at time
t to state i and as vi(t,n,β) the mean of Ti

t,n,β . Thus, the present value of cost at
time n−1 is equal to Ti

t,n,β − Ti
t,n−1,β . Then the present value of the total cost spent
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at time n − 1 for all the members recruited to every state at any time is equal to
k∑

i=1

n−1∑
t=0

Ri(t)
(

Ti
t,n,β − Ti

t,n−1,β

)
. Now, if we denote � = [λ1, λ2, ..., λk], we can calculate

the present value of the mean total cost spent at time n − 1 as follows:

Theorem 2.4 The mean of the total cost for all members of the system at time n − 1

is equal to
n∑

t=0
� (v(t, n, β) − v(t, n − 1, β)) , where � = [λ1, λ2, ..., λk], v(n, n, β) = 0,

and

v(t, n, β) = (G(n − t)1′)♦c1(t, n, β) + b1(t, n − t, β)

+
n−t∑

j=2

[E( j − 1)][(G(n − t − j + 1)1′)♦c1(t + j − 1, n, β)

+ b1(t + j − 1, n − t − j + 1, β)],

G(n) = diag

⎧
⎨

⎩

k∑

j=1

p1 j

∞∑

m=n+1

h1 j(m), ...,

k∑

j=1

pkj

∞∑

m=n+1

hkj(m)

⎫
⎬

⎭

c1(t, n, β) = [(1 − β)−1(β t − βn)c1, ..., (1 − β)−1(β t − βn)ck]′,

b1(t, n, β) =
n∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]
1′

=
⎧
⎨

⎩

k∑

j=1

pij

n∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]
⎫
⎬

⎭
i=1,2,...k

.

Proof

E

(
k∑

i=1

n−1∑

t=0

Ri(t)
(
Ti

t,n,β − Ti
t,n−1,β

)
)

= E

(
k∑

i=1

n−1∑

t=0

Ri(t)
(
Ti

t,n,β − Ti
t,n−1,β

)
)

=
k∑

i=1

n−1∑

t=0

E (Ri(t)) E
(
Ti

t,n,β − Ti
t,n−1,β

)

=
k∑

i=1

n−1∑

t=0

λi(t) (vi(t, n, β) − vi(t, n − 1, β))

=
n−1∑

t=0

� (v(t, n, β) − v(t, n − 1, β)).

In the above we will provide an analytic form for the variance of the total cost spent
at time n − 1. �	
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Theorem 2.5 Let vvx,r−x(t, n, β) = {
vv

x,r−x
i

(
t, n, β

)}
i be the k × 1 vector, where

vv
x,r−x
i (t, n, β) = E

((
Ti

t,n,β

)x(
Ti

t,n−1,β

)r−x)
. Then

vvx,r−x(t, n, β) =
(

β t − βn

β t − βn−1

)x

(G(n − t)1′)♦cr(t, n − 1, β)

+
x∑

z=0

r−x∑

w=0

(
x
z

)(
r − x

w

)

×
n−t−1∑

m=1

[[P♦H(m)]♦[CKz+w(t, m, β)]][vvx−z,r−x−w(t + m, n, β)]

+ [[[P♦H(n − t)]♦CKx(t, n − t, β)
]

1′]♦cr−x(t, n − 1, β).

Proof Using probabilistic argument we have that

vv
x,r−x
i (t,n,β)=

k∑

j=1

pij

∞∑

m=n+1−t

hij(m)
[
((1−β)−1(β t−βn)ci)

x((1−β)−1(β t−βn−1)ci
)r−x

]

+
k∑

j=1

pij

n−t−1∑

m=1

hij(m)E
[
[(1−β)−1β t(1−βm)ci+β t+mkij+ T j

t+m,n,β ]x

· [(1−β)−1β t(1−βm)ci+β t+mkij+T j
t+m,n−1,β

]r−x
]

+
k∑

j=1

pijhij(n−t)
[
(1−β)−1(β t−βn)ci+βnkij

]x[
(1−β)−1(β t−βn−1)ci

]r−x

=
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)

[(
β t − βn

β t − βn−1

)x (
(1 − β)−1(β t − βn−1)ci

)r
]

+
k∑

j=1

pij

n−t−1∑

m=1

hij(m)

×E

[
x∑

z=0

(
x
z

)
[(1 − β)−1β t(1 − βm)ci + β t+mkij]zT j

t+m,n]x−z

]

·
[

r−x∑

w=0

(
r − x

w

)
[(1 − β)−1β t(1 − βm)ci + β t+mkij]w[T j

t+m,n−1]r−x−w

]

+
k∑

j=1

pijhij(n−t)[(1−β)−1(β t−βn)ci+βnkij]x[(1−β)−1(β t−βn−1)ci]r−x
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=
k∑

j=1

pij

∞∑

m=n+1−t

hij(m)

[(
β t − βn

β t − βn−1

)x (
(1 − β)−1(β t − βn−1)ci

)r
]

+
x∑

z=0

r−x∑

w=0

(
x
z

)(
r − x

w

) k∑

j=1

pij

n−t−1∑

m=1

hij(m)

× [
(1−β)−1β t(1−βm)ci+β t+mkij

]z+w ·E
[
[T j

t+m,n,β ]x−z[T j
t+m,n−1,β ]r−x−w

]

+
k∑

j=1

pijhij(n−t)
[
(1−β)−1(β t−βn)ci+βnkij

]x [
(1−β)−1(β t−βn−1)ci

]r−x
.

The above result in matrix form becomes

vvx,r−x(t, n, β)=
(

β t − βn

β t−βn−1

)x

(G(n−t)1′)♦cr(t, n−1, β)+
x∑

z=0

r−x∑

w=0

(
x
z

)(
r−x
w

)

×
n−t−1∑

m=1

[[P♦H(m)]♦[CKz+w(t, m, β)]][vvx−z,r−x−w(t+m, n, β)]

+ [[[P♦H(n − t)]♦CKx(t, n − t, β)
]

1′]♦cr−x(t, n − 1, β).

The initial condition is vvx,r−x(n − 1, n, β) = 0. �	
Theorem 2.6 The variance of the total cost for all members of the system at time n − 1
is given by

Var

(
k∑

i=1

n−1∑

t=0

Ri(t)
(
Ti

t,n,β − Ti
t,n−1,β

)
)

=
n−1∑

t=0

(� + (�♦�))
(
v2(t, n, β) + v2(t, n − 1, β) − 2vv1,1(t, n, β)

)

+
∑

(i,t1) �=( j,t2)

λiλ j (vi(t1, n, β) − vi(t1, n − 1, β))
(
v j(t2, n, β) − v j(t2, n − 1, β)

)

−
(

n−1∑

t=0

� (v(t, n, β) − v(t, n − 1, β))

)2

,

where

vv1,1(t, n, β) =
(

β t − βn

β t − βn−1

)
(G(n − t)1′)♦c2(t, n − 1, β)

+
n−t−1∑

m=1

[[P♦H(m)]♦[CK2(t, m, β)]]1′

+
n−t−1∑

m=1

[[P♦H(m)]♦[CK1(t, m, β)]] [v(t + m, n, β)+v(t+m, n−1, β)]

+
n−t−1∑

m=1

[P♦H(m)][vv1,1(t + m, n, β)]

+ [[[P♦H(n − t)]♦CK1(t, n − t, β)
]

1′]♦c1(t, n − 1, β).
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Proof The second moment of the total cost is equal to

E
(( k∑

i=1

n−1∑
t=0

Ri(t)
(
Ti

t,n,β −Ti
t,n−1,β

))2). After some calculations we result to the

following equation

E

⎛

⎝
(

k∑

i=1

n−1∑

t=0

Ri(t)
(
Ti

t,n,β − Ti
t,n−1,β

)
)2
⎞

⎠

=
n−1∑

t=0

(� + (�♦�))
(
v2(t, n, β) + v2(t, n − 1, β) − 2vv1,1(t, n, β)

)

+
λiλ j∑

(i,t1) �=( j,t2)

(vi(t1, n, β)−vi(t1, n−1, β))
(
v j(t2, n, β)−v j(t2, n − 1, β)

)
. (2.10)

If we apply Theorem 2.5 for r = 2, x = 1, we can calculate vv1,1(t, n, β) that appears
in Eq. 2.10 as follows:

vv1,1(t, n, β) =
(

β t − βn

β t − βn−1

)
(G(n − t)1′)♦c2(t, n − 1, β)

+
n−t−1∑

m=1

[[P♦H(m)]♦[CK2(t, m, β)]]1′

+
n−t−1∑

m=1

[[P♦H(m)]♦[CK1(t, m, β)]] [v(t+m, n, β)+v(t+m, n−1, β)]

+
n−t−1∑

m=1

[P♦H(m)][vv1,1(t + m, n, β)]

+ [[[P♦H(n − t)]♦CK1(t, n − t, β)
]

1′]♦c1(t, n − 1, β), (2.11)

with initial condition vv1,1(n − 1, n) = 0.
Equation 2.11 can also be expressed in closed analytic form by following the

methodology of Papadopoulou (2004). Finally, from Eqs. 2.10 and 2.11 the variance
of the total cost spent at time n − 1 can be evaluated:

Var

(
k∑

i=1

n−1∑

t=0

Ri(t)
(
Ti

t,n,β − Ti
t,n−1,β

)
)

=
n−1∑

t=0

(� + (�♦�))
(
v2(t, n, β) + v2(t, n − 1, β) − 2vv1,1(t, n, β)

)

+
∑

(i,t1) �=( j,t2)

λiλ j (vi(t1, n, β) − vi(t1, n − 1, β))
(
v j(t2, n, β) − v j(t2, n − 1, β)

)

−
(

n−1∑

t=0

� (v(t, n, β) − v(t, n − 1, β))

)2

,

where vv1,1(t, n, β) is given in Eq. 2.11. �	
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2.3 System’s Mean and Variance of the Total Cost Through the Interval (0,n]
with Discounting

We have previously defined Ti
t,n,β as the present value of cost spent by the system for

a member until time n, given that the member is recruited to state i at time t. Then
the present value of the total cost for all members of the system through the interval

(0, n] is equal to
n∑

t=0

k∑
i=1

Ri(t)Ti
t,n,β .

Theorem 2.7 The mean of the present value of the total cost for all members of the
system through the interval (0, n] is equal to

E

(
n∑

t=0

k∑

i=1

Ri(t)Ti
t,n,β

)
=

n∑

t=0

�v(t, n, β),

where

� = [λ1, λ2, ..., λk], v(n, n, β) = 0,

v(t, n, β) = (G(n − t)1′)♦c1(t, n, β) + b1(t, n − t, β)

+
n−t∑

j=2

[E( j − 1)][(G(n − t − j + 1)1′)♦c1(t + j − 1, n, β)

+ b1(t + j − 1, n − t − j + 1, β)],

G(n) = diag

⎧
⎨

⎩

k∑

j=1

p1 j

∞∑

m=n+1

h1 j(m), ...,

k∑

j=1

pkj

∞∑

m=n+1

hkj(m)

⎫
⎬

⎭ ,

c1(t, n, β) = [(1 − β)−1(β t − βn)c1, ..., (1 − β)−1(β t − βn)ck]′,

b1(t, n, β) =
n∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]
1′

=
⎧
⎨

⎩

k∑

j=1

pij

n∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]
⎫
⎬

⎭
i=1,2,...k

.

Proof Obviously, it is true that

E

(
n∑

t=0

k∑

i=1

Ri(t)Ti
t,n,β

)
=

n∑

t=0

k∑

i=1

λi E
(
Ti

t,n,β

) =
n∑

t=0

k∑

i=1

λivi(t, n, β) =
n∑

t=0

�v(t, n, β).

�	
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Theorem 2.8 The variance of the total cost for all members of the system through the
interval (0, n] is equal to

Var

(
n∑

t=0

k∑

i=1

λiTi
t,n,β

)
=

n∑

t=0

(�♦�)v2(t, n, β) −
(

n∑

t=0

�v(t, n, β)

)2

+
∑

(i,t1) �=( j,t2)

2λiλ jvi(t1, n, β)v j(t2, n, β),

where

� = [λ1, λ2, ..., λk], v(n, n, β) = 0,

v(t, n, β) = (G(n − t)1′)♦c1(t, n, β) + b1(t, n − t, β)

+
n−t∑

j=2

[E( j − 1)][(G(n − t − j + 1)1′)♦c1(t + j − 1, n, β)

+ b1(t + j − 1, n − t − j + 1, β)],
where

v2(t, n, β) = D(t, n, β) +
n−t∑

j=2

[E( j − 1)][(D(t + j − 1, n, β)]

and

D(t, n, β) = (G(n − t)1′)♦c2(t, n, β) + b2(t, n − t, β)

+2
n−t∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]

×
⎡

⎣(G(n−t−m)1′)♦c1(t+m,n,β)+b1(t+m,n−t−m,β)+
n−t−m∑

j=2

[E( j−1)]

× [(
G(n − t − m − j + 1)1′)♦c1(t + m + j − 1, n, β)

+ b1(t + m + j − 1, n − t − m − j + 1, β)
]
⎤

⎦ ,

G(n) = diag

⎧
⎨

⎩

k∑

j=1

p1 j

∞∑

m=n+1

h1 j(m), ...,

k∑

j=1

pkj

∞∑

m=n+1

hkj(m)

⎫
⎬

⎭ ,

c1(t, n, β) = [(1 − β)−1(β t − βn)c1, ..., (1 − β)−1(β t − βn)ck]′,

b1(t, n, β) =
n∑

m=1

[[P♦H(m)]♦CK1(t, m, β)
]
1′

=
⎧
⎨

⎩

k∑

j=1

pij

n∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]
⎫
⎬

⎭
i=1,2,...k

,
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CKx(t,m,β) is a k × k matrix, CKx(t,m,β) = {
((1 − β)−1β t(1 − βm)ci + β t+mkij)

x
}

for every x = 1,2,..., and CK0(m) = U, c2(t, n, β) is a k × 1 vector, where c2(t, n, β) ={
c2

i [(1 − β)−1(β t − βn)]2
}
, b2(t, n, β) is a k × 1 vector and

b2(t, n, β) =
n∑

m=1

[[P♦H(m)]♦CK2(t, m, β)
]
1′

=
⎧
⎨

⎩

k∑

j=1

pij

n∑

m=1

hij(m)[(1 − β)−1β t(1 − βm)ci + β t+mkij]2

⎫
⎬

⎭
i=1,2,...k

.

Proof We have that

Var

(
n∑

t=0

k∑

i=1

Ri(t)Ti
t,n,β

)
= E

⎛

⎝
(

n∑

t=0

k∑

i=1

Ri(t)Ti
t,n,β

)2
⎞

⎠−
(

E

(
n∑

t=0

k∑

i=1

Ri(t)Ti
t,n,β

))2

= E

⎛

⎝
n∑

t=0

k∑

i=1

(
Ri(t)Ti

t,n,β

)2+
∑

(i,t1) �=( j,t2)

Ri(t)R j(t)Ti
t1,n,β T j

t2,n,β

⎞

⎠

−
(

n∑

t=0

k∑

i=1

λi E
(
Ti

t,n,β

)
)2

=
n∑

t=0

k∑

i=1

(
λi + λ2

i

)
E
((

Ti
t,n,β

)2
)
+

∑

(i,t1) �=( j,t2)

λiλjE
(
Ti

t1,n,β T j
t2,n,β

)

−
(

n∑

t=0

k∑

i=1

λivi(t, n, β)

)2

=
n∑

t=0

k∑

i=1

(
λi+λ2

i

)
v2

i (t, n, β)+
∑

(i,t1) �=( j,t2)

λiλjE
(
Ti

t1,n,β

)
E
(
T j

t2,n,β

)

−
(

n∑

t=0

k∑

i=1

λivi(t, n, β)

)2

=
n∑

t=0

k∑

i=1

(
λi+λ2

i

)
v2

i (t,n,β)+
∑

(i,t1) �=( j,t2)

λiλ jvi(t1,n,β)v j(t2,n,β)

−
(

n∑

t=0

k∑

i=1

λivi(t, n, β)

)2

.
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The above result can equivalently be written as

Var

(
n∑

t=0

k∑

i=1

Ri(t)Ti
t,n,β

)
=

n∑

t=0

(� + (�♦�)) v2(t, n, β)

−
(

n∑

t=0

�v(t, n, β)

)2

+
∑

(i,t1) �=( j,t2)

λiλjvi(t1, n, β)v j(t2, n, β).

�	

3 An Illustrative Example: Costing Stroke Patients

We here use an open semi-Markov model with fixed size for costing thrombolysis
services within a hospital (Diagram 1) where it is assumed that the hospital is
very busy, so discharged patients are immediately replaced. Under this condition
the open semi Markov model with fixed size can be considered as a closed semi
Markov system (Vassiliou and Papadopoulou 1992). We notionally assign a one-
off cost to thrombolysis and daily costs to acute and rehabilitative care within the
hospital. The model can then be used to determine means and variances of individual
and total hospital costs within a given time period. Patients are initially admitted
to thrombolysis, with probability θ or non-thrombolysis, with probability 1 − θ . A
thrombolysis patient is admitted to state S1 where thrombolysis occurs; after a
fixed duration (time taken for the therapy) these patients move into state S2, post-
thrombolysis acute care. From there, they may be either discharged or move into a
longer stay rehabilitative state S3, from which they are eventually discharged. Non-
thrombolysis patients initially move into an acute state S4 (acute care). Then, they
may be discharged or move into a longer stay rehabilitative state S5. We assume
daily occupancy costs in each of the five states and treatment cost of thrombolysis
incurred in state S1 and a transition cost from S1 to S2.

In modelling many operational systems the importance of discounting is almost
negligible as costs are often essentially index-linked and are incurred on an on-
going basis. So, instead of the expected present values we can calculate costs without
discounting i.e. β = 1. In the present example we treat this special case.

Figure 1 presents the relationship between mean total cost, time and proportion
of patients undergoing thrombolysis. Figure 2 shows mean daily costs (in GBP)
for different proportions of patients, θ , undergoing thrombolysis. Figure 3 presents
the variance of the total cost for different proportions of patients undergoing
thrombolysis. Figure 4 presents the change in mean total cost with respect to

Diagram 1 Patients pathways
for a five state model of a
stroke care unit
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Fig. 1 Mean total cost for
different proportions of
patients having thrombolysis

Fig. 2 Mean daily cost for
different proportions of
patients having thrombolysis

Fig. 3 Variance of the total
cost for different proportions
of patients undergoing
thrombolysis
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Fig. 4 Change in mean total
cost and variance with change
in duration if 10% patients
(θ = 0.1) have thrombolysis

change in duration if 10% patients (θ = 0.1) have thrombolysis. Figure 5 shows this
change if 50% patients (θ = 0.5) have thrombolysis. Figure 6 presents the plots of
change in mean total cost with respect to change in the proportion of patients (θ)

having thrombolysis. These figures also show values for mean total cost ±2(standard
deviation). The holding time probability mass functions are assumed to be geometric.
The estimated matrix of the transition probabilities is given below

P =

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0
0.331024 0 0.337953 0.331024 0

0.5 0 0 0.5 0
0.331024 0 0 0.331024 0.337953

0.5 0 0 0.5 0

⎤

⎥⎥⎥⎥⎦
.

while the cost vector c = [c1,...,c5] is given by c = [434.8, 164.8, 114.8, 164.8, 114.8],
and k12 = 480, kij = 0 for (i, j) �= (1,2).

Fig. 5 Change in mean total
cost and variance with change
in duration if 50% patients
(θ = 0.5) have thrombolysis
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Fig. 6 Change in the mean
total cost and variance with
respect to the proportion of
patients having thrombolysis
(after 1000 days)

Apart from the positive values of the changes in mean total costs and variances
appeared in Figs. 4, 5 and 6, it is obvious that the calculated negative values are
essentially zero.

4 Conclusions

We have extended our previous work, which attached costs to duration in states for
an open semi-Markov system by including costs of making a transition. Results have
been obtained for the moments and the distribution of a member’s cost as well as
for the total costs to the system at any time. The resulting expressions have been
applied to data for stroke patients, where costs are incurred per unit time in hospital
and also for thrombolysis, which is a clot-busting therapy. The results demonstrate
the potential of the models to demonstrate differential costs of various therapeutic
strategies and explore optimal solutions.
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