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Networked control system for electrohydraulic 
flow control positioner using Neural Controller 

and Collaborative Network 
Audu Eliazar Elisha, Dr. Lalit Garg 

 

Abstract—Electrohydraulic flow control valve is an essential element of an automated process industry where fluid control is applicable. 
The use of conventional controllers overan IP-communication network for controlling electrohydraulic flow control positioner to regulate 
mainline pressure and flow rate in pipeline transportation of petroleum products between two stations where downstream pressure of the 
pumping station fluctuates significantlyposes a problem of instability on the flowrate and the mainline pressure of the pipeline. Additionally, 
the effect of network induced, time-varying delay between the controller and the electrohydraulic flow control valves induces a problem of 
poor quality of control and inefficient system performance of the control loop. In this paper, we presented an application of neural network 
in processflow control using an electrohydraulic valve positionerand proposed a concept of collaborative network for networked control 
systems over IP-based networks. 

Index Terms—Artificial Neural Network (ANN), Collaborative network,Linear time invariant (LTI),Network Control System, PID-controller, 
Smith Compensator, Time-varying delay.  

———————————————————— 

1 INTRODUCTION

HEinnovative transformation from classical control sys-
tems to networked-based control systems (NCSs) has 
presented new possibilities in terms of systems integration 

and unlimited opportunities in its applications. NCS are widely 
applied in wireless sensor networks, transportation networks, 
automobile as Controller Area Network (CAN), aircraft control 
systems, and electrical power networks due to their reduced 
cost, ease of maintenance and installations, flexibility and 
scalability [1], [2]. In process plant and manufacturing indus-
tries, NCS provides the mechanisms forintegrating various 
processes into a single view and allow sub-systems that are 
geographically distributed within the plant to communicate 
over a shared data media. The collective performance of the 
NCS elements (or subsystems) helps to keep the process 
variables within tolerable limits. This implies that NCSloop 
must be stable and quality of control must be guaranteed for 
effective operations. However, the application of NCS to proc-
ess control has brought new sets of challenges due to the ef-
fect of network and shared communication channels, which 
cause non-linear time varying delay, packet dropout, and data 
congestions in the control loop [1], [2], [3], [4], [5]. These net-
work effects affect controller performances andintroduce in-
stability in maintaining process variables due to loss of quality 
of control by the NCS [5], [6], [7]. In real-time control system, 
data transmission from controller to actuating mechanism, and 
from sensors to the controller is time bound. Failure to meet 
these deadlines has significant consequences onthe perform-
ance and quality of service of the NCS. To deal with the prob-
lem of time-varying delay, packet dropout during routing and 
traffic congestion, different methodologies have been devel-
oped to ensure optimal stability of the NCSs. Analysis and 
synthesis on NCSs stability were conducted by researchers 
over the years to provide framework for optimizing network 
performance and improving quality of control. In [1], a new 
approached was presented based on discrete-time represen-
tation of the NCS using Lyapunov-based stability criterion ex-
pressed in terms of linear matrix inequalities (LMI). Perturbed 

frozen time (PFT) and point-wise stability approached have, 
also,been used to investigate the problem of stability in NCS 
by assuming linear time varying system [3]. Before the emer-
gence of modern mathematical treatment of networked control 
systems with non-linear time varying delay, the solution to the 
problem of stochastic delay (or dead time) was first offered by 
Smith in 1957 by eliminating the time-delay variable from the 
control loop characteristic equation [8]. The Smith predictor 
method of compensation and robust control stability theory 
was used to improve the quality of performance (QoP) of NCS 
on shared communication networks [9]. Smith predictor is 
largely applied to either structurally or parametrically optimize 
the performance of a classical control system over networks 
with unpredictable time delay [8], [9], [10]. An improved ver-
sion of Smith compensator based on Internal control module 
and dynamic matrix controller was used to deal with the prob-
lem of stochastic network delay in real-time and internet based 
NCS [10], [11].  One of the benefits of this method is that it 
requires minimal knowledge of plant under control [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Networked-based Control System [13]. 
The development of Smith Predictor model opened a Pandora 
box in developing a technique that can minimized nonlinear 
time-delay in control networks. However, model mismatch as-
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sociated with the predictor can result to closed loop instability 
and degrade the quality of control of a networked control sys-
tem [8]. 

 
 
 
 
 
 
 
 
 
Fig. 2. Block diagram of a Smith Predictor [14]. 
 
Fuzzy logic has been successfully applied in NCS to provide 
tuning parameters and non-linear mapping for Proportional-
Integral-Derivative (PID)-based controllers. Fuzzy logic was 
developed to copy some of the attributes of human experts by 
encoding specialized knowledge of process control using lin-
quistic rules [13].The traditional PID controllers tuning tech-
nique such as Ziegler-Nichol method provides unsatisfactory 
performance of NCS where the time delay exceeds the critical 
value [14]. This situation can result to loss of control efficient 
and induced instability in the process[15]. The PID-based 
fuzzy controller allows both the input variables and the control 
action to be defined in terms of linguistic rules and inference 
engine [16]. As an improvement, the fuzzy set weighted con-
troller was also proposed to deal with the problem of stochas-
tic time-delay in a control network. The weighted approach is 
based on parameter setting of the proportional action of the 
controller to a constant value, typically, of less than unity. Us-
ing the inference engine of the fuzzy approach, one part of the 
controller controls the attenuation of load variation and the 
other part is devoted to set point [17]. 
 
 
 
 
 
 
 
 
Fig.3. General Structure of PID Controller [15]. 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Fuzzy-PID Controller [16],[17]. 
The application of fuzzy logic to PID controllers in network 
control offers a promising path to the minimization of time va-
rying delay for NCS. However, the tuning process can be time 
consuming and three parameters are required to be precisely 

tuned to achieve the desire performance.  

2 NCS MODELLING AND TIME-VARYING DELAY 
In this section, the NCS problem is shaped into control and 
optimization framework for analysis, and the time-varying 
delay of the system is presented in the model as a variable. 
2.1 NCS Modelling  
The NCS plant model is represented as a continuous-time, 
linear time invariant (LTI) system. This assumption simplifies 
system analysis. In figure below, time taken for data to travel 
from controller to actuator, and data from sensor to controller 
are the network time delays. These two time delays are non-
linear time-varyingwith significant impact on control perfor-
mance. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.4. Model of a Continuous-time Plant, Discrete Time Con-
troller with network delay along the communication paths 
[17]. 
 
Where: τcais the controller to actuator time delay, τsc repre-
sents sensor to controller delay and τpis the total processing 
time delay. τpis not represented in the diagram and is as-
sumed to be negligible since the processing delay has a rela-
tively small impact on the control loop especially with fast pro-
cessors and improved system architectures. Therefore, we 
considered, in this networked control system modelling, the 
sensor to controller, and controller to actuator end to end sto-
chastic time delays as described in [19], [20]. Hence,  
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Fig.5. Time delay between a controller and an actuator in 
NCS. 
Controlled Process equation 
 

x’c=Axc(t) +Bcuc(t)…………. iii 
                         y(t)=Cxc(t)………iv 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Simplified model of continuous time plant of a NCS. 
 
In figure7 above, the controller function can be determined 
using the following mathematic relationship: 
 
 
 
 
Where 𝑋𝑋(𝑠𝑠) is the Laplace transformation of the input function 
and 𝑌𝑌(𝑠𝑠) denotes the Laplace transformation of the output 
function. To simplify control analysis, we assumed that the 
NCS in figure 7 is a linear time-variant (LTI) system. Therefore, 
the overall transfer function can be expressed as: 
 
 
 
 
 
 

2.2 IP-BASED NCS TIME-VARYING DELAY AND 
CHANNEL OPTIMIZATION 
In IP-based networked control systems, control information 
passes through series of OSI layers and network infrastruc-
tures from one node to another. Routing of information through 
routers and switches contribute to the overall processing delay 
of the NCSs. Furthermore, the selection of transport layer pro-
tocol is crucial in NCS for guaranteed stability and reduced 
network delay. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Diagram showing delay along data flow path at devices 
OSI layer level [20]. 

 
The use of transmission control protocol (TCP) offers better 
congestion and flow control mechanisms for reliable delivery 
of data than user datagram protocol (UDP) but increases the 
transmission latency when used for networked control system 
application [21]. The emphasis of UDP is packet-based, con-
nectionless, best effort services that deliver continuous stream 
of data over an IP-network, which makes UDP an ideal proto-
col for real-time networked control systems communication 
[21]. However, networked control application using UDP proto-
col must be implemented with flow control and error correction 
mechanisms since they are not featured in the UDP software 
routines. 
 
From optimization perspectives, network can be represented 
as a directed graph, and access to network can be viewed as 
a problem of distributed resources sharing [22], [23]. Let V be 
a set of nodes and E be a collection of links connecting the 
nodes on a communication network. Therefore, the network 
can be represented as G= (V, E). In networked control system, 
controllers and sensors are regarded as traffic sources, and 
from information theoretic perspectives, for a reliable and suc-
cessful data delivery in NCS, transmission from source to sink 
should not exceed the link capacity [24]. 
let 𝑛𝑛𝑖𝑖𝑖𝑖  be a link between controller 𝑣𝑣𝑖𝑖  and actuator 𝑣𝑣𝑗𝑗  where 
𝑛𝑛𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸 ,     𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ V, and i, j ∈ {1,2, … … . . , 𝑘𝑘} ∈ ℤ. For each link, 
𝑛𝑛𝑖𝑖𝑖𝑖 , let 𝑢𝑢𝑖𝑖𝑖𝑖  be the link non-negative, finite transmission capacity. 
Therefore, controller 𝑣𝑣𝑖𝑖  transmitting data over a link 𝑛𝑛𝑖𝑖𝑖𝑖  to an 
actuator 𝑣𝑣𝑗𝑗  at  m-data rate should have a channel utility ( 
m≤ 𝑢𝑢𝑖𝑖𝑖𝑖∀𝑢𝑢𝑖𝑖𝑖𝑖 > 0 ). Assuming that the channel utilization is a 
continuous function, then the controller computes the following 
optimization problem [23]. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑣𝑣 � 𝑦𝑦(𝑢𝑢𝑣𝑣)

𝑣𝑣∈𝑉𝑉
… … … . 𝑣𝑣𝑣𝑣 

where 𝑣𝑣 ∈ V 

If M is the overall network capacity, then the optimization con-
straint is given by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, � 𝑢𝑢𝑖𝑖𝑖𝑖

𝑀𝑀−1

𝑖𝑖 ,𝑗𝑗=1

≤  𝑀𝑀… . 𝑣𝑣𝑣𝑣𝑣𝑣  
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The constraint is required for reliable data transmission over 
NCS communication channel. Beside the problem of net-
worked induced delay and the need for robust dynamic char-
acteristic in the controller design, the problem of bandwidth 
optimization must be dealt with by the controller algorithm. In 
addition to the above mentioned problems in network control, 
NCS operating over IP-networks must take into consideration 
the probabilistic nature of the network. With UDP, the ten-
dency of network congestion and inefficient utilization of 
bandwidth arises. This also raise the probability of packet 
dropout, which can lead to control system instability and poor 
quality of system performance. In this paper, we explore the 
use of artificial neural network and collaborative network to 
propose a methodology for dealing with time-varying delay in 
NCS in relation to electrohydraulic flow control valve for a sta-
ble flow rate in pipeline transportation of petroleum products 
from a pump station to a distant storage and loading facil-
ity.We introduced the use of collaborative network to enhance 
intelligent communication between local nodes (or neighbours) 
and provides a medium for scheduling and prioritization over 
IP-based networks. 

3 PROBLEM FORMULATION AND 
CONTROLLER DESIGN 

In the distribution of petroleum products between two stations 
through multi-product pipeline, maintaining a correct position-
ing of electromechanical flow control valve at the pumping 
station is challenging especially where the upstream stream 
pressure of a flow control valves fluctuates significantly due to 
process activities at the receiving station such as adjustment 
of valves to meet product reception requirements. These flow 
control activities at the receiving station affects the main line 
pressure and the pumping rate between the two sta-
tions.Pressure variation across electrohydraulic flow control at 
the discharge of a mainline pump affects the fluid volumetric 
flow rate of the mainline. The need to maintain correct (or al-
most constant) flow rate in the transportation of petroleum 
products through pipeline has both economic and technical 
significance. Furthermore, the pressure differential of the elec-
trohydraulic flow control valve must be maintained in relation 
to the mainline pump motor amperage (or power), actual flow 
rate, and valve downstream pressure. The flow rate through 
electrohydraulic flow control positioner can be determined by 
the following equation. 

 
 
 
 
 
 

The equation above established the relationships between 
flow rate (Q), specific gravity (𝐺𝐺𝑓𝑓), downsteram pressure 
(𝑃𝑃1), upstream pressure (𝑃𝑃2), numeric constant (𝑁𝑁1), and piping 
geometric factor (𝐹𝐹𝑃𝑃)  . The use of PID controller, in this case, 
can be challenging due to the difficulty associated with finding 
appropriate tuning parameters to provide optimal process reg-
ulation under uncertain downstream or upstream pressure 
variation [25]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Networked Control System for Electrohydraulic flow 
control positioner using Neural Network Controller. 
 
 
3.1 Artificial Neural Network Controller 

Neural controller is emerged from the intense study and re-
search of how simple and highly interconnected neurons of 
human brain collectively solve complex problems. Neural net-
work is very robust, adaptive, flexible, and fault tolerant with 
self-learning ability [26]. These unique abilities give the neural 
controllers the capability to provide effective control perfor-
mance without having a prior knowledge of the plant mathe-
matical model. The highly structural property and massively 
parallel distributed capability of artificial neural network makes 
it suitable for practical implementation of parallel processing 
systems [27], [28]. The behaviour of neural networks can be 
altered by changing the connection weights of individual neu-
rons that made-up the network and layer activation function. 
These behavioural features of an ANN is very essential in op-
timization and solving non-linear problems in control systems. 
The most commonly implemented artificial neural network is 
feed-forward with Backpropagation learning algorithm [26], 
[29]. Backpropagation method is widely used in control sys-
tems to solve nonlinear control problems where input parame-
ters are unpredictably unstable. They are also used where 
conventional computational models such as fuzzy logic and 
PID proved to be inadequate. Artificial neural network has 
been successfully applied in real-time dynamical adaptive sys-
tems to minimize cost functions (error) to the desire accuracy 
[28], [30]. Problems involving finding unknown functions using 
ANN was demonstrated in [31], [32].  

For neural network to function, neurons must be trained on 
the dynamics of the system or process under control. Psaltis et 
al. proposed two learning schemes for neural network, the 
general and specialized learning [26], [30]. In generalized 
learning method, neural network is trained off-line with the con-
trolled process dynamics before deployment. Once trained, the 
network can perform control functions based on the pre-
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programmed training dynamics. Specialized learning algorithm 
provides conditions for training a neural network online. It con-
stantly monitors the difference between the actual output of the 
neural network and the expected output such as in the case of 
gradient descent. The output difference is used to adjust the 
synaptic weight of the network to produce the desire output. 
This process of self-correction by minimization of error is an 
adaptation process. Figure 10 below shows a conceptual mod-
el of a three-layer neural network. 

 

 
Fig.10. Conceptual model of a Artificial Neural Network with 
Input, hidden and output layers [31]. 

Neuron output =

⎩
⎪
⎨

⎪
⎧ 1     𝑖𝑖𝑖𝑖�𝑤𝑤𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=0

> 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

                0  𝑖𝑖𝑖𝑖 �𝑤𝑤𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖 ≤ 𝑇𝑇ℎ𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁

𝑖𝑖=0

� 

Where: 
𝑤𝑤𝑗𝑗𝑗𝑗   𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑖𝑖   𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

The network weight can be iteratively updated during training to 
provide the optimal weights required to solve the optimization 
problem. 

Let   𝑦𝑦𝑖𝑖 = ∑ 𝑤𝑤𝑗𝑗𝑗𝑗 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 … … … … . 𝑖𝑖𝑖𝑖 

Let  𝑓𝑓 (𝑤𝑤, 𝑥𝑥) be any arbitrary differentiable activation function 
and let 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐸𝐸, = 1

2
∑ (𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 … … … 𝑥𝑥  

 𝑖𝑖 = {1,2,3, … . } ∈ ℤ 

Therefore, using gradient descent method, the weight can be 
updated using: 

𝑤𝑤𝑗𝑗𝑗𝑗� = 𝑤𝑤𝑗𝑗𝑗𝑗 − 𝜂𝜂
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

… … . … 𝑥𝑥𝑥𝑥   

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑗𝑗𝑗𝑗�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑗𝑗𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Feed-forward multilayer perceptron using back-propagation 
learning algorithm is the most commonly applied form of artifi-
cial neural network. The algorithm employs gradient descent 
minimization to decrease the error cost function that exist be-
tween the training set and the actual trajectory of function. The 
error cost function is computed using the mean square error 
(MSE) method and propagated backward to the network in an 
iterative fashion until an optimal result is reached. The optimal 

weights that minimized the error function is considered to be a 
solution to the learning problem and the algorithm stop search-
ing or terminated [31]. On each iteration, the mean squared 
error is evaluated and compare with the performance goal. If 
performance goal is not meet, then the output error is propa-
gated backward towards the input by partially differentiating 
the error with respect to the weight of a node to find a new 
synaptic weight for optimal result [29], [33]. 
 

 
Fig.11. Simplified model of the proposed Electrohydraulic flow 
control using Neural Network controller in Networked Control 
System. 

ANN is highly suitable for solving non-linear control prob-
lems, and it is very robust, self-learning, adaptive, flexible, and 
fault tolerant in its application [34]. The self-learning ability 
gives neural controllers the capability to provide effective con-
trol performance without having the prior knowledge of the con-
trol dynamics [34], [35]. The structural property of ANN makes 
it practically feasible for implementation of parallel processing 
systems, and the behavior of the system can be altered by ad-
justing the network weights [35], [36]. 

3.2 Collaborative Network 
The central idea behind the use of collaborative network is to 
foster intelligent communication among local nodes prior to 
data transmission and allow deterministic access to communi-
cation medium by NCS over probabilistic (IP) network for real 
time control. With collaboration, nodes can monitor the data 
rate of their neighbourhood and priority level. The inclusion of 
this network allows for the implementation of scheduling and 
prioritization scheme without using the main IP-communication 
network. This intelligent exchange of information provides the 
neural controller nodes with input information such as data rate 
and scheduling details of neighboring nodes to regulate data 
rate over the communication network and minimise packet dro-
pout. As a demonstration,EIA-485 (RS-485) was used as a 
collaborative network protocol to interlinked various nodes, 
called clusters, connected to the network. EIA-485 is a ba-
lanced line, differential voltage, digital transmission system 
designed to operate directly over a physical layer. It is capable 
of supporting up to 32 devices in a bus or ring topology in 
asynchronous communication and can operates at a data 
speed of up to 10Mbps [37], [38]. It is widely used in the control 
communications and DeviceNet data networks for their ability 
to reject common mode noise (noise immunity). In this imple-
mentation, EIA-485 is used to provide communication protocol 
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for self-awareness between various nodes on an IP-network 
and no master controller is required to control access. The 
nodes are self-driven by scheduling algorithm that keeps track 
of other nodes communicating over a physical layer by means 
of collaboration. Communication is central to effective schedul-
ing and prioritization of access to a network resources or media 
in IP-based networked control systems. 

 
Fig.12. EIA-485 network showing nodes in Bus-mode [37]. 

 
Fig.13. Timing diagram of the EIA-485 over communication net-
work [40], [41]. 

 
Fig. 14. A Simplified diagram of NCS for electrohydraulic flow 
control valve using Neural Network controller and collaborative 
network. 

 
 

Fig.15. A simplified NCS for electrohydraulic valve showing IP-
network and Collaborative network. 

4 RESULT 
The Neural network controller was trained, tested and simu-
lated using a set of data recorded during pumping operations 
between PPMC Area Office pump station PortHarcourt Nige-
ria and Aba depot receiving and storage facility. The data was 
taken from 2001, 2002, and 2014 pumping charts for Premium 
Motor Spirit (PMS), Dual Purpose Kerosene (DPK), Automo-
tive Gas Oil (AGO) and Water. Discharge pressure, pipeline 
pressure (between Area Office and Aba), pump electric motor 
amperage, and specific gravity of the product are the input 
parameters to the Neural network while the flow control valve 
sizing coefficient expressed in terms of flow rate is the corres-
ponding output of the controller. The controller is trained to 
adapt to significant differential pressure changes between the 
downstream and upstream pressure, and generate a propor-
tionate control signal for the electrohydraulic flow control 
valve. Three different learning methods was used during 
training to compare their performances and determine the 
appropriate training algorithm that provides best case scena-
rio (approximations). The algorithms are Levenberg-
Marquardt (trainlm), Resilient Backpropagation (trainrp) and 
the variable learning rate backprogation (traingdx), and in-
built functions of MATLAB application.  The collaborative 
network communication using EIA-485 between two nodes is 
simulated using PIC microcontroller on Proteus schematic 
software environment.  We built ANN with four input, ten 
hidden layer neurons and one output as shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig 16.  Controller structure using feedforward ANN 
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Fig 16.  Controller structure using feedforward ANN 
trained with Resilient Backpropagation (trainrp). 
 

The data above was randomly extracted from same set of data 
use for training and validating the neural network. However, 
this data was not part of the neural network training of the 
controller. P1 is the electrohydraulic valve down stream pres-
sure, P2 is the upstream pressure, and A is the pump motor 
amperage. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

TABLE 1 
ACTUAL PUMPING DATA FOR SIMULATING THE ANN 

 
 

TEST DATA 
Product P1 P2 A Density  Flow 

Rate 
AGO 65 24.5 115 0.83 183 
AGO 65 24.5 115 0.83 183 
AGO 65 24.5 115 0.83 183 
AGO 65 24.5 115 0.83 183 
AGO 65 25 115 0.83 183 
AGO 65 25 115 0.83 183 
HHK 64 18.6 115 0.805 186 
HHK 64 24.7 112 0.805 193 
HHK 64 28.8 112 0.805 201 
HHK 64 32.6 112 0.805 182 
Water 85 11.1 134 1 193 

Water 85 17.7 133 1 192 

Water 85 17.9 133 1 193 
Water 85 17.7 134 1 193 
PMS 61 23.2 110 0.73 230 
PMS 61 19.5 116 0.73 229 
PMS 61 11.1 108 0.73 210 

PMS 62 27.2 104 0.73 209 

 

 

TABLE 2 
ANN RESULT USING TRAINLM ALGORITHM 

,  

ANN TESTING RESULT 

Actual  
Flow Rate 

ANN with Default 
MATLAB activation 
function and trainlm 
training method 

ANN with trainlm 
training method and 
tansig-logsig activa-
tion function 

ANN with trainlm 
training method and 
logsig-logsig activation 
function 

183 
179.4571 177.4211 179.8968 

183 
179.4571 177.4211 179.8968 

183 
179.4571 177.4211 179.8968 

183 
179.4571 177.4211 179.8968 

183 
181.0215 176.8801 179.8885 

183 
181.0215 176.8801 179.8885 

186 
178.9075 197.2158 182.9737 

193 
190.0291 189.2153 204.3044 

201 
193.0076 185.4825 191.4642 

182 
189.4029 180.4791 185.295 

193 
180.1546 168.399 194.6979 

192 
185.4379 181.974 194.6979 

193 
185.7385 182.4782 194.6979 

193 
191.0662 188.2279 194.6979 

230 
230.8599 224.981 212.8489 

229 
228.3767 230.8168 241.9356 

210 
206.3306 211.6307 151.273 

209 
203.9613 205.7758 209.1083 
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TABLE 3 
ANN RESULT USING TRAINRP ALGORITHM 

Actual 
Flow rate  

ANN with Default 
MATLAB activa-
tion function and 
trainrp training 
method 

ANN  with 
tansig-logsig 
activation func-
tion and trainrp 
training method  

ANN with trainrp 
training method 
and logsig-logsig 
activation func-
tion 

183 171.3896 178.8079 186.8257 

183 171.3896 178.8079 186.8257 

183 171.3896 178.8079 186.8257 

183 171.3896 178.8079 186.8257 

183 173.8061 179.0287 186.7563 

183 173.8061 179.0287 186.7563 

186 165.5208 184.9917 193.2041 

193 190.661 187.9602 193.9034 

201 203.7871 186.3735 194.8236 

182 202.5861 184.9721 192.3959 

193 177.4965 184.12 167.7326 

192 188.1598 183.8858 178.829 

193 188.2027 183.9454 179.2963 

193 189.4719 187.2432 183.4058 

230 210.6172 220.3367 220.0148 

229 210.3427 221.6763 222.7025 

210 204.7382 200.8202 184.1487 

209 225.8038 214.9605 211.2334 

 

 

 

TABLE 4 
ANN RESULT USING TRAINGDX ALGORITHM. 

Actual 
Flow rate  

ANN with Default 
MATLAB activa-
tion function and 
traingdx training 
method 

ANN  with 
tansig-logsig 
activation func-
tion and 
traingdx train-
ing method  

ANN with 
traingdx train-
ing method and 
logsig-logsig 
activation func-
tion 

183 189.0306 174.4177 203.8547 

183 189.0306 174.4177 203.8547 

183 189.0306 174.4177 203.8547 

183 189.0306 174.4177 203.8547 

183 190.9316 174.5444 203.0464 

183 190.9316 174.5444 203.0464 

186 175.1273 196.6333 207.0924 

193 193.1001 200.7008 193.621 

201 205.0969 195.9114 189.4919 

182 215.5637 194.3293 187.1235 

193 175.7653 151.0006 159.1366 

192 187.1846 151.0021 164.4285 

193 187.2125 151.0021 164.5291 

193 188.2482 151.0018 163.5584 

230 207.2949 223.707 187.2188 

229 193.1041 214.659 190.4119 

210 163.836 227.2707 193.9151 

209 196.0743 227.7397 185.1539 
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Fig.17. ANN Controller training, validation and testing using 
Traingdx Algorithm and logsig-logsig activation function. 

 
 

 

 

 

Fig. 18. ANN Controller training, validation and testing using 
Trainrp algorithm logsig-logsig activation function. 
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Fig. 19. ANN Controller Training, validation and testing using 
Trainlm algorithm logsig-logsig activation function. 

 

 

 

 

Fig. 20. ANN Controller Training, validation and testing using 
Traingdx algorithm tansig-logsig activation function. 
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Fig.21. ANN Controller Training, validation and testing using 
Trainrp algorithm tansig-logsig activation function. 

 

 

Fig.22. ANN Controller Training, validation and testing using 
Trainlm algorithm tansig-logsig activation function. 

 

 

 

FIG.23. ANN CONTROLLER TRAINING, VALIDATION AND TESTING USING 
TRAINGDX ALGORITHM AND MATLAB DEFAULT ACTIVATIO FUNCTION. 
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Fig. 24. ANN Controller Training, validation and testing using 
Trainrp algorithm and MATLAB default activation function. 

 

Fig.25. ANN Controller Training, validation and testing using 
Trainrp algorithm and MATLAB default activation function. 

 

 

 

Fig.26 ANN Controller Training, validation and testing using 
Trainlm algorithm and MATLAB default activation function. 
 
The design, testing and simulation of the EIA-485 node was 
carried out on Proteus ISIS schematic and simulation applica-
tion software (Professional edition). In this implementation, 
two lines are used. One line for transmission and reception 
while the other line for control purposes.  With this arrange-
ment, only one node can transmit over the collaborative by 
holding the control line “high (or 1)”. Thus prevent bus-
contention on the network. When control line is set to “1”, all 
other nodes “listen” to the transmit and receive line for sche-
duling and control programs. Figures 27-29 below show two 
node communicating over EIA-485 collaborative network. 
Other communication protocols can be implemented to estab-
lished intelligent communication between neighboring nodes 
to regulate data rate of NCS using UDP over IP-network. 
 

 
 
Fig.27. Two nodes communicating over collaborative network 
EIA-485. 
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Fig.28. Two nodes establishing link over EIA-485 collaborative 
network. 

 
 
Fig. 29. Two nodes exchanging data over EIA-485 collabora-
tive network. 

5 CONCLUSIONS 
The application of artificial neural network and collaborative 
network to the control of electrohydraulic flow control valve 
in a process industry provides a powerful method in flow 
regulation where several observable variables cannot be 
mapped mathematically to a single output. We have shown 
that training a neural network controller with a noisy (pa-
rameters at start-ups and shutdowns are not remove from the 
training data set) can produce a remarkable output to regulate 
the behaviour of a process, in this case, electrohydraulic valve. 
The results have shown that the choice of training algorithm 
and layer activation function affects the accuracy of Neural 
network controller. 
 The use of collaborative network has the potential to imple-
ment highly intelligent scheduling and prioritization algo-

rithm over IP-based networks for networked control systems 
using UDP communication protocol. This provides an alterna-
tive way of achieving flow control mechanism of  UDP packets 
For NCS. 
References 
[1] B.G.C. Marieke, V.W Nathan, W.P.M Heemels and H. Nijmeijer, 

“Stability of Networked Control Systems with uncertain Time-
varying Delays”, IEEE Transactions On Automatic Control, Vol. 54, 
No.7, pp.1575-1580, 2009 

[2] W.P. Maurice, H. Heemels, A.R. Teel, N.V.D Wouw and D. Nesic, 
“Networked Controls Systems with Communications: Trade-offs be-
tween transmission intervals, Delays and Performance”, IEEE trans-
actions on Automatic Control, Vol.55, No.8, pp.1781-1796, 2010. 

[3] L. Jetto and V. Orsini, “Relaxed Conditions for the Exponential Sta-
bility of a Class of Linear Time-Varying System”, IEEE Transactions 
on Automatic Control, Vol.54, No.7, pp.1580, 2009. 

[4] X. Wang and M.D Lemmon, “Event Triggering in Distributed Net-
worked Control System”, IEEE Transactions on Automatic Control, 
Vol.56, No.3, pp.586-601, 2011. 

[5] I. Pan, S. Das and A. Gupta, “Tuning of an Optimal Fuzzy PID Con-
trollers with stochastic algorithm for Networked Control System 
with random time-delay”, ISA Transactions, Vol.50, No.1, pp.28-36, 
2011. 

[6]  Y. Tipsuwan and M.-Y. Chow, “Control methodologies in net-
worked control systems”, Control engineering practice, Vol.11, pp. 
1099-1111, 2003. 

[7] M.-Y. Chow and Y. Tipsuwan, “Networked-based control systems: A 
tutorial”, IECON’01: The 27th Annual conference of the IEEE indus-
trial electronics society, pp.1593 – 1602. 

[8] S. Shokri, M. Shirvani, A.R. Salmani and M. Younesi, “Improved PI-
Controllers Tuning in Time-delay Smith Predictor with Model Mis-
match”, International Journal of Chemical Engineering and Applica-
tions, Vol.1, No.4, pp.290-293, 2010. 

[9] N. Vatanski, J.P. Georges, C. Aubrun, E. Rondeau, and Jamsa-Jounela 
(2001). Control Compensation Based on Upper-bound delay in NCS. 
Retrieved from http://arxiv.org/ftp/cs/papers/0609/0609151.pdf 
(Accessed on 13th April, 2014). 

[10] A. O’Dwyer, “A reference guide to Smith Predictor based methods 
for the compensation of dead-time processes”, ISSC, Dublin, Sep-
tember 1-2, 2005. 

[11] S.H. Yang, X. Chen, L.S. Tan and L. Yang, “Time Delay and Data 
Loss Compensation for Internet-Based Process Control”, Transac-
tions of the Institute of Measurement and Control, Vol.27, No.2, 
pp.103-118, 2005. 

[12] M. Veronesi, “Performance Improvement of Smith Predictor through 
Automatic Computation of Dead-Time”, Yokogawa technical Report, 
English Edition, No.5, pp.25-30, 2003. 

[13] V. Rajinikanth and K. Latha,”Tuining and Retuning of PID control-
lers for stable using Evolutionary Algorithm”, International Scholarly 
Research Network, ISRN, Chemical Engineering, Vol.2012, pp.1-10, 
2012. 

[14] S. Vardhan and R. Kumar, “Simulation for Time-delay Compensa-
tion in Network Control System”, Cyber Journals: Multidisciplinary  

[15] Journals in Science and Technology, Journal of Selected Areas in 
Telecommunication (JSAT), pp.38-43, 2011. 

[16] C.C. Hang, “Smith Predictor and its Modification Control System, 
Robotics, and Automation”, Encyclopaedia of Life Support System-
Vol. II. 

[17] A.I Al-Odienat and A.A. Al-Lawana, “The advantages of PID fuzzy 
controllers over the conventional Types”, American Journal of Ap-
plied Science, Vol.5, No.6, pp.653-658, 2008. 

[18] M. Gaddam and R. Akula, “Automatic Tuning of PID Controller 
using Fuzzy Logic. 8th International Conference on Development and 
Application Systems, Suceava, Romania, pp.120-127, May 2006. 

[19] V. Tsoulkas, “Networked Control Systems with Delay”, 2nd Interna-
tional conference on Computational Intelligence Communication 
Systems and Networks, Liverpool, Uk, 29 July, 2010. 

IJSER

http://www.ijser.org/
http://h


International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016                                                                                        1842 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

[20] H. Gao, T. Chen and J. Lam, “A new delay system approach to net-
work-based control”, Automatic, Vol.44(2008), pp.39-52, 2007. 

[21] F.-L. Lian, J. Moyne and D. Tilbury,” Networked design considera-
tion for distributed control systems’, Vol.10, No.2, pp.297-307. 

[22] J.F. Kurose and K.W. Ross, Computer networking: A top-Down Ap-
proach (6th Ed.). Boston: Pearson Education, pp. 452-453, 2013. 

[23] R. Ahlswede, N. Cai, S.-Y.R. Li and R.W. Yeung, “Network in-
for`mation flow”, IEEE transactions on information theory, Vol.46, 
No.4, pp. 1204-1216, 2000. 

[24] S. Shakkottai and R. Srikant, “Network optimization and control”, 
Foundation and trends in networking, Vol.2, No.3, pp.271-379, 2008. 

[25] L.S. Coelho, “ Tuning of PID Controller for an Automatic regulator 
voltage using Chaotic Optimization Approach”, Chaos, Solitos and 
Fractals, 39, 1504-1514, 2009. 

[26] M. Khalid and S. Omatu, “A Neural Network Controller for a Temperature 
Control System”, IEEE Control System, 12(3), pp.58-64, June 1992. 

[27] I.J Nagrath and M. Gopal (2009). Control Systems Engineering. 5th 
Ed. New Delhi: New Age International Publishers. 

[28] J. Zhong-Ping and L. Praly,“Design of Robust Adaptive Controllers 
for Non-linear Systems with dynamic uncertainties”, Automatica, 
34(7), pp.825-840, 1998. 

[29] Jain, A.K., Mao, J. and Mahiuddin, K.M. (1996) Artificial Neural 
Networks: A tutorial [Online]. Available 
from:http://web.iitd.ac.in/~sumeet/Jain.pdf(Accessed on 13th 
March, 2013). 

[30] D. Psaltis, A. Siderie,and A.A Yamamura, “Multilayered Neural Network 
Controller”, Presented at IEEE International Conference on Neural Net-
works (1987), IEEE Control Magazine, pp.17-21, April 1988. 

[31] R. Rojas .Neural Networks; A systematic Introduction. New York: 
Springer-Verlag, 1996. 

[32] S.S. Ge, C.C. Hang and T. Zhang,” Adaptive Neural Network Control 
of non-linear Systems by State and Output feedback”, IEEE transac-
tions on System, Man, and Cybernetics-PartB: Cybernetics, 29(6), 
pp.818-820, December 1999.A.U. Levin and K.S. Narendra, “Control 
of non-linear dynamical systems using Neural Network”, IEEE 
transactions on Neural Network, 7(1), pp.30-42, 1996. 

[33] P. Sehgal, S. Gupta, S., and D. Kumar, “Minimization of Error in 
Training a neural network using gradient descent method”, Interna-
tional Journal of Technical Research (IJTR), 1(1), April, pp.10-12, April 
2012. 

[34] S. Verdu, “Fifty years of Shannon theory”, IEEE transactions on in-
formation theory, Vol.44, No.6, pp.2057-2078, 1988. 

[35] M. Husken, Y. Jin. and B. Sendhoff, B., “Structure Optimization of 
Neural Networks for Evolutionary Design Optimization”, Soft Com-
puting, Vol.9, No.1, pp.21-28, 2005. 

[36] H. Hakimpoor, H. Tat, and M. Rahmandoust, “Artificial Neural net-
works”, Applications in Management, World Applied Sciences Journal, 
Vol.14, No.7, pp1008-1019, 2011. 

[37] C. Lipe-Heffron (2012) Programming the Brain Neural Network. 
Retrieved from http://www.braincentersnw.com/concussion-
recovery-reprogramming-typical-and-atypical-brains/. 

[38] O. Razor (2014). Brain. Retrieved from 
http://www.abc.net.au/radionational/programs/ockhamsrazor/br
ain/5362454. 

[39] M.A. Nielsen, “Neural Network and Deep learning”, Determine 
Press, 2015. 

[40] Anom. (1999) Understanding EIA-485 Networks: A technical Sup-
plement to Control Network [Online]. Retrieved from: 
http://www.ccontrols.com/pdf/ExtV1N1.pdf (Accessed on 22nd 
April, 2014). 

[41] Chipkin Automation (2007) What is RS-485, EIA-485 [Online]. Avail-
able from:http://www.chipkin.com/what-is-rs485-eia-
485/(Accessed on 12th April, 2013). 

[42] Industrial Ethernet Book Issue 49/40, 2016. Retrieved from 
http://www.iebmedia.com/?hpid=1&parentid=59&themeid=248. 

[43] J.F. Kurose and K.W. Ross, Computer networking: A top-Down Ap-
proach (6th Ed.). Boston: Pearson Education, pp. 452-453, 2013. 
 

 

IJSER

http://www.ijser.org/
http://web.iitd.ac.in/~sumeet/Jain.pdf
http://www.ccontrols.com/pdf/ExtV1N1.pdf
http://www.chipkin.com/what-is-rs485-eia-485/
http://www.chipkin.com/what-is-rs485-eia-485/

	1 Introduction
	2 NCS MODELLING AND TIME-VARYING DELAY
	In this section, the NCS problem is shaped into control and optimization framework for analysis, and the time-varying delay of the system is presented in the model as a variable.
	2.1 NCS Modelling
	2.2 IP-BASED NCS TIME-VARYING DELAY AND CHANNEL OPTIMIZATION

	3 PROBLEM FORMULATION AND CONTROLLER DESIGN
	4 RESULT
	Fig.17. ANN Controller training, validation and testing using Traingdx Algorithm and logsig-logsig activation function.
	Fig. 18. ANN Controller training, validation and testing using Trainrp algorithm logsig-logsig activation function.
	Fig. 19. ANN Controller Training, validation and testing using Trainlm algorithm logsig-logsig activation function.
	Fig.21. ANN Controller Training, validation and testing using Trainrp algorithm tansig-logsig activation function.
	Fig.22. ANN Controller Training, validation and testing using Trainlm algorithm tansig-logsig activation function.
	Fig. 24. ANN Controller Training, validation and testing using Trainrp algorithm and MATLAB default activation function.
	Fig.25. ANN Controller Training, validation and testing using Trainrp algorithm and MATLAB default activation function.
	Fig.26 ANN Controller Training, validation and testing using Trainlm algorithm and MATLAB default activation function.

	5 CONCLUSIONS



