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Abstract

Analytic solutions to low-thrust propelled trajectories are available in a few cases only. An interesting case is
offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed
thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point
of view, because it may be passively maintained by a solar sail-based spacecraft. The aim of this paper is to
provide a systematic study concerning the possibility of inserting a solar sail-based spacecraft into a heliocentric
logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail
in terms of attitude angle, propulsive performance, parking orbit characteristics and initial position are thoroughly
investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained
analytical results are used for investigating the phasing maneuver of a solar sail along an elliptic heliocentric orbit.
In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories joined with
a coasting arc.
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1. Introduction

Solar sailing is one of the most promising innovations among low thrust propulsion systems. Recently, the
successes of JAXA’s IKAROS mission [24, 16, 8], NASA’s NanoSail D-2 [11], and LightSail-1 mission [22, 3],
have confirmed the potentialities of solar sail technology and renewed interest for future space applications.
In this context, JAXA is currently developing a solar sail aimed at propelling a large-size spacecraft towards
Jupiter and the Trojan Asteroids [7]. The estimated propulsion system is a so-called solar power sail, that is,
a square 2500 m2 thin membrane exposed to sunlight, which should guarantee both the required (photonic)
propulsive acceleration and supply the electric power necessary to operate an ion engine. Another interesting
mission concept involving solar sailing is offered by NASA’s Near Earth Asteroid (NEA) Scout [15, 10], whose
mission target is the exploration of an asteroid, orbiting in the Earth’s vicinity, with a diameter less than
100 m. In this case, the solar sail-based spacecraft is a 6U CubeSat, equipped with a cold gas thruster
that should generate the initial impulse necessary for inserting the vehicle on a transfer trajectory. After
this maneuver, an 83 m2 solar sail is intended for supplying the required propulsive acceleration during the
cruising phase. Finally, the Planetary Society is planning the launch of LightSail-2 [4], a 3U CubeSat aimed
at testing the capability of an orbit raising in a geocentric scenario by means of a 32 m2 square solar sail.

In a preliminary mission design phase, the trajectory analysis of a spacecraft propelled by a solar sail is
a crucial point, which is usually addressed through a numerical integration of the equations of motion. In
most cases, a number of possible trajectories must be simulated in order to identify the best option (based on
mission requirements), with a non-negligible computational cost. The latter could be significantly reduced
by means of closed-form analytical solutions, which represent a very useful tool for mission analysis purposes.
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In this context, [17] have recently proposed an approximate solution for the two-dimensional trajectory of a
solar sail with an asymptotic series expansion, suited for a low-performance propulsion system.

Actually, an exact solution of the equations of motion for a solar sail-based spacecraft exists, and is given
by the logarithmic spiral trajectory. More precisely, this solution does not require specific assumptions about
the sail performance, and the trajectory is characterized by a constant flight path angle and a fixed thrust
orientation [12]. A fixed sail attitude in an orbital reference frame can be passively maintained by a suitable
design of both the solar sail shape and the location of its center of mass, thus providing an extremely simple
control law for a logarithmic spiral trajectory. The main drawback of the logarithmic spiral is its poor
flexibility, since it prevents some important mission scenarios from being feasible, including a circle-to-circle
orbit transfer and, more generally, a modification of the initial osculating orbit eccentricity.

The possibility of generating a logarithmic spiral trajectory with a solar sail can be tracked back to the
works of [1] and [23]. [26] extended this concept, deriving a three-dimensional form of logarithmic spiral.
Later, [25] proposed a circle-to-circle orbit transfer by means of a trajectory composed of a logarithmic spiral
arc and two branches connecting it with the parking and the target orbits. [27] introduced a new phase
space approach capable of describing the two-dimensional trajectories of a solar sail with a fixed attitude
in an orbital reference frame, including the logarithmic spiral. More recently, [19] analyzed the problem
of continuous thrust-trajectories, making a useful distinction between different types of spirals, where the
logarithmic shape is treated as a special case. The aim of this work is to provide a thorough discussion
of heliocentric logarithmic spiral trajectories generated by a solar sail. Unlike existing literature, the focus
here is on the constraints to be met by a spacecraft in order to be placed in a logarithmic spiral trajectory
without any impulsive maneuver. In addition, assuming a flat sail, the mathematical model discussed in this
paper shows, for the first time, an interesting correlation between the logarithmic spiral characteristics (or the
osculating orbital parameters), and the thermo-optical parameters that describe the sail force model [28, 13].
The use of a thrust model related to the actual optical characteristics of the sail reflective film represents an
innovation in the logarithmic spiral trajectory analysis, since, so far, the problem has been addressed under
the simplifying assumption of specularly reflective sail only, that is, with an ideal force model.

The paper is organized as follows. Starting from a brief discussion on two-dimensional polar equations
of motion and solar sail thrust models, the next section derives the analytical relations describing the sail
dynamics, the variations of the orbital parameters, and the constraints related to the initial conditions.
Section 3 presents a potential application of the logarithmic spiral to the problem of orbit phasing in a
heliocentric mission scenario. The last section gives some concluding remarks and summarizes the main
outcomes of the work.

2. Solar sail insertion into a logarithmic spiral trajectory

Consider a spacecraft, initially placed on a heliocentric Keplerian orbit with eccentricity e0 and semimajor
axis a0, which deploys a solar sail at time t = t0 , 0, when the spacecraft true anomaly is ν0 ∈ [0, 360] deg.
The solar sail provides a continuous thrust that is used to modify the vehicle trajectory. The problem is to
investigate the conditions required to insert the spacecraft into a logarithmic spiral trajectory without the
need for any impulsive maneuver.

To proceed, consider the spacecraft equations of motion in a heliocentric polar reference frame T (O; r, θ),
which are given by

ṙ = vr, (1)

θ̇ =
vθ
r
, (2)

v̇r = −µ�

r2
+
v2θ
r

+ β
µ�

r2
R, (3)

v̇θ = −vr vθ
r

+ β
µ�

r2
T, (4)

where µ� is the Sun’s gravitational parameter, r is the Sun-spacecraft distance, θ is the angular coordinate
measured counterclockwise from the direction of the parking orbit eccentricity vector (that is, θ0 = ν0,
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see Fig. 1), and vr (vθ) is the radial (transverse) component of the spacecraft velocity. In Eqs. (1)–(4),
the dot indicates the derivative with respect to time. The last terms in Eqs. (3)-(4) model the solar sail
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Figure 1: Reference frame and characteristics angles α and φ.

propulsive acceleration, where β, referred to as lightness number, is the (constant) ratio of the maximum
magnitude of propulsive acceleration to the local solar gravitational acceleration at a given heliocentric
distance r [13], while R and T are the dimensionless radial and transverse components of the solar-sail
propulsive acceleration.

2.1. Solar sail force model

The conditions required to insert a solar sail-based spacecraft into a logarithmic spiral trajectory depend
on the model used to describe the solar sail thrust. A common choice in a preliminary mission design is to
assume a flat sail with an optical force model [28, 13], in which the dimensionless radial (R) and transverse
(T ) components of the solar sail propulsive acceleration are

R = cosα
(
b1 + b2 cos2 α+ b3 cosα

)
, (5)

T = cosα sinα (b2 cosα+ b3) , (6)

where α ∈ [−90, 90] deg is the sail pitch angle, that is, the angle between the Sun-spacecraft line and the
direction of the unit vector perpendicular to the sail surface and directed away from the Sun, see Fig. 1. Note
that the thrust vector direction is constant in an orbital reference frame only if α is constant. The coefficients
b1, b2, and b3 in Eqs. (5) and (6), referred to as force coefficients, depend on the optical characteristics of
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the sail reflective film, and are defined as [17]

b1 =
1− ρ s

2
, (7)

b2 = ρ s, (8)

b3 =
Bf ρ (1− s)

2
+

(1− ρ) (εf Bf − εbBb)
2 (εf + εb)

, (9)

where ρ is the reflection coefficient, s is the fraction of photons that are specularly reflected, Bf (or Bb) is the
non-Lambertian coefficient of the front (or back) sail surface, εf (or εb) the emissivity coefficient of the front
(or back) sail surface. In particular, when the degradation of the sail reflective film is neglected [6, 5], b1, b2,
and b3 are all constant. For example, for an ideal sail, characterized by a perfectly specular reflection of light
and a zero absorption coefficient, the force coefficients are b1 = b3 = 0 and b2 = 1. Assuming, instead, a
typical sail film with a highly reflective aluminum-coated front side and a highly emissive chromium-coated
back side [13], the values of the force coefficients are b1 = 0.0723, b2 = 0.8554, and b3 = −0.003, in accordance
with the recent results by [9]. Note that the maximum (minimum) value of the dimensionless transverse
propulsive acceleration T is about 0.3278 (−0.3278), and occurs when α ' 35.2 deg (α ' −35.2 deg), see
Fig. 2.

For the analysis to follow, it is useful to introduce an auxiliary function P = P (α), defined as the ratio
of the transverse to the radial component of the dimensionless propulsive acceleration, viz.

P ,
T

R
=

sinα (b2 cosα+ b3)

b1 + b2 cos2 α+ b3 cosα
. (10)

Note that P = tanφ, where φ is the thrust angle, that is, the angle between the Sun-spacecraft line and the
sail thrust direction, see Fig. 1. For an ideal sail P (α) ≡ tan(α), therefore P increases monotonically with
α and, in this case, the pitch angle α coincides with the thrust angle φ. On the other hand, for an optical
force model φ < α (with the only exception of a Sun-facing sail in which α = φ = 0), and P has a single
positive stationary point at α = α? > 0, where P takes its maximum value Pmax = P (α?), with

Pmax = P (α?) =

(3 b1 b3 + d)

√
1− g2

4 b22 (2 b1 + b2)
2

2 (2 b1 + b2)

[
b1 +

g2

4 b2 (2 b1 + b2)
2 −

b3 g

2 b2 (2 b1 + b2)

] (11)

and

α? = arccos

(
− g

2 b2 (2 b1 + b2)

)
, (12)

where

d ,
√
b1 (4 b32 + 8 b1 b22 − 4 b2 b23 + b1 b23), (13)

g , b1 b3 + 2 b2 b3 − d. (14)

In particular, using the force coefficients {b1, b2, b3} calculated with the results by [9], it may be verified that
α? ' 74.2 deg and Pmax ' 1.64, see Fig. 3. Note that P (α) is an odd function of α, and its minimum value
is Pmin = −Pmax = P (−α?).
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Figure 2: Dimensionless components of propulsive acceleration as a function of the pitch angle for a flat solar
sail with an ideal (solid line) and optical (dash line, data taken from [9]) force model.

2.2. Logarithmic spiral trajectory

According to [18], when a spacecraft covers a heliocentric logarithmic spiral, its distance from the Sun
can be written as a function of the angular coordinate θ as

r(θ) = r0 exp [tan γ (θ − ν0)], (15)

where

r0 , r(θ0) ≡ r(ν0) =
a0
(
1− e20

)
1 + e0 cos ν0

(16)

is the Sun-spacecraft distance at time t0, and γ is a constant parameter that coincides with the flight path
angle. To avoid the need of an additional (chemical) propulsion system, the spacecraft is assumed to leave
the parking orbit without any impulsive maneuver, that is, its velocity at t = t0 (when the sail is deployed)
coincides with the Keplerian velocity on the parking orbit. Accordingly, the flight path angle is related to
the parking orbit characteristics by

tan γ =
e0 sin ν0

1 + e0 cos ν0
(17)

and is therefore a function of the pair {e0, ν0}.
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Figure 3: Ratio P between the dimensionless components of propulsive acceleration as a function of the pitch
angle, see Eq. (10). Ideal (solid line) and optical (dash line, data taken from [9]) force model.

In order to calculate the spacecraft velocity components along a logarithmic spiral trajectory, recall that
the radial velocity component vr and its time-derivative v̇r can be written as

vr =
dr

dθ
θ̇ = r θ̇ tan γ = vθ tan γ, v̇r = v̇θ tan γ. (18)

Paralleling the procedure described by [13], Eqs. (18) can be specialized to the case of logarithmic spiral
covered by a solar sail spacecraft. In fact, when Eqs. (18) are substituted into Eqs. (3)-(4), the radial and
transverse components of the spacecraft velocity become

vθ = r
dθ

dt
= k

√
µ�

r
cos γ, (19)

vr =
dr

dt
= k

√
µ�

r
sin γ, (20)

where
k ,

√
1 + β T tan γ − β R. (21)

The magnitude v =
√
v2r + v2θ of the heliocentric velocity is therefore

v = k

√
µ�

r
. (22)

Note that the dimensionless constant parameter k coincides with the ratio of the solar sail velocity along
the logarithmic spiral trajectory to its local circular velocity. Therefore, it takes positive values only. It will
be shown later that k may be written as a function of the pair {e0, ν0}, and that k < 1 on a closed parking
orbit.

2.3. Osculating orbit characteristics

The characteristics of the spacecraft osculating orbit, in terms of semimajor axis a, eccentricity e, and
direction of eccentricity vector, can be obtained as a function of the heliocentric distance r using Eqs. (19)-
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(20). In fact, since the magnitude of the specific angular momentum vector is h = r vθ = k cos γ
√
µ� r, the

semilatus rectum p of the osculating orbit is found to be proportional to r (that is, p varies exponentially
with the angular coordinate θ) through the following relationship

p = r k2 cos2 γ, (23)

where k is given by Eq. (21). From the specific mechanical energy equation, and recalling Eqs. (19)-(20),
the semimajor axis of the osculating orbit is

a =
r

2− k2
. (24)

Note that, from Eqs. (23)-(24), the ratio p/a and r/p are constant and, therefore, both the eccentricity e
and the true anomaly ν of the osculating orbit are constants of motion, viz.

e = e0, ν = ν0. (25)

Also, from this last equation, the angle ω between the osculating orbit eccentricity vector and the parking
orbit eccentricity vector is given by

ω = θ − ν0, (26)

which corresponds to the rotation angle of the osculating orbit apse line, measured counterclockwise from
the eccentricity vector of the parking orbit. It is worth noting that the results obtained in this section,
expressed by Eqs. (23)–(26), are valid for solar sail-based spacecraft only, and cannot be used for a generic
vehicle that covers a logarithmic spiral trajectory.

Finally, from Eqs. (15) and (25), the semimajor axis of the osculating orbit may be explicitly written as
a function of the angular coordinate θ as

a = a0 exp [tan γ (θ − θ0)]. (27)

Likewise, combining Eqs. (25) and (27), the variation of p with θ is

p = p0 exp [tan γ (θ − ν0)], (28)

where p0 = a0 (1− e20) is the semilatus rectum of the parking orbit.

2.4. Propulsive requirements

The problem now is to find the propulsive requirements necessary for a solar sail-based spacecraft to
move along a given logarithmic spiral trajectory with a constant pitch angle α, that is, with a fixed thrust
vector direction in an orbital reference frame. To that end, consider the time derivative of vθ, which, bearing
in mind Eq. (19), becomes

v̇θ =
dvθ
dr

vr = −vθ vr
2 r

. (29)

Accordingly, Eq. (4) gives
vθ vr

2
= β T

µ�

r
. (30)

Substituting Eqs. (19)-(20) into Eq. (30), and taking into account Eq. (21), the result is

sin 2γ

4
=
β T

k2
. (31)

From the trigonometric identity
sin (2 arctanx)

4
=

x

2 (x2 + 1)
(32)
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and setting x = tan γ (where tan γ is given by Eq. (17)), an equivalent version of Eq. (31) is

e0 sin ν0 (1 + e0 cos ν0)

2 (1 + e20 + 2 e0 cos ν0)
=
β T

k2
. (33)

In addition, when the polar equation of the osculating orbit r = a (1− e20)/(1 + e0 cos ν0) is combined with
Eq. (24), the result is

k2 =
1 + e20 + 2 e0 cos ν0

1 + e0 cos ν0
, (34)

which shows that k is a function of {e0, ν0} only.
Finally, from Eqs. (33)-(34), and taking into account Eq. (21), the expressions of the augmented com-

ponents of the radial (β R) and transverse (β T ) dimensionless propulsive acceleration are obtained as a
function of the pair {e0, ν0} as

β T =
e0 sin ν0

2
, (35)

β R = −
e0
(
e0 cos2 ν0 + 2 cos ν0 + e0

)
2 (1 + e0 cos ν0)

, (36)

where R and T depend on the sail pitch angle α and the force coefficients {b1, b2, b3} according to Eqs. (5)
and (6), respectively. In particular, the sign of pitch angle α (and so the sign of T ) coincides with the sign
of sin ν0, see Eq. (35).

To summarize, for an assigned parking orbit eccentricity e0 and for a given initial (angular) position ν0,
the solar sail spacecraft covers a logarithmic spiral trajectory only if the lightness parameter β and the pitch
angle α are in accordance with Eqs. (35) and (36). Note that, independent of the selected force model, when
the parking orbit is circular (e0 = 0), Eqs. (35)–(36) state that β = 0, that is, the sail thrust is equal to zero.
Indeed, it is well known [13] that a solar sail-based spacecraft cannot be inserted into a logarithmic spiral
trajectory from a circular parking orbit unless a discontinuity in the vehicle velocity is introduced, which
implies the use of an impulsive maneuver just before the sail deployment. This point, of course, imposes a
serious limitation on the use of logarithmic spirals as transfer trajectories between coplanar orbit, since it
leaves out the noteworthy case of circular orbits of different radius. However, even neglecting the case of
circular parking orbit, there exist some limitations on the choice of initial orbital eccentricity and spacecraft
position, since not all the pairs {e0, ν0} turn out to be feasible, as will now be shown.

2.5. Force model constraints

Since the solar sail propulsive acceleration has always an outward radial component with respect to the
Sun (regardless of the selected force model), the initial conditions in terms of e0 and ν0 must be chosen
such that R ≥ 0. Observing that β > 0 and e0 > 0, the constraint R ≥ 0 in Eq. (36) corresponds to
enforcing

(
e0 cos2 ν0 + 2 cos ν0 + e0

)
< 0. In particular, when the parking orbit is open, that is, e0 ≥ 1 and

ν0 ∈ (− arccos(1/e0), arccos(1/e0)), the maximum value of R is −(
√
e20 − 1)/β ≤ 0. This result implies that

a solar sail spacecraft cannot be inserted into a logarithmic spiral trajectory starting from an open parking
orbit. In addition, the escape conditions cannot be reached along a logarithmic spiral trajectory. Indeed,
the orbital velocity goes to zero as the heliocentric distance tends to infinity, see Eq. (22). The latter result
is by no means surprising, since the osculating orbital eccentricity does not vary along a logarithmic spiral,
see the first of Eqs. (25). On the other hand, when the osculating orbit is elliptical, that is, e0 ∈ (0, 1) and
ν0 ∈ [0, 2π], the condition β R > 0 yields

cos ν0 ≤
√

1− e20 − 1

e0
, (37)

which can be equivalently written as

ν0 ∈ [ν?0 , 2π − ν?0 ] with ν?0 , arccos

(√
1− e20 − 1

e0

)
. (38)

8



From the polar equation of the parking orbit, Eq. (37) can be rearranged as

r0 ≥ a0
√

1− e20, (39)

stating that a logarithmic spiral can be covered by a solar sail spacecraft only if the sail is deployed when
the heliocentric distance is greater than the semiminor axis of the parking orbit a0

√
1− e20.

Another constraint on the choice of the initial conditions e0 and ν0 is obtained recalling that T/R = P (α),
see Eq. (10). Taking the ratio of Eq. (35) to Eq. (36), it is found that

P (α) = F (e0, ν0) with F (e0, ν0) , − sin ν0 (1 + e0 cos ν0)

e0 cos2 ν0 + 2 cos ν0 + e0
. (40)

Assuming an ideal force model (i.e. when b1 = b3 = 0 and b2 = 1), the function P = P (α) has no stationary
points, since P = tanα, see Eq. (10). In this case any pair {e0, ν0} that meets Eq. (38) is feasible. When
an optical force model is used, instead, the function P = P (α) has an absolute minimum (−P (α?)) and
an absolute maximum (P (α?)), see Fig. 3, which may be obtained from Eq. (11) as a function of the force
coefficients {b1, b2, b3}. In this case, a generic pair {e0, ν0} is feasible only if the corresponding value
F (e0, ν0), calculated with Eq. (40), satisfies

F (e0, ν0) ∈ [−P (α?), P (α?)], (41)

where P (α?) is given by Eq. (11). Equation (41) gives two constraints on the pair {e0, ν0}, viz.

e0 ≤ −
sin ν0 + 2P (α?) cos ν0

P (α?) cos2 ν0 + sin ν0 cos ν0 + P (α?)
, (42)

e0 ≤
sin ν0 − 2P (α?) cos ν0

P (α?) cos2 ν0 − sin ν0 cos ν0 + P (α?)
, (43)

which must be met along with the inequality of Eq. (37).
From a graphical viewpoint, the constraints of Eq. (37) and Eqs. (42)-(43) mark the boundary of an

admissible region in the plane (e0, ν0), see Fig. 4, within which the eccentricity of the parking orbit (e0)
and the initial spacecraft position (ν0) must be selected in order to obtain a logarithmic spiral trajectory.
In other terms, for a given parking orbit eccentricity e0, Fig. 4 defines the range of initial true anomalies
consistent with the solar sail characteristics.

Figure 4 also quantifies the considerable reduction (especially in case of small eccentricities) of the
admissible region related to a non-ideal sail behavior. For example, assuming a parking orbit with an
eccentricity equal to that of Earth’s heliocentric orbit, i.e. e0 = e⊕ , 0.0167, the admissible range of true
anomalies ν0 ∈ [91, 269] deg (ideal sail) reduces to ν0 ∈ [107, 253] deg (optical force model).

Having found an admissible pair {e0, ν0} with the aid of Fig. 4, the problem of calculating the required
values of sail lightness number β and pitch angle α can be summarized as follows: 1) obtain α by imposing
P (α) = F (e0, ν0), where P (α) is given by Eq. (10), 2) find R with Eq. (5), and 3) calculate the required
value of β using Eq. (36). In case of ideal force model, this procedure gives an explicit closed-form solution,
consistent with the approach by [13], viz.

α = arctan

[
− sin ν0 (1 + e0 cos ν0)

e0 + 2 cos ν0 + e0 cos2 ν0

]
, (44)

β =

−e0

[
sin2 ν0 (1 + e0 cos ν0)

2

(e0 + 2 cos ν0 + e0 cos2 ν0)
2 + 1

]3/2 (
e0 + 2 cos ν0 + e0 cos2 ν0

)
2 (1 + e0 cos ν0)

. (45)

The lightness number β can be rewritten in a more compact form, using Eq. (44) and recalling that cosα ≥ 0,
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Figure 4: Admissible pairs {e0, ν0} for a flat solar sail with an ideal (hatch area) and optical (grey area) force
model.

viz.

β =
1

2

e0 sin ν0
sinα cos2 α

. (46)

From Eq. (46), when α = ±90 deg (i.e. when the sail thrust goes to zero) the required value of β tends to
infinity. In this limiting case the logarithmic spiral cannot be tracked by a solar sail-based spacecraft.

Figure 5 illustrates how the required values of α and β vary with the initial true anomaly ν0 and the
parking orbit eccentricity e0. Note that, if ν0 = 180 deg, the value of the lightness number is β = e0, see also
Eq. (45). Moreover, β quickly increases as |α| → 90 deg, whereas it has a weak dependence on ν0 (especially
for small values of the eccentricity) when the value of α is sufficiently small.

When an optical force model is used, the previous procedure must account for an additional problem in
the evaluation of the pitch angle with Eq. (40). In fact, if b1 6= 0 and b3 6= 0, there is not, in general, a
single solution to the equation α = α(P ). However, with the aid of Fig. 2, it may be easily checked that R
is maximized by selecting the minimum admissible value of |α|, which, in turn, corresponds to the minimum
value of lightness number β, see Eq. (36). The minimum admissible β is clearly the best choice, because, for
a given spacecraft mass, a smaller β corresponds to a smaller sail surface. In conclusion, α is to be selected
in the range [−α?, α?], within which P is a monotonically increasing function of the sail pitch angle. A first
order approximation, which can be easily refined with standard root finding techniques, is given by

α ' 1.379 arctan

[
−0.7548 sin ν0 (1 + e0 cos ν0)

e0 cos2 ν0 + 2 cos ν0 + e0

]
, (47)

where α is in radians. Having calculated the pitch angle, the lightness number is obtained from Eq. (36) as

β = −
e0
(
e0 cos2 ν0 + 2 cos ν0 + e0

)
2 cosα (1 + e0 cos ν0) (b1 + b2 cos2 α+ b3 cosα)

. (48)

Figure 6 shows the variation of α and β as functions of ν0 and e0. The forbidden regions in gray colour are
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Figure 5: Required pitch angle α and sail lightness number β as a function of ν0 and e0 for an ideal force model.

associated to the constraints of Eqs. (42)-(43). These forbidden regions are lacking in Fig. 5 since an ideal
sail force model allows any value of α ∈ [−90, 90] deg to be feasible. In the noteworthy case of e0 = e⊕,
the variation of β and α with the pair {e0, ν0} is drawn in Fig. 7 for both an ideal and an optical force
model. Independent of the selected force model, it happens that β ' e⊕ for a wide range of variation of true
anomaly. Within this range, the variation of α is nearly linear with ν0, see Fig. 7.

2.6. Time variation of osculating orbit parameters

When the spacecraft covers a logarithmic spiral trajectory, the angular coordinate θ and the distance
r may be expressed as explicit functions of the flight time t [18]. It will be shown now that a similar
conclusion applies to the semimajor axis and argument of pericenter of the osculating orbit (recall, instead,
that eccentricity and true anomaly are constant). Indeed, substituting Eq. (15) into (19) and integrating by
separation of variables, the angular coordinate is found to be

θ(t) = ν0 +
2

3
cot γ ln

(
1 +

3

2
k sin γ

√
µ�

r30
t

)
, (49)
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Figure 6: Required pitch angle α and sail lightness number β as functions of ν0 and e0 for an optical force model.

where r0, γ, and k are given as a function of {e0, ν0} by Eq. (16), Eq. (17), and Eq. (34), respectively.
Substituting then the last equation into Eq. (15), the Sun-spacecraft distance varies with time as

r(t) = r0

(
1 +

3

2
k sin γ

√
µ�

r30
t

)2/3

. (50)

Finally, the semimajor axis and argument of longitude of the osculating orbit are immediately obtained from
Eqs. (24) and (26) as

a(t) = a0

(
1 +

3

2
k sin γ

√
µ�

r30
t

)2/3

(51)

and

ω(t) =
2

3
cot γ ln

(
1 +

3

2
k sin γ

√
µ�

r30
t

)
. (52)

Likewise, the ratio of the flight time t to the parking orbit period T0, where T0 , 2π
√
a30/µ�, is given

by

t

T0
=

(
1− e20

)3/2
3π k sin γ (1 + e0 cos ν0)

3/2

{
exp

[
3

2
tan γ (θ − ν0)

]
− 1

}
. (53)
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Figure 7: Required pitch angle α and sail lightness number β as a function of ν0 when e0 = e⊕ = 0.0167 for an
ideal (solid line) and optical (dash line) force model.

Note that, when ν = 180 deg (and, therefore, γ = 0), from Eq. (34) the ratio t/T0 becomes

t

T0
=

(θ − ν0)

2π

√
(1 + e0)

3

1− e0
. (54)

This is an interesting scenario, in which the sail deployment coincides with the aphelion of the parking orbit,
and the Sun-spacecraft distance is a constant of motion r(t) = r0 = a0 (1 + e0), see Eq. (15). In this special
case, the logarithmic spiral degenerates into a non-Keplerian circular orbit [14], which is covered with an
angular velocity less than that corresponding to a Keplerian circular orbit with the same radius r0. Such an
orbit is obtained using a Sun-facing sail (α = 0, see Eq. (35)) with a lightness number β = e0/(b1 + b2 + b3),
see Eq. (36).

It is worth noting that the results obtained in this section are compatible with the hodograph represen-
tation described by [2], see the Appendix.

3. Mission application: orbit phasing

A possible application of the logarithmic spiral trajectory is an orbit phasing maneuver, which is per-
formed when a spacecraft changes its angular coordinate, along a fixed heliocentric orbit, with respect to the

13



position it would have in case of Keplerian motion, after a given time interval. This kind of maneuver offers
the possibility of suitably deploying a constellation of spacecraft along a working orbit, with the aim, for
example, of studying the properties of the Sun and the solar wind by different vantage points, and providing
an early warning against solar flares and mass ejections.

The adopted strategy consists in dividing the transfer trajectory into three phases, see Fig. 8. In the
first one, the solar sail spacecraft is inserted into a logarithmic spiral branch, where the osculating orbit
semimajor axis a varies according to Eq. (27), while the eccentricity e and the true anomaly ν remain
unchanged, see Eqs. (25). Then, when the second phase starts, the sail is oriented edgewise to the Sun
(α = ±90 deg) so that the propulsive acceleration vanishes, and the spacecraft is inserted into a Keplerian
arc. In this phase, the only varying orbital parameter is the true anomaly ν. When the latter reaches an
assigned value, the third (and last) phase starts, and the sail is (backward) rotated in order to insert the
spacecraft into another logarithmic spiral branch, whose aim is to bring the osculating orbit semimajor axis
a back to its initial value. Since the osculating orbit eccentricity and true anomaly are constant in the third
phase, the final values of a and e coincide with their corresponding initial values, while the angular position
is different. Note also that, during the two logarithmic spiral arcs, the apse line of the osculating orbit
rotates with the same angular velocity as that of the spacecraft, according to Eq. (26). Because the orbital
orientation is required to remain unchanged at the end of a phasing maneuver, a total apse line rotation
equal to an integer multiple of 2π must be enforced.
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Figure 8: Conceptual sketch of the orbit phasing mission scenario.

To simplify the analysis, the rotation angle of the apse line is assumed to be the same in the first and
third phase, each one contributing by a rotation angle equal to π. The total apse line rotation is therefore
2π, and the generalization to an integer multiple of 2π is straightforward. For exemplary purposes, consider
a solar sail-based spacecraft initially placed along a heliocentric elliptic parking orbit with orbital parameters
a0, e0, and ω0. Also, let ν0 be the spacecraft true anomaly at the beginning of the maneuver. Its flight path
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angle γ0 can be calculated by means of Eq. (17) as

γ0 = arctan

(
e0 sin ν0

1 + e0 cos ν0

)
. (55)

When the solar sail is deployed, the spacecraft is inserted into a logarithmic spiral trajectory where, as
stated, it sweeps an angle equal to π, that is

θ1 = ν0 + π, (56)

where subscript 1 indicates the end of the first phase. Accordingly, the apse line rotation at the end of the
first spiral arc may be written as

ω1 = π. (57)

Using Eqs. (25) and (27), the orbital elements at the end of the first phase are

a1 = a0 exp (π tan γ0), e1 = e0, ν1 = ν0. (58)

Note that, as expected, the osculating orbital eccentricity and true anomaly are constant, while the semi-
major axis increases (decreases) when the flight path angle is positive (negative).

At the end of the first phase, which coincides with the beginning of the second phase, the solar sail
propulsive acceleration is instantly set equal to zero with a suitable sail attitude maneuver, and the spacecraft
is inserted into a Keplerian trajectory. Recalling the solution to Kepler’s problem and using Eqs. (58), the
orbital elements after the coasting phase are

a2 = a1 = a0 exp (π tan γ0), e2 = e1 = e0, ω2 = ω1 = π, (59)

where subscript 2 identifies the end of the second phase, when the spacecraft true anomaly is ν2. The
corresponding flight path angle is obtained from Eq. (17) as

γ2 = arctan

(
e2 sin ν2

1 + e2 cos ν2

)
= arctan

(
e0 sin ν2

1 + e0 cos ν2

)
. (60)

The third phase starts when the solar sail is backward rotated, in order to insert the spacecraft into the
second and final logarithmic spiral path. During this phase, the total swept angle is, again, equal to π, that
is

θ3 = ν2 + π, (61)

where subscript 3 indicates the end of the third phase (and of the whole maneuver). Accordingly,

ω3 = ω2 + π = 2π, (62)

stating that the total rotation of the apse line during the whole maneuver is equal to 2π, as required. The
expressions of the final osculating orbital parameters can be written using Eqs. (25), (27), and (59) as

a3 = a2 exp (π tan γ2) = a0 exp [π (tan γ0 + tan γ2)], e3 = e2 = e0, ν3 = ν2. (63)

Since the phasing maneuver does not change the orbit shape, the final semimajor axis coincides with the
initial one, or a3 = a0. Hence, the first of Eqs. (63) yields

γ2 = −γ0 (64)

and, accordingly
ν2 = 2π − ν0. (65)

Equation (64) shows the two spiral arcs to be symmetrical to each other, while Eq. (65) states that the final
angular position of the coasting (Keplerian) phase is strictly related to the initial conditions.

It is now possible to investigate the feasibility of such a mission scenario. Firstly, the flight path angle γ0
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is more conveniently identified as γ (hence, γ2 = −γ). The tangent of the flight path angle can be expressed
as a function of the ratio of the final to the initial osculating semimajor axis of the first spiral branch a1/a0,
by rewriting the first of Eqs. (58) as

tan γ =
ln (a1/a0)

π
. (66)

Substituting Eq. (17) into Eq. (66) and denoting the (constant) eccentricity with e ≡ e0, the result is

e sin ν0
1 + e cos ν0

=
ln (a1/a0)

π
. (67)

Solving Eq. (67) for the initial true anomaly ν0 yields
ν0A = 2π − arccos

[
− tan2 γ/e−

√
tan2 γ (1− 1/e2) + 1

1 + tan2 γ

]

ν0B = 2π − arccos

[
− tan2 γ/e+

√
tan2 γ (1− 1/e2) + 1

1 + tan2 γ

] if a1/a0 < 1, (68)

ν0 = π if a1/a0 = 1, (69)
ν0A = arccos

[
− tan2 γ/e−

√
tan2 γ (1− 1/e2) + 1

1 + tan2 γ

]

ν0B = arccos

[
− tan2 γ/e+

√
tan2 γ (1− 1/e2) + 1

1 + tan2 γ

] if a1/a0 > 1. (70)

The special case a0 = a1 represents an apse line rotation at constant angular velocity, obtained by deploying
the sail at the parking orbit aphelion and maintaining α = 0 along the whole maneuver. Note that, in this
case, a purely radial propulsive acceleration is required with β R = e0, see Eqs. (35)–(36). However, it is
clear that, in general, there are two possible values of ν0 (subscripts A and B) for a given value of the ratio
a1/a0, that is, for a given value of tan γ, see Eq. (66). Note that, according to Eqs. (68) and (70), the initial
conditions must meet the following constraints

tan2 γ (1− 1/e2) + 1 ≥ 0, (71)∣∣∣∣∣− tan2 γ/e±
√

tan2 γ (1− 1/e2) + 1

1 + tan2 γ

∣∣∣∣∣ ≤ 1. (72)

Equation (71) implies that

|tan γ| ≤ e√
1− e2

. (73)

The inequality (73) is always satisfied, since arctan
(
e/
√

1− e2
)

is the maximum value (in magnitude)
reachable by the flight path angle. Note that ν0 must also meet the constraint given by Eq. (38), otherwise a
logarithmic spiral cannot be covered. Finally, for symmetry reasons, the insertion conditions on the second
spiral are equivalent to those derived for the first spiral. To prevent the sail film from excessive thermal
loads, a constraint on the perihelion distance rp1 is introduced, viz.

rp1 = a1 (1− e1) ≥ rmin, (74)

where rmin is the minimum admissible heliocentric distance. Using Eqs. (58), the latter inequality can be
rewritten as

rp1 = rp0 exp (π tan γ) ≥ rmin, (75)

where rp0 is the perihelion distance on the initial orbit. Since rmin < rp0, the constraint may become active
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only if γ ≤ 0, so Eq. (75) can be rearranged as

|γ| ≤ arctan

[
1

π
ln

(
rp0
rmin

)]
. (76)

According to [20], a conservative value rmin = 0.4 au is chosen for simulation purposes. Note that since the
maximum magnitude of γ is arctan (e0/

√
1− e20), an equivalent version of (75) is

e0√
1− e20

≤ 1

π
ln

[
a0 (1− e0)

rmin

]
. (77)

When the phasing maneuver ends, the spacecraft true anomaly is, of course, different from that obtained
in a purely Keplerian motion. The difference between the two anomalies is the phase angle θph, which can
be calculated as follows. First, the total maneuver time ttot is obtained as the sum of the flight times on
each of the two logarithmic spirals tsp and the coasting time on the Keplerian arc tc. Indeed, the two spiral
branches are symmetric, and the flight time is the same on both branches. From Eqs. (53) and (54), the
ratio of the flight time tsp on each spiral path to the initial orbital period T0 is given by

tsp
T0

=
2 (1− e2)3/2

3π e sin ν0 (1 + e cos ν0)

[(
a1
a0

)3/2

− 1

]
if a1/a0 6= 1, (78)

tsp
T0

=

√
(1 + e)3

1− e
if a1/a0 = 1. (79)

The ratio of the coasting time on the Keplerian arc tc to T0 is the result of a Kepler’s problem with initial
true anomaly ν0 and final true anomaly 2π − ν0, see Eq. (65), and the solutions are

tc
T0

=
1

π

(
a1
a0

)3/2

(e0 sinE0 − E0 + π) if a1/a0 < 1, (80)

tc
T0

= 0 if a1/a0 = 1, (81)

tc
T0

=
1

π

(
a1
a0

)3/2

(e0 sinE0 − E0) if a1/a0 > 1, (82)

where E0 ∈ [0, 2π] is the initial eccentric anomaly, given by

E0 = 2 arctan

[√
1− e
1 + e

tan
(ν0

2

)]
. (83)

Therefore, the total maneuver time ttot is obtained as

ttot = 2 tsp + tc, (84)

where the factor 2 accounts for the two spiral arcs. The angular position held by a spacecraft on the parking
orbit at time ttot may be calculated by solving an inverse Kepler’s problem, viz.

EK − e sinEK = mod

[
2π

ttot
T0

+ (E0 − e0 sinE0) , 2π

]
, (85)

where the final eccentric anomaly on the Keplerian orbit EK ∈ [0, 2π] is, as usual

EK = 2 arctan

[√
1− e
1 + e

tan
(νK

2

)]
. (86)

17



The phase angle θph is given by the difference between the final true anomaly on the second logarithmic
spiral and the final Keplerian true anomaly

θph = 2π − ν0 − νK, (87)

where νK is calculated using Eq. (86).
Figure 9 shows the required lightness number β as a function of the phase angle θph for different values of

eccentricity e, whereas Fig. 10 illustrates the dependance of θph on the ratio a1/a0. The range of admissible

-120 -90 -60 -30 0 30 60
0.01

0.02

0.03

0.04

0.05

0.06

3ph [deg]

-

e
�

2e
�

3e
�

parking orbit

eccentricity

90

Figure 9: Sail lightness number β as a function of the phase angle θph for e = {e⊕, 2 e⊕, 3 e⊕}.

phase angles and the corresponding required lightness number tend to increase with the parking orbit
eccentricity. Therefore, the feasibility of covering a logarithmic spiral trajectory for a solar sail spacecraft is
limited by the sail performance, i.e., by the lightness number β. As far as the total flight time is concerned,
Fig. 11 shows the variation of the ratio ttot/T0 as a function of the phase angle θph and the parking orbit
eccentricity. Figure 12 illustrates some orbit phasing maneuvers on the Earth’s orbit (i.e. a0 = 1 au and
e = e⊕) for two different values of a1/a0. Note that when the orbital eccentricity varies in the range
illustrated in Figs. 9–12, the inequality (77) is always met.

4. Conclusions

A thorough analysis of the logarithmic spiral trajectory as a possible solution of the equations of motion
for a solar sail-based spacecraft has been discussed. The relations between the parking orbit characteristics,
the required insertion conditions, and the thermo-optical characteristics of the sail reflective film have been
investigated, along with the angular and temporal variations of the osculating orbital elements. All these
results have been obtained in terms of analytical closed-form expressions, and account for both an ideal
and an optical sail force model. Such an outcome, in addition to the simple attitude control law required,
makes the trajectory analysis for a solar sail on a logarithmic spiral simple and useful for a preliminary
mission design. A potential mission scenario has been presented, in which a spacecraft placed on an elliptic
heliocentric orbit can be phased by means of two logarithmic spiral-shaped branches and a Keplerian coasting
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arc. Moreover, because a suitable curvature of the solar sail film could ensure a constant attitude in an
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Figure 12: Orbit phasing maneuvers for e = e⊕ for different values of the ratio a1/a0.

orbital reference frame, a natural extension of this work should include the effect of the sail billowing on the
thrust vector characteristics. Another interesting future development is the analysis of a hybrid propulsion
system, consisting of a solar sail and a conventional chemical thruster, which could exploit a combination
of logarithmic-spiral arcs and impulsive maneuvers. This strategy would significantly increase the number
of possible mission scenarios and overcome the limitations of the logarithmic spiral, at the expense of an
increase of the total spacecraft mass.
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Appendix - Hodograph representation of a logarithmic spiral trajectory

The characteristics of a logarithmic spiral trajectory can be analyzed by using the hodograph represen-
tation. In this context, the hodograph coordinates (x, y) are defined as [2, 21]

x ,
h vθ
µ�

, y ,
h vr
µ�

, (88)

where h is the magnitude of the spacecraft specific angular momentum. The equations of motion (3)-(4)
may be rewritten as

dx

dθ
= 2β (b2 cos2 α sinα+ b3 cosα sinα)− y, (89)

dy

dθ
= β (b2 cos2 α sinα+ b3 cosα sinα)

y

x
+ x+ β (b1 cosα+ b2 cos3 α+ b3 cos2 α). (90)

The equilibrium points in Eqs. (89)-(90) are found by enforcing the necessary conditions

dx

dθ
= 0,

dy

dθ
= 0. (91)

Since α and β are both constant in a logarithmic spiral trajectory covered by a solar sail-based spacecraft,
it is immediately found that x and y are constants of motion, together with the flight path angle γ, since

γ = arctan
(y
x

)
. (92)

On the hodograph plane, this result implies that the osculating orbital true anomaly and eccentricity are
constant, see Fig. 13.
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Figure 13: Hodograph representation of a logarithmic spiral trajectory.

Likewise, starting from the functions θ = θ(t) and r = r(t), it may be again verified that x (t) and y (t)
are constant when a solar sail spacecraft covers a logarithmic spiral trajectory. In fact, bearing in mind
Eqs. (49)-(50), Eqs. (88) give

x = (k cos γ)
2
, y = k2 sin γ cos γ, (93)

where k and γ are constant.
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