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Abstract—This paper presents an analytical model for a 

recently introduced class of 2-D directional anemometers based 
on fluidic structures capable of averaging the differential 
pressure developed by the wind across distinct diameters of the 
transverse cross-section of a single cylinder. In previous works, it 
was found that performing the average over a proper set of 
diameters produces a differential pressure that depends on the 
wind direction according to a cosine law, allowing simple 
direction estimation. This fact, which was not investigated in 
previous articles, is explained in this paper taking into account 
symmetry and angular spectral properties of the pressure 
distribution. Besides analyzing previously proposed devices, this 
paper introduces several new configurations, which are classified 
according to the type of average and number of diameters 
involved. Comparison of the estimated performances with the 
experimental results obtained in earlier works clearly shows that 
prototypes proposed so far were far from achieving the best 
theoretical accuracy, suggesting that significant improvements 
can be obtained by re-design of the fluidic structures.     
 

Index Terms—2-D anemometer, fluidic-domain signal 
processing, cylindrical pressure probe, pressure probe theory.   
 

I. INTRODUCTION 

EASUREMENT of the wind velocity and direction has 
played a key role for a long time in many different 

scenarios, such as meteorological monitoring and forecast, 
navigation, sport disciplines (sailing, track and field, golf etc.), 
and landing/takeoff activities in airfields.  

Recently, innovative applications of anemometers are being 
suggested by the introduction of autonomous vehicles. 
Detection of the wind velocity and direction is essential for 
maintaining the correct pitch angle and relative airspeed of 
fixed wing drones [1] and for sail adjusting in autonomous 
sailboats [2]. Algorithms that make use of directional 
anemometers have been proposed to allow terrestrial or aerial 
unmanned vehicles to find and track pollutant sources [3]. 
Anemometers designed for these applications have to be small 
and inexpensive, use low power and be free from moving 
parts, to avoid sensitivity to inertial forces. Ultrasonic 
anemometers [4] currently represent the option that best meets 
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these requirements. However, their cost is comparable to that 
of a complete small autonomous vehicle, making their 
adoption not convenient. Furthermore, the power consumption 
of currently available ultrasonic anemometers is at least 
several hundred mW, which is a significant fraction of the 
power budget of a small robot. Development of low-cost 
ultrasonic anemometers [5] was proposed, but their accuracy is 
not adequate for critical operations, such as sail settings in 
autonomous sailboats.  

Examples of small robots employing thermal anemometers 
have been proposed [6]. Thermal sensors are relatively 
compact and maintain an excellent sensitivity even at reduced 
pressures [7]. The main drawbacks are high power 
consumption and small bandwidth [8]. A significant 
improvement can be reached by using MEMS (Micro Electro-
Mechanical System) technologies to reduce thermal masses 
and increase thermal insulation [9, 10]. However, typical 
MEMS microstructures are fragile and their response is prone 
to be altered by even single dust particles or water droplets.  

Another popular solution is represented by pressure probes. 
The simplest pressure probe is the well-known Pitot tube, 
which measures only the absolute value of the wind velocity. 
Multi-hole pressure probes [11] provide also information on 
the wind direction by comparing several pressure values taken 
at different points on the outer surface of a bluff or streamlined 
body exposed to the wind. The so-called “Cobra” probes 
[12-15], based on a faceted head, are characterized by reduced 
direction ranges. Extension to a full 360° 2-D range or to full 
3-D detection capability has been proposed by multi-point 
measurement of the pressure distribution around cylinders 
[16, 17] and spheres [18-20]. In these devices, the pressure is 
sampled by several holes drilled into the body surface, 
connected with pipes to independent pressure transducers. 
Therefore, the complete wind sensor turns out to be relatively 
large and power demanding. In addition, complex procedures 
are required to calibrate the semi-empirical algorithms used to 
estimate the quantities of interest [21]. These aspects conflict 
with the typical requirements for sensors to be placed on board 
small autonomous vehicles.  

An ideal solution would be designing a probe with a shape 
and configuration of holes capable of producing a differential 
pressure that exhibits a cosine dependence on the angle formed 
by the wind with respect to a reference axis. Two orthogonal 
probes with such a response would produce two pressure 
signals proportional to the cosine and sine of the wind 
direction (angle). Then, the angle could be calculated by 
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means of a simple arctangent operation. In addition, the sum of 
the squares of the two pressures would depend only on the 
wind velocity, which could be simply estimated from a 1-
dimensional calibration curve.  
In 2009 [22], we showed that a differential pressure that 
exhibits a cosine dependence on the wind direction could be 
obtained by averaging several pressure differences taken 
across distinct diameters of the transverse cross section of a 
single cylinder (diametric pressures). This is not trivial, since 
the original dependence of diametric pressures is far from 
being sinusoidal. Using this principle, indicated here with 
DPA (Diametric Pressure Averaging), we built an innovative 
2-D pressure probe that used a proper pipe structure to 
calculate the required average in the fluidic domain. The two 
orthogonal section required to calculate the wind direction and 
velocity were carved inside the same cylinder body.  Overall, 
only two differential pressure sensors are required, while 
calculations are simple and straightforward. Operation at wind 
velocities as low as 1 m/s and below was obtained by 
measuring the small pressure differences (order of 1 Pa) by 
means of high-resolution MEMS sensors exploiting detection 
of the flow rates induced by the pressure to be measured 
through capillary pipes. Prototypes proposed so far use 
custom-made MEMS sensors [22-24], which can be replaced 
by inexpensive commercial devices (e.g. Sensirion SDP800 
differential pressure sensors [25]) at only the price of moderate 
size increase. In this way, anemometers that combine overall 
dimensions of a few centimeters with a much lower cost and 
power-consumption than ultrasonic anemometers can be 
obtained.  

We have demonstrated the effectiveness of different fluidic 
structures, performing three-diameter [22] and five-diameter 
[23] arithmetic DPA, and seven-diameter weighted DPA [24]. 
In all cases, the main parameters (e.g. the angles between the 
diameters) were found by means of an exhaustive numerical 
algorithm that minimizes the deviation from the target cosine 
law. Such optimization, performed at a single wind velocity, 
was maintained across a large velocity range (more than a 
decade) in spite of apparent changes in the shape of the 
pressure distribution. This was regarded as an unexpected 
result, and a theoretical explanation was missing.  

The aim of this work is to derive an analytical justification 
of the DPA method from the characteristics of the diametric 
pressures. The paper is organized as follows: Sect. II 
introduces the main quantities and conventions, showing also 
the symmetries and the spectral properties of the function that 
relates the diametric pressure to the angle formed by the 
diameter with the wind direction. The role of higher order 
harmonics in producing the observed deviation from the cosine 
law is highlighted. In Sect. III, it will be shown that the 
contribution of higher order harmonics can be reduced by a 
proper average of distinct diametric pressures (DPA), leading 
to excellent approximations of the cosine dependence. Two 
possible DPA approaches to the approximation of the cosine 
dependence are examined. Implementation of the two 
approaches with fluidic structures is analyzed in Sect. IV while 
comparison of the proposed configurations in terms of 

theoretical accuracy is presented in Sect. V. Finally, in 
Sect. VI the analytical predictions of the proposed model are 
compared with experimental results described in our previous 
works [22-24] concerning prototypes implementing three 
different DPA configurations.  

II.  ANALYSIS OF THE PRESSURE DISTRIBUTION AROUND A 

CYLINDER 

The main conventions used in this work are illustrated in 
Fig.1, representing a cross-section of the cylinder with a fixed 
reference axis x. The wind vector v, lying in the same plane as 
the cylinder cross-section, forms an angle θ with axis x.  

A point on the cylinder surface is determined by the angle φ 
formed by the radius passing from the point and the reference 
axis. For a non-zero wind velocity, pressure differences with 
respect to the undisturbed flow develop in the air around the 
cylinder. The value assumed by the pressure difference at a 
point on the cylinder surface is indicated with pS(φ,θ,u), to 
emphasize dependence upon position (φ), wind direction (θ) 
and wind magnitude (u).  

      

 
Fig.1. Cylinder cross-section showing the convention used for the quantities of 
interest. The wind velocity vector and the stagnation point are indicated with 
“v” and “0”, respectively. 

In order to reduce the number of variables, it is convenient 
to consider that, for a given wind velocity, the surface pressure 
depends only on the angular distance (β = φ − θ) from the 
stagnation point, indicated with “0” in Fig.1. We will use the 
notation p0(β,u) to indicate the function that relates β and u to 
the surface pressure. It can be easily shown that the following 
transformation holds: 

( ) ( )upupupS ,,),,( 00 β=θ−φ=θφ  (1) 

For the analysis that follows, the most relevant quantity is 
the “diametric pressure” defined as the pressure difference 
between two diametrically opposite points. Again, we can 
identify points on the surface with the angular distance either 
from the fixed reference axis (x) or from the stagnation point. 
Accordingly, the respective expressions for the diametric 
pressure are:  
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( ) ( ) ( )upupup

upupup
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000 π+β−β≡β
θπ+φ−θφ≡θφ

 (2) 

Obviously, the transformation law given by (1) is valid also 
for the diametric pressures, i.e.: 

( )upup DDS ,),,( 0 θ−φ=θφ  (3) 

Fig. 2 (a) shows the pressure distribution on a cylinder 
surface as a function of angle β for different Reynolds 
numbers defined by: 

µ
ρ= uD

Re , (4) 

where u is the undisturbed wind velocity (magnitude of 
vector v), ρ and µ are the air density and viscosity, 
respectively, whereas D is the cylinder diameter. These data 
have been obtained by precisely digitizing a set of 
experimental curves reported in [26]. Interpolation has been 
performed using cubic splines. As customary, pressure data are 
normalized to the dynamic pressure (ρu2/2). From the data of 
Fig.2 (a) we have calculated the corresponding diametric 
pressures, shown in Fig. 2 (b).  

 

 

Fig.2. Normalized pressure (a) and diametric pressure (b) around the cylinder 
lateral surface as a function of β for different Reynolds numbers (Re).   

 
The first question is whether it is possible to calculate the 

wind direction (θ ) and velocity (u) from the knowledge of 
only two diametric pressures, picked up along two orthogonal 
axis, namely x and y.  

Considering that the x axis is placed at a distance β= −θ 
from the stagnation point, then the diametric pressure along x, 
pDX(θ,u), is equal to  pD0(-θ,u)=pD0(θ,u). Similarly, the 
pressure along y is given by pDY(θ,u)= pD0(π/2-θ,u) 
=pD0(θ-π/2,u). Due to the non-monotonic behavior of the 
pD0(θ,u) function in the interval 0-π for Re>100, determination 
of θ and u from measurement of only two orthogonal 
diametric pressures is not possible [22]. Solutions that rely on 
monitoring three diametric pressures have been envisioned 
[27], although complex multi-dimensional look-up tables are 
needed. Estimation of wind speed and direction from four 

diametric pressures was demonstrated in [28] by means of a 
prototype that uses four differential pressure sensors.  

The task would be strongly facilitated if pD0(β,u) were 
proportional to cos(β). The fact that this does not happen 
means that harmonics of higher order than the fundamental are 
present in the spectrum of pD0(β,u) calculated over the interval 
[–π,π]. The result of angular spectral analysis of the pD0(β,u) 
with respect to variable β is shown in Fig.3. The figure 
displays the minimum and maximum normalized magnitude of 
each harmonic component across the following set of Re 
numbers: 30, 100, 250, 1240, 2900, 8500 and 40×103. Due to 
the half-wave symmetry of pD0(β,u), only odd harmonics are 
present. It is apparent that the difference from a pure 
sinusoidal function mainly derives from the relatively large 
third harmonic component.  

 
Fig.3. Angular spectral analysis of the diametric pressure pD0(β,u) with respect 
to variable β over the interval [–π, π]. The minimum and maximum values of 
each harmonic magnitude refer to a Re range from 30 to 40 × 103. The 
magnitude of the harmonic components is normalized to ρu2/2.    

III.  COSINE APPROXIMATION BY MEANS OF LINEAR 

COMBINATION OF DIAMETRIC PRESSURES 

A. General case 

A way to obtain a differential pressure that approximate the 
desired cos(θ) dependence is combining several diametric 
pressures in order to reduce the content of higher order 
harmonics. The diameters taken into consideration in this 
linear combination form a configuration that is symmetrical 
with respect to axis x, from which they are separated by the 
following 2N+1 angles:  

{ }
[ ]Nii

N

,1for2/and0with

......,,,

0

210

∈π≤φ=φ
φ±φ±φ±φ

 (5)
 

Summing up the diametric pressures taken across the 
diameters identified by (5), the following differential pressure 
can be obtained:  

∑
−=

θφ=θ
N

Ni
iDSiX upwup ),,(),(  (6) 

where wi are arbitrary positive weights such that w-i=wi and 
φ−i= −φi. Using (3), we obtain the equivalent expression: 
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∑
−=

θ−φ=θ
N

Ni
iDiX upwup ),(),( 0  (7) 

It is convenient to represent the dependence of pD0(θ,u) and 
pX(θ,u) on θ with a Fourier series: 

( ) ( )θ=θ ∑
∞

=
kuAup

k
kD cos),(

...5,3,1
0  (8) 

( ) ( )θ=θ ∑
∞

=
kuBup

k
kX cos),(

...5,3,1

 (9) 

where Ak(u) and Bk(u) indicates coefficients that depend on the 
wind velocity u. Note that only odd cosine components are 
present due to the even0 half-wave symmetry of pD0(θ,u), 
which can be easily extended to pX(θ,u), from its definition. By 
means of simple passages, it is possible to relate coefficients 
Bk to coefficients Ak: 

( ) ( ) ( )∑
−=

φ=
N

Ni
iikk kwuAuB cos  (10) 

Notice that the fundamental component, given by: 

( ) ( )∑
−=

φ=
N

Ni
iiwuAB cos11  (11) 

is always positive due to (5) and the condition wi>0.  
With a proper combination of weights wi and angles φi it is 
possible, at least in principle, to make pX(θ,u) approximate a 
cosine law. We will consider two particular cases: (i) arbitrary 
angles φi with uniform weights (UW) and (ii) uniform 
diameter spacing (UDS) with arbitrary weights.  

B. Case 1: Uniform weights (UW) 

In the case of uniform weights, it is possible to cancel all non-
fundamental harmonics up to the (2N+1)-th one by imposing 
Bk= 0 for k=3,5, …, 2N-1 in (10). The N unknowns to be found 
are angles φi for 1 ≤ i ≤ N.  It is worth recalling that all even 
harmonics are already zero for the mentioned symmetry 
properties. The higher N, the higher the number of harmonics 
that can be cancelled, and then, the better is the cosine 
approximation. However, large N values result in increased 
system complexity, since the number of diametric pressures 
involved is equal to 2N+1. Recalling that φi= −φ−i, and φ0=0, 
and imposing Bk=0 for k>1, equations (10) can be re-arranged 
to obtain the following equation set: 

( ) 12,...,5,30cos21
1

+==φ+ ∑
=

Nkfork
N

i
i  (12)

 

Since the larger non-fundamental harmonic component is the 
third one, even with N=1 it is possible to obtain a good 
approximation of the cosine function. In that case, equation set 
(12) reduces to the following single equation, which should be 
satisfied to cancel the third harmonics: 

( ) 03cos21 1 =φ+  (13)
 

Equation (13) has two exact solutions  in the [0,π/2] 
interval: φ1a=40° and φ1b=80°. For N>1, equation set (12) 

should be solved by means of numerical procedure. Table I 
shows the optimal angles for N in the range 1-5, determined by 
numerical solution of equation set (12). For each N value, two 
solutions, marked with “a” and “b”, are reported in Table I. 
Solutions “b” differ from “a” ones for having the largest angle 
of the set, φN, lying in the interval 80°-90°.   

TABLE I. OPTIMAL ANGLES FOR THE UW CONFIGURATIONS 

N Solution φ1 φ2 φ3 φ4 φ5 
1 a 40° - - -  

b 80     
2 a 21.8° 52.0° - -  

b 33.9 84.2    
3 a 17.0° 32.5° 58.3 -  

b 20.7 46.2 85.8   
4 a 11.3 27.7 39.0 62.4  

b 15.5° 31.4° 53.1 86.6  
5 a 14.1 16.4 35.5 43.3 62.5 

b 11.8 25.2 38.4 57.6 87.2 

C. Case 2: Uniform diameter spacing (UDS) 

With the second approach (UDS), the weights are not uniform 
while the angles are uniformly distributed between 0 and π/2. 
Introducing an integer M, angles φi can be expressed as 
follows: 

Mi
M

ii ,...,1,0where
2

=π=φ  (14) 

Considering that, as in the general case, φ−i= −φi and w−i=wi, 
Eqn. (7) becomes: 

∑
−=








 θ−π=θ
M

Mi
DiX u

M
ipwup ,
2

),( 0  (15)
 

Let us focus on the following choice for the weights: 








 π=φ=
M

iwww ii 2
cos)cos( 00 , (16)

 

where w0 is the weight of the central diametric pressure (i=0). 
Substituting (16) into (15) we get:

 







 π







 θ−π=θ ∑
−= M

iu
M

ipwup
M

Mi
DX 2

cos,
2

),( 00  (17) 

It can be easily shown that the sum in (17) represents an 
approximation of the cos(φ)pD0(φ-θ,u) integral over the 
[-π/2, π/2] interval, calculated over a set of discrete points 
separated by π/2M  increments.  More precisely: 

( ) φφθ−φ
π

≅⋅θ ∫
π

π−

dup
M

wup DX cos),(
2

),(
2/

2/

00  (18)
 

Using the Fourier series expansion of pD0 given by (8): 

( ) [ ] ( )∫ ∑
π

π−

∞

=

φφ








θ−φ
π

≅⋅θ
2/

2/ ...5,3,1
0 coscos

2
),( dkkuA

M
wup

k
kX

 (19)
 

With tedious but elementary transformations, it is possible to 
demonstrate that the integral in (19) is exactly equal to 
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(π/2)A1(u)cos(θ), so that (19) becomes:  

( ) ( )θ≅θ cos),( 10 uMAwupX   (20) 

In this way, we have obtained the desired proportionality to 
cos(θ). Clearly, the higher the number of points (2M+1), the 
better the approximation of the integral and then of the cosine 
law. The addends for i=±M, corresponding to φi=±π/2 do not 
give contributions since their weights, given by (16), are zero. 
Then, (17) can be rewritten as: 










+
π









θ−

+
π=θ ∑

−= )1(2
cos,

)1(2
),( 00 N

iu
N

ipwup
N

Ni
DX  (21) 

where N=M−1 plays the same role as in the UW case, since the 
actual number of diametric pressure to be combined is 2N+1. 
It is possible to derive (20) from (18) also with more intuitive 
arguments. Indeed, the integral in (18) coincides with the 
expression of the cosine component of the first harmonics of 
function pD0(φ-θ,u). Differently from the general expressions 
of the Fourier series components, the integral can be calculated 
over half period (π) instead of the whole period (2π), due to 
the half-wave symmetry of pD0(φ-θ,u). Since pD0(φ-θ,u) is 
obtained by shifting pD0(φ,u) by θ, it loses the even symmetry 
of pD0(φ,u) and both cosine and sine components will be 
present in the pD0(φ-θ,u) Fourier expansion. In particular, the 
coefficient of the fundamental cosine component, which is 
extracted by (18), is just proportional to A1cos(θ), proving 
(20).  

IV. LINEAR COMBINATION OF PRESSURES IN THE FLUIDIC 

DOMAIN  

A. Description and advantages of the fluidic approach 

A straightforward implementation of the general approach 
given by (6) is using 2N+1 differential pressure sensors to 
detect the corresponding diametric pressures and then 
combining the output signals in the electrical domain. This 
solution offers the maximum flexibility, since it allows post-
manufacturing tuning of the weights in order to compensate 
for fabrication tolerances. On the other hand, this approach 
requires a large number of sensors. Considering that two 
orthogonal sections (“X” and “Y”) are required for the 
determination of the wind vector on a plane, the total number 
of differential pressure sensors for a 2-D anemometer is 
2(2N+1). Even in the case N=1, six pressure sensors are 
required. Furthermore, sensors belonging to the same section 
should have closely matched sensitivities, which can be 
obtained only with individual sensor calibration.  

An alternative solution is performing the linear combination 
in the fluidic domain, so that only one differential pressure 
sensor per section is required. The principle is illustrated by 
Fig. 4(a), showing a cross-section of the cylinder where two 
symmetrical sets of channels connect cavities H1 and H2 with 
the outer surface. The channels reach the cylinder surface at 
angular positions φi (see the figure). The example in Fig. 4(a) 
refers to the particular case N=2; configurations for different N 
values are conceptually similar.  

 

 
Fig.4. (a) Cylinder cross-section showing an example of fluidic structure 
implementing a linear combination of surface pressures with non-uniform 
weights. (b) Electrical equivalent network of the fluidic structure. (c) Uniform-
weight configuration.  
 

Considering micro-channels with maximum diameter of a 
few millimeters, it is reasonable to assume that the flow 
through the channels is laminar. In these conditions, the 
relationship between pressure drop and flow rate is linear, 
allowing the use of the equivalent electrical circuit [29] shown 
in Fig. 4(b) to represent the fluidic structure. In this 
equivalence, pressures are voltages and flow rates are currents. 
The fluidic conductance of a channel (G) is defined as the ratio 
of the mass flow rate (Q) over the pressure drop across the 
channel (∆P). From the well-known Hagen-Poiseuille formula 
for laminar flow, it is possible to derive the following 
expression for G [22]: 

L

D

P

Q
G e

µ
πρ=

∆
=

4

128
,  (22) 

where L is the channel length and De is the equivalent 
channel diameter, defined as De=4A/P, with A and P indicating 
the area and perimeter of the channel cross-section, 
respectively.   

Solving the simple electrical network of Fig. 4 (b), the 
following expression can be found for the pressure difference 
between the two cavities: 

∑∑
−=−=

θπ+φ−θφ=−
N

Ni
iS

T

i
N

Ni
iS

T

i
HH up

G

G
up

G

G
pp ),,(),,(21  (23) 

where Gi is the fluidic conductance of channel at angle φi. 
and GT is the sum of all Gi, that is:  

∑
−=

=
N

Ni
iT GG     (24) 

Simple rearrangement of the terms in (23) leads to: 

∑
−=

θφ=−
N

Ni
iDS

T

i
HH up

G

G
pp ),,(21      (25) 

which is equivalent to (6) with: 
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T

i
i G

G
w =      (26) 

In this way, we have demonstrated that the fluidic structure 
of Fig. 4 (a) is capable of producing a differential pressure 
(pH1−pH2) which is equal to the required combination of 
diametric pressures expressed by (6).  

B. UW-DPA obtained with uniform channel characteristics 

If the channels are identical (same length and cross-
sections), as shown in Fig.4(c), all Gi are nominally equal and 
the fluidic structure implements the UW case, examined in 
Sect. III-B. Considering (26), all weights assume the value 
1/(2N+1). If angles φi are chosen according to Table I, the 
differential pressure pH1−pH2 follows a nearly cosine 
dependence on θ. The maximum magnitude of the pressure, 
assumed for θ=0 and π, coincides with coefficient B1, which 
depends on A1 through (11). Note that A1 is the magnitude of 
the fundamental component of the Fourier series expansion of 
the diametric pressure pD0(θ,u). Considering Fig.3, the 
A1/ρu2/2 ratio does not vary much when Re is swept across 
two orders of magnitude (from 30 to 40 ×103). Thus, A1 can be 
considered nearly proportional to ρu2/2. The B1/A1 ratio is 
given in Table II for all solutions represented in Table I. It can 
be observed that this ratio is higher for solutions “a” than for 
solution “b”. This means that, for a given wind velocity, 
solutions “a” are capable of producing a larger differential 
pressure and are then advantageous for high sensitivity 
devices. Consequently, in the rest of this paper, only solution 
“a” will be analyzed.  

TABLE II.  B1/A1 RATIOS AS A FUNCTION OF N FOR THE UW SOLUTIONS 

N 1 2 3 4 5 
B1/A1 (Solution  a) 0.844 0.817 0.807 0.801 0.798 
B1/A1 (Solution  b) 0.449 0.572 0.629 0.661 0.682 

 

C. UDS-DPA obtained with non-uniform channel lengths. 

 Non-uniform channels, i.e. channels with different lengths 
and/or cross-sections are required to implement the UDS case 
examined in Sect. III-C, requiring different weights for 
different diameters. Tuning of L and cross-sections (i.e. De) 
allows modulation of the conductance of the individual 
channels, according to (22). In order to obtain weights that 
satisfy (16), the channel conductance must be given by: 

)cos(0 ii GG φ= ,  (27) 

where G0 is the conductance of the central channel (angle 
φi=0). 

In the rest of this paper, we assume that the fluidic 
conductance is modulated acting on L. Changing channel 
cross-section is clearly also a viable option. Taking into 
account (22) and (27), the length Li of the channel at angle φi 
should be given by: 

)cos(
0

i
i

L
L

φ
=  (28)

 

where L0 is the length of the central channel.  
As for the case of uniform channels, it is interesting to 
consider the ratio B1/A1. From (14), (24) and (27): 

( )∫∑
π

π−−=
φφ

π
≅







 π=
2/

2/

00 cos
2

2
cos d

M
Gi

M
GG

N

Ni
T  (29) 

where the approximation of the sum with the integral is made 
following the same considerations used for (18). Calculating 
the integral and using (26) with i=0 it is possible to find w0, 
which turns out to be approximated by: w0=π/4M. Substituting 
this value into (20), and recalling the meaning of B1, we find 
the approximation: 

11 4
AB

π≅ ,  (30) 

The expression in (30) should be regarded as an asymptotic 
limit, which is reached for N that tends to infinity and the sums 
in (17) and (29) converge to the corresponding integrals. The 
exact values of the B1/A1 ratio are reported in Table III. 
Consistence with the asymptotic value π/4 is within nearly 5 % 
even for N=1.  

TABLE III.  B1/A1 RATIOS AS A FUNCTION OF N FOR THE UDS SOLUTIONS.  

N 1 2 3 4 5 
B1/A1 0.828 0.804 0.796 0.792 0.790 

V. PERFORMANCE ESTIMATION 

According to the cases studied so far, a fluidic structure can 
be classified as UW (Uniform Weights) or UDS (Uniform 
Diameter Spacing). For each type, number N defines the 
complexity of the channel configuration, since the number of 
different diametric pressures involved is equal to 2N+1, and 
the total number of channels that connect cavities H1 and H2 to 
the outer surface are just twice this number. In order to 
determine the optimal structure for a given set of 
specifications, it is important to investigate the impact of these 
parameters on the device performances. Equation (6) has been 
implemented by means of the spline interpolation already 
mentioned in section II. A program using the python-scipy 
scientific modules [30] have been used to automate the 
calculations. A few significant results are shown in Figs. 5-7. 
Figure 5 shows the result of the cosine approximation obtained 
for Re=100 with UW and UDS configuration in the simplest 
case of N=1. The ideal cosine behavior is shown to facilitate 
comparison.  

It is apparent that both the UW and UDS configurations do 
not produce a good approximation of the cosine curve for N=1. 
The quality of the approximation was found to depend 
significantly on the Reynolds number. The case Re=100, 
shown in Fig.5 is the worst that we have analyzed. A much 
better approximation of the cosine curve can be obtained even 
with N=1 at different Reynolds numbers, such as Re=2900 
shown in Fig. 6.   

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

7

 
Fig.5. Output differential pressure (pX) at Re=100, normalized to the dynamic 
pressure as a function of the wind direction for the UW and UDS solutions 
with N=1. Noticeable departure from the ideal cosine function is visible.  

 
A good approximation throughout the whole explored Re 

range (from 30 to 40×103) can be obtained with a higher N 
value. For example, Fig. 7 shows that an excellent 
approximation of the cosine dependence can be obtained at 
Re=100 with N=3 for both UW and UCS configurations. 

 
Fig.6. Output differential pressure (pX) at Re=2900, normalized to the dynamic 
pressure as a function of the wind direction for the UW and UDS solutions 
with N=1.  

 
Fig.7. Output differential pressure (pX) at Re=100, normalized to the dynamic 
pressure as a function of the wind direction for the UW and UDS solutions 
with N=3.  

In order to estimate the performances of anemometers based 
on the proposed principle, we have considered two identical 
fluidic structures, indicated with X and Y, respectively. The X 
structure is aligned as in Fig. 4(a), while the Y structure is 
simply rotated by 90° with respect to section X. If pX(θ,u) and 
pY(θ,u) are the differential pressures produced by section X 
and Y, respectively, we obviously have: 

),2/(),2/(),( upupup XXY π−θ=θ−π=θ  (31) 

If the approximation of the pX dependence on θ with a 
cosine function holds, then we can write: 

( ) ( )
( ) ( )θ=θ

θ=θ
sin),(

cos),(

upup

upup

MAXY

MAXX   (32) 

Taking into account (32), estimates of angle θ (indicated 
with θm) and magnitude pMAX can be calculated by means of 
the following formulas: 

( )YXm pp ,arctan=θ   (33) 

22
YXMAX ppp += ,  (34) 

where “arctan” is the four-quadrant inverse tangent 
function. The wind velocity u can then be derived from pMAX, 
since its dependence on the wind velocity is monotonic, as it 
will be shown later.  

As an example, Fig. 8 shows the result of applying (33) and 
(34) to the case Re=100, N=1 for both the UW and UDS 
configurations. The angular error, defined as θ-θm, presents an 
important dependence on the wind direction (θ). Furthermore, 
as the wind direction is swept across the 360° interval, pMAX 
shows oscillations that, for the examined case, reach 15 % of 
the mean value. Both the angular error and the pMAX 
oscillations are due to the imperfect cosine approximation. 

 

 
Fig. 8. Angular error and pMAX oscillations as a function of the wind direction.  

Fig. 9 shows the pMAX over ρu2/2 ratio, as a function of the 
Reynolds number for both the UDS and UW configurations 
with N being varied from 1 to 5. The pMAX value used in Fig.9 
is averaged across the full 360°wind direction range to filter 
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out the oscillations.    

 
Fig. 9. Normalized pMAX values as function of Re for all configurations 
examined in this work. pMAX is averaged over a 360° wind direction interval. 

 
It is worth recalling that pMAX practically coincides with B1, 

i.e. the fundamental component of the differential pressure PX. 
The ratio B1/A1 falls within the interval 0.82 ± 0.03 in all 
examined cases, as Table II and III show for the UW (solution 
“a”) and UDS configurations, respectively. As a consequence, 
the observed dependence of the pMAX over ρu2/2 ratio on Re is 
mainly due to the dependence of the A1 over ρu2/2 ratio, 
which, in turn, is a general property of the flow. 

Figure 10 shows the actual dependence of the differential 
pressure on the wind velocity for a particular cylinder diameter 
(2 cm) exposed to a room temperature (300 K) airflow. The air 
density and viscosity used to calculate the plot of Fig.10 are 
reported in the figure. All the examined cases (UW and UDS, 
N from 1 to 5) produce plots that are practically 
undistinguishable in the scale of Fig.10, and are all represented 
by the solid line. As we have anticipated, the behavior is 
monotonic. 

 

 
Fig.10. Example of estimated pMAX dependence on the wind velocity, obtained 
with a cylinder of 2 cm diameter, exposed to airstreams in standard conditions 
(see air parameters in the inset). In this scale, the curves obtained with UW 
and UDS structures with N from 1 to 5 are not distinguishable (solid line). The 
dashed line represent the dynamic pressure of the wind (ρu2/2).  

 
The dashed line represents the dynamic pressure ρu2/2. 

Figure 10 suggests that we can approximate the pMAX behavior 
with the dynamic pressure and, consequently, use the 
following formula to estimate the wind velocity: 

ρ
= MAX

m

P
u

2
,  (35) 

It can be shown that the maximum error deriving from this 
approximation is less than of 15% over the displayed velocity 
range. For better accuracy, a more complex fitting function 
can be adopted.  

Finally, Fig.11(a) and (b) shows how the angular error and 
pMAX oscillation magnitude depend on the configuration (UW – 
UDS) and number N. The angular error is the maximum 
absolute error obtained across the 360 degrees range.  

Since both the angular error and pMAX oscillations depend 
also on Re (i.e. on the wind velocity), we have reported the 
best (min) and worst (max) value encountered when Re is 
swept from 30 to 40 ×103. It can be observed that, in all cases, 
the errors tend to decrease as N is increased, although not in a 
monotonic fashion. 

 
 

Fig.11. Angular error and pMAX oscillations as a function of N for the UW and 
UDS configurations. The vertical bars span from the minimum to the 
maximum error estimated over the 30-40×103 Re range.  

On the basis of the results of Fig.11, there is not a 
configuration which is clearly advantageous over the other. 
Overall, the UDS approach gives a slightly lower angular 
error, while magnitude oscillations are similar. Both 
configurations may be used to obtain an accurate estimate of 
the wind angle and velocity with magnitude oscillations 
smaller than 2.5 % and angle errors less than 1° for N≥3. The 
choice between the two configurations should rely on 
manufacturability issues.  

 

VI.  CLASSIFICATION AND ANALYSIS OF PREVIOUSLY 

PROPOSED DPA-BASED ANEMOMETERS   

An earlier work that contains some anticipations of the DPA 
approach is Ref. [31], where the non-monotonic angular 
behavior of a differential Pitot tube was solved by introducing 
more pressure ports distributed along a ring. Geometrical 
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parameters were decided only by means of a trial and error 
procedure and only a qualitative explanation was proposed. In 
spite of the analogy between the ring and the cylinder, the 
device proposed in Ref. [31] does not fit within the categories 
proposed in this work, mainly because the wind direction is 
not perpendicular to the ring axis. Works describing 
anemometers that use the DPA approach as it is presented in 
this paper are reported and classified in Table IV.  

TABLE IV.  RECENT WORKS ON ANEMOMETERS BASED ON THE DPA APPROACH 

Year Type N Cylinder  
diameter  

Channel 
cross-section 

Angular 
 error 

2009 [22] UW 1 3 cm 0.5 x 1 mm2 ± 6° 
2011 [23] UW 2 2 cm 1.0 x 1.0 mm2 ± 5° 
2016 [24] UDS 3 2 cm 1.0 x 1.0 mm2 ± 12° 

 
The directional anemometers proposed in [22] and [23] use 

uniform channel configurations with angles between the 
central diameter and the lateral ones that are practically 
coincident with the optimum angles proposed in Table I 
(solutions “a” for N=1 and N=2, respectively). Note that the 
criterion used to find the optimum angles in [22] and [23] was 
minimization of the mean square error (MSE) between the 
differential pressure and the cosine function. Optimization was 
performed at Re=2900 through exhaustive exploration of all 
possible angle combinations. As in this work, digitized 
literature data [26] were used for the pressure distributions. 
The fact that such optimization, performed at a single Re 
value, produced an acceptable approximation of the cosine law 
across a large Re range was regarded as a pure experimental 
result and a clear explanation was missing.  

In the light of the results of this work, the MSE optimization 
performed in [22] cancelled the third harmonics from the 
dependence on the wind direction, while the more complex 
structure of Ref. [23] cancelled both the third and the fifth 
harmonics. The excellent results that can be obtained even 
with a simple configuration as that of [22] is now explained by 
the dominant role played by the third harmonic (see sect.II).  

The first example of UDS-DPA anemometer is the 
prototype proposed in [24], which was mounted on a small 
quadrotor to test the influence of the vehicle propellers on the 
wind measurement. That device was designed when the theory 
exposed in this work was being developed, thus the channel 
lengths were properly designed according to (28).  

Considering the angular error reported in Table IV, it is 
apparent that increasing the N value from one [22] to two [23] 
and three [24] did not produce the accuracy improvement 
predicted by Fig.11. It should be observed that the error 
estimates in Fig.11 do not take into account the errors 
introduced by the fluidic structures in the average 
computation. These errors may derive from (i) manufacturing 
uncertainties in the channel dimensions, (ii) non-fully 
developed flow in a significant portion of the channels, (iii) 
misalignment between the X and Y sections, (iv) perturbation 
of the pressure distribution produced by the channel openings 
on the cylinder lateral surface, whose dimensions coincide 
with the channel cross section (see table IV). All these 
mechanisms may have neutralized the theoretical accuracy 

improvements deriving from a larger N value. Note that the 
worse performance of the UDS device is likely to derive from 
having experimented channels with aspect ratio close to 1:1, 
prone to non-developed flow effects. In all cases, important 
improvement can be expected to come from redesign of the 
fluidic structures in order to make them implement DPA with 
less non-idealities.      

VII.  CONCLUSIONS 

This work provides an analytical explanation for the DPA 
approach, a principle embodied in recently proposed 
directional anemometers. The possible DPA configurations 
have been classified according to an integer N, such that the 
number of diametric pressures involved in the average is 
2N+1. Moreover, the interest has been restricted to two 
different classes of DPA configurations. In the first type, the 
diameter position (N angles) is free, but the average is 
performed with uniform weights (UW); the second type has 
free weights but uniform diameter spacing (UDS). It has been 
shown that, in the UW configurations, the N angles can be 
chosen to cancel N harmonics present in the diametric pressure 
dependence on the wind direction. Conversely, the N weights 
of the UDS structures can be adjusted to obtain an 
approximation of the integral that extracts the first cosine term 
(fundamental one) from the diametric pressure. In both cases, 
the approximation of the target cosine dependence gets 
progressively better as N is increased.  

It has been shown that the fluidic structures used in the first 
two DPA anemometers [22,23] fit well in the classification 
proposed in this work, simply being example of UW 
configurations with N=3 and N=5, respectively. For both 
prototypes, the optimum angles were determined by means of 
a sort of blind numerical approach, which produced exactly the 
same result as the more general criterion proposed here. Using 
angular spectral analysis, this work also explains why the 
cosine approximation remains excellent across an impressively 
large interval of wind velocities.  

The accuracy figures proposed in this work are to be 
regarded as lower bounds for the residual errors that can be 
obtained with the DPA technique. Manufacturing errors and 
non-ideal behavior of the fluidic structures are not considered. 
Nevertheless, the results proposed in this work should 
stimulate the design of new fluidic structures that perform 
DPA with better accuracy than the devices proposed so far, 
allowing fabrication of very accurate and inexpensive 
anemometers with compact size and low-power consumption.  
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