
Hacking an Ambiguity Detection Tool to Extract Variation
Points: an Experience Report

Alessandro Fantechi
Dipartimento di Ingegneria dell’Informazione,

Università di Firenze
Firenze, Italy

alessandro.fantechi@unifi.it

Alessio Ferrari
Istituto di Scienza e Tecnologie dell’Informazione

“A.Faedo", Consiglio Nazionale delle Ricerche, ISTI-CNR
Pisa, Italy

alessio.ferrari@isti.cnr.it

Stefania Gnesi
Istituto di Scienza e Tecnologie dell’Informazione

“A.Faedo", Consiglio Nazionale delle Ricerche, ISTI-CNR
Pisa, Italy

stefania.gnesi@isti.cnr.it

Laura Semini
Dipartimento di Informatica, Università di Pisa

Pisa, Italy
semini@di.unipi.it

ABSTRACT
Natural language (NL) requirements documents can be a precious
source to identify variability information. This information can be
later used to define feature models from which different systems
can be instantiated. In this paper, we are interested in validating the
approach we have recently proposed to extract variability issues
from the ambiguity defects found in NL requirement documents. To
this end, we single out ambiguities using an available NL analysis
tool, QuARS, and we classify the ambiguities returned by the tool by
distinguishing among false positives, real ambiguities, and variation
points.

We consider three medium sized requirement documents from
different domains, namely, train control, social web, home automa-
tion. We report in this paper the results of the assessment. Although
the validation set is not so large, the results obtained are quite uni-
form and permit to draw some interesting conclusions.

Starting from the results obtained, we can foresee the tailoring
of a NL analysis tool for extracting variability from NL requirement
documents.

KEYWORDS
NLP, natural language, requirements, variability, ambiguity.

ACM Reference Format:
Alessandro Fantechi, Alessio Ferrari, Stefania Gnesi, and Laura Semini. 2018.
Hacking an Ambiguity Detection Tool to Extract Variation Points: an Expe-
rience Report. In VAMOS 2018: 12th International Workshop on Variability
Modelling of Software-Intensive Systems, February 7–9, 2018, Madrid, Spain.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3168365.3168381

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VAMOS 2018, February 7–9, 2018, Madrid, Spain
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5398-4/18/02. . . $15.00
https://doi.org/10.1145/3168365.3168381

1 INTRODUCTION
The identification of variability in different system artifacts, such
as requirements, architecture and test cases, is one of the corner-
stone activities of software product line engineering (SPLE) [9].
Several methods were developed for variability identification and
management that are specifically focused on requirements, includ-
ing feature-oriented domain analysis (FODA) [27], the RequiLine
tool [39], the domain requirementsmodel (DRM) based approach [34],
as well as the work of Moon et al. [30]. In recent years, with the in-
creasing capabilities of natural language processing (NLP) tools [23],
a trend has emerged in variability identification methods, which
is based on extracting features and variability-related information
from natural language (NL) documents in general [16, 29, 31] and
requirements in particular [4, 26].

In line with this stream of research, in [12] we have discussed
how to extract variability issues from a requirements document
using NLP tools. In particular we have focused on using tools aimed
at revealing the ambiguity defects of the NL sentences in the re-
quirements document. The underlying intuition is that often am-
biguity in requirements is due to the (conscious or subconscious)
need to postpone choices for later decisions in the implementa-
tion of the system. Ambiguity in NL has been largely studied in
requirements engineering (RE), and several approaches have been
developed to automatically detect defective expressions that can
be interpreted in different ways by the stakeholders who have to
read the requirements [6, 13, 21, 35, 38]. These approaches focus
on identifying typically vague terms, such as adjective and adverbs
(e.g., [21, 38]), and ambiguous syntactic construction due to the use
of pronouns [42], or coordinating conjunctions such as “and” or
“or” [7, 43]. Our work differs from these ones, in that ambiguity
is not regarded as a defect, but it becomes a means to enlighten
possible variation points in an early phase of software and system
development, and give space for a range of different products. This
view stems from the observations in [18], in which ambiguity is
considered a resource, rather than an obstacle, to disclose implicit
information (i.e., tacit knowledge [20]).

In our approach [12], ambiguities are first identified by means
of an automated NLP tool. Then, a requirements analyst reviews

https://doi.org/10.1145/3168365.3168381
https://doi.org/10.1145/3168365.3168381

VAMOS 2018, February 7–9, 2018, Madrid, Spain A. Fantechi et al.

the output of the tool, and identifies which of the identified ambi-
guities can be considered as: (a) true NL ambiguities, (b) innocuous
ambiguities, i.e. false positive cases, and (c) variation points.

In this paper, we show the first results achieved with experi-
menting this approach by means of the QuARS tool for ambiguity
detection [22], applied on three different requirement documents.
The documents belong to different domains, and consist of 572
requirements in total. The QuARS tool is able to point to ambiguity
defects in the documents according to different indicators; we then
evaluate the outcome of the tool to rate the relevance of the found
defects to express variability, as well as the ability of the tool to
detect, by means of ambiguity detection, all the variability present
in the requirements. Our results confirm that a relevant part of the
ambiguity detected by QuARS can be considered as source of varia-
tion points. The analysis of the cases offer hints to identify potential
ways to tailor the QuARS tool to specifically support variability
identification.

The remainder of the paper is structured as follows. In Sect. 2
we present related works. In Sect. 3 we provide background on
our study and on the QuARS tool. Sect. 4 describes the research
questions, the overall design of our study and the requirement
documents that we used for the study. In Sect. 5 we discuss the
results produced by the analysis run with QuARS on the selected
documents, and in Sect. 6 we discuss the limitations of the current
work. Sect. 7 concludes the paper and provides final remarks.

2 RELATEDWORK
The work presented in this paper is concerned with feature iden-
tification from NL documents, and with ambiguity detection in
NL requirements. Therefore, we briefly discuss the related work in
these two fields.

Feature Identification from NL Documents. The works that are
concerned with automated feature identification from NL texts can
be classified into works that focus on requirements, and works
that leverage other types of system-related documents, and, more
specifically, product descriptions.

Among theworks that focus on requirements, the DARE tool [19]
is the earliest contribution. A semi-automated approach is em-
ployed to identify features according to lexical analysis based on
term frequency (i.e., frequently used terms are considered more
relevant for the domain). Chen et al. [8] suggests the usage of
the clustering technology to identify features: requirements are
grouped together according to their similarity, and each group of
requirements represents a feature. Clustering is also employed in
subsequent works [2, 32, 33, 40], but while in [8] the computation
of the similarity among requirements ismanual, in the other works
automated approaches are employed. Among the relevant works,
Weston et al. [40] used Latent Semantic Analysis (LSA) to extract
the so-called Early Aspects. These are cross-cutting concerns that
are useful to derive features. Niu et al. [32, 33] use Lexical Affinities
(LA) – roughly, term co-occurrences – as the basis to find repre-
sentative expressions (named Functional Requirements Profiles) in
functional requirements. Finally, Itzik et al.[26] presents the SOVA
approach, which leverages semantic ontologies to extract features
from requirements and derive a feature model.

Other works [1, 10, 16, 31] present approaches where product
descriptions are used. The feature mining methodology presented
by Dimitru et al. [10] is based on clustering, and the authors provide
also automated approaches to recommend useful features for new
products. Instead, the approach presented by Acher et al. [1] is
based on searching for variability patterns within tables in which
the description of the products are stored in a semi-structured man-
ner. Ferrari et al. [16] extract domain-specific terms from product
descriptions belonging to different vendors, to identify common
and variant domain terms, which can be used as pointers for prod-
uct commonalities and variabilities. Nasr et al. [31] leverage an
approach analogous to the one used in [16], to derive comparison
matrices for different products.

Systematic literature reviews on feature extraction and variabil-
ity extraction from NL documents have been published by Li et
al. [29] and by Bakar et al. [4].

Ambiguity Detection in NL Requirements. Ambiguity detection
in requirements is a lively research field, with several contributions
published already in the nineties (e.g., the ARM tool [41]), and re-
cent industrial applications [13, 35]. Most of the works stem from
the typically defective terms and constructions classified in the
ambiguity handbook of Berry et al. [24]. Based on these studies,
rule-based NLP tools such as QuARS [22], SREE [38] and the tool of
Gleich et al. [21] were developed. More recently, industrial applica-
tions of these approaches were studied by Femmer et al. [13] and by
Rosadini et al. [35]. Furthermore, Arora et al. [3] presented RETA
(REquirements Template Analyzer), a tool that employs rule-based
approaches to detect typical ambiguous terms and constructions,
as the other mentioned works, and, in addition, checks the confor-
mance of the requirements to a given template.

As shown also in these studies, rule-based approaches tend to
produce a high number of false positive cases – i.e., linguistic ambi-
guities that have one single reading in practice. Hence, statistical
approaches were proposed by Chantree et al. [7] and by Yang et
al. [42] to reduce the number of false positive cases, referred as
innocuous ambiguities. Statistical NLP approaches are also used
in [15], to identify domain-dependent ambiguities, i.e., pragmatic
ambiguities that depend on the domain background of the reader
of the requirements.
Our work differs from the contributions in the two fields, in that it
integrates the research in ambiguity detection, with the research
in feature identification. More specifically, we hack the ambiguity
detection capabilities of the QuARS tool to identify variation points
in requirements documents. The closest works in feature identifi-
cation are those that focus on variant feature identification from
NL documents, as, e.g., [16, 31]. However, these works leverage the
automated extraction of domain-specific terms, while in this work
we focus on ambiguity detection.

3 BACKGROUND
Requirements are an abstract description of the system needs that
is inherently open to different interpretations [14]. This openness is
emphasized by the use of NL, which is intrinsically ambiguous, even
though it is commonly used to express requirements [28]. Indeed,
NL is the most widely used communication code, since it easily
supports the exchange of knowledge among different stakeholders

Hacking an Ambiguity Detection Tool to Extract Variation Points: an Experience Report VAMOS 2018, February 7–9, 2018, Madrid, Spain

Sub-characteristic Indicators
Vagueness The occurrence of Vagueness-revealing wordings (such as e.g.: clear, easy, strong, good, bad, useful, significant,

adequate, recent, ...) is considered a vagueness indicator
Subjectivity The occurrence of Subjectivity-revealing wordings (such as e.g.: similar, similarly, having in mind, take into

account, as [adjective] as possible, ...) is considered a subjectivity indicator
Optionality The occurrence of Optionality-revealing words (such as e.g.: possibly, eventually, case, if possible, if appropriate,

if needed, ...) is considered an optionality indicator

Implicity

The occurrence of:
• Subjects or complements expressed by means of: Demonstrative adjectives (this, these, that, those) or
Pronouns (it, they...) or
• Terms having the determiner expressed by a demonstrative adjective (this, these, that, those) or implicit
adjective (such as e.g. :previous, next, following, last...) or preposition (such as e.g.: above, below...)

is considered an implicity indicator
Weakness The occurrence of Weak verbs (such as e.g.: may) is considered a weakness indicator
Under-specification The occurrence of words needing to be instantiated (such as e.g.: information, interface, that must be better

defined, flow instead of data flow, control flow, access instead of write access, remote access, authorized access,
testing instead of functional testing, structural testing, unit testing, etc.) is considered an under-specification
indicator.

Multiplicity The occurrence of multiplicity-revealing words: and, and/or, or, ... is considered a multiplicity indicator.
Table 1: QuARS ambiguity indicators

with heterogeneous backgrounds and skills. As the requirements
process progresses, requirements are expected to be sufficiently
clear to be interpreted in an unequivocal way by the interested
stakeholders [14].

A solution found within the RE community is to employ NLP
tools that make the editors aware of the ambiguity in their re-
quirements [22, 38]. Ambiguities normally cause inconsistencies
between the expectation of the customer and the product developed,
and possibly lead to undesirable reworks on the artifacts. However,
ambiguity can also be used as a way to capture variability aspects
to be solved later in the software development.

In [12] we proposed a first classification of the forms of ambi-
guity that indicate variation points, and we described a possible
mapping from ambiguity indicators to fragments of feature mod-
els. Specifically, we envisioned an approach to achieve automated
support to variability elicitation by analysing the outcomes of au-
tomated ambiguity detection applied to some set of requirements
by means of the QuARS (Quality Analyser for Requirements Speci-
fications) tool [11, 22], one of the leading tools addressing NLP of
requirement documents. In the current paper, the approach, pre-
liminarily defined in [12], is systematically assessed on a dataset of
572 requirements, coming from three different documents.

3.1 QuARS
QuARS was introduced as an automatic analyzer of requirement
documents [22]. QuARS performs an initial parsing of NL require-
ments for automatic detection of potential linguistic defects that can
determine ambiguity problems impacting the following develop-
ment stages. QuARS performs a linguistic analysis of a requirements
document in plain text format and points out the sentences that are
defective according to the expressiveness quality model described
in [5]. The defect identification process is split in two parts: (i) the

"lexical analysis" capturing optionality, subjectivity, vagueness, mul-
tiplicity and weakness defects, by identifying candidate defective
words that are identified into a corresponding set of dictionaries;
and (ii) the "syntactical analysis" capturing implicitness and under-
specification defects. In the sameway, detected defects may however
be false defects. In Table 1 we present the indicators used by QuARS
to detect lexical and syntactical defects in NL sentences.

Other functionalities, not related to the aim of this paper, are
offered by QuARS, like requirements clustering, metrics derivation
for evaluating the quality of NL requirements and view derivation,
to identify and collect together those requirements belonging to
given functional and non functional characteristics.

4 RESEARCH METHODOLOGY AND STUDY
DESIGN

In the experience reported in this paper, QuARS is used to point to
ambiguity defects in a sample of requirements documents. For this
purpose, three requirements documents have been chosen, coming
from three different domains. The three documents are scanned
by QuARS, and the reported defects are then analysed by a human
expert to see whether they point to a possible variability of the
described system: that is, each defect is analysed to judge whether
it is not a defect, but rather points to different choices that can give
space for a range of different products.

4.1 Research Objective and Research Questions
The objective of this study is to assess whether ambiguities in
NL requirements can be considered as potential variation points,
and to which extent the process of variability identification can
be automated with an ambiguity detection tool such as QuARS.
This objective is decomposed into the following research questions
(RQs):

VAMOS 2018, February 7–9, 2018, Madrid, Spain A. Fantechi et al.

RQ1 Is automated ambiguity detection in NL requirement docu-
ments relevant to detect variability?

This question can be answered by giving measures about howmany
variabilities are identified out of the total ambiguities detected by
QuARS, and how many are instead false positives.

RQ2 Are all of the ambiguity indicators relevant or only some
of them?

This question is oriented to understand which, among the indicators
provided by QuARS, are the most relevant to detect variation points.
The underlying goal is to identify whether QuARS can be tailored
to detect variation points by focusing solely on a specific subset of
the provided indicators.

RQ3 Can we derive from this assessment new terms and param-
eters for tuning existing NL requirements analysis tools?

This question can be answered by inspecting false positive cases
produced by QuARS, and by understanding which of the cases can
be systematically detected, so that the capabilities of the tool for
variability identification can be improved.

RQ4 To which extent is automated ambiguity detection in NL
requirement documents a complete instrument to detect variability?

This question can be answered by giving measures about how
many variabilities that are actually present in the requirement
document, as identified by expert judgement, are not identified as
ambiguity defects by QuARS (i.e., false negatives). In this paper, a
partial answer to this question will be provided, since only a non-
systematic inspection is performed to check false negative cases.
A complete answer to RQ4 requires to annotate variation points
in the documents before QuARS is executed, and then to inspect
the false negatives in a systematic manner. Given the exploratory
nature of the current study, this activity is left as future work.

4.2 Case Selection and Description
We base our experience on three requirements documents very
different from each other: different domains, different character-
istics of the systems, different background and experience of of
their authors. The three documents are briefly described below.
The first and third document can be downloaded from the PURE
requirements dataset described by Ferrari et al. [17], and available
at the following link: http://fmt.isti.cnr.it/nlreqdataset/ (file names:
2007 - ertms, 2010 - home 1.3). The second document is available
at the following link: https://www.plat-forms.org/sites/plat-forms.
org/files/platforms-task.pdf.

4.2.1 ERTMS: train control system. The first document we have
considered defines the functional requirements for ERTMS/ETCS
(European Rail Traffic Management System / European Train Con-
trol System), issued by the European Railway Agency in June 2007.
The document includes 96 requirements of a control system that
supports the driver of a train: it provides the driver with infor-
mation needed for the safe driving of the train, and it is able to
supervise train and shunting movements.

4.2.2 People by Temperament: social web application. Our sec-
ond document comes from Plat_Forms, an international academic-
industrial programming contest. It aims at comparing different
technological platforms for developing web-based applications. We
have chosen the requirements given at the first edition of the con-
test, in 2007. The system to be built is called PbT (People by Tem-
perament), a simple community portal where members can find
others with whom they might like to get in contact: people register
to become members, take a personality test, and then search for
others based on criteria such as personality types, likes/dislikes etc.
The documents includes 325 requirements.

4.2.3 DigitalHome: home automation system. This document
specifies the requirements for the development of a Smart House,
called DigitalHome (DH). The DH case study material has been
developed and used as a case study throughout a computing cur-
riculum [25], as part of a US National Science Foundation grant. The
DH system allows a home resident to manage devices that control
the environment of a home. The user communicates through a web
page on a web server. The DH web server communicates, through
a wireless gateway device, with the sensor and controller devices
in the home.

The document was developed by a team of 5 students in an
academic context, and includes 151 requirements.

4.3 Data Collection and Analysis
In [12], we have presented the idea that under-specification or am-
biguity at requirements level can in some cases give an indication
of possible variability, either in design choice, in implementation
choices or configurability. Taking into account the results of previ-
ous analyses conducted on different requirements documents with
NL analysis tools, we attempted a first classification of the forms
of ambiguity that indicate variation points, and we indicated an
approach to achieve automated support to variability elicitation.

We now address the validation of this idea, by first analysing, us-
ing QuARS, the three requirement documents described in Sect. 4.2
according to all the indicators given in Table 1.

Then, to elicit the potential variability hidden in a requirement
document, we perform an assessment of the output of the tool,
for each ambiguity indicator, aimed at classifying the defective
sentences and distinguish among: false positives, variability points,
and actual ambiguities.

More specifically, the data collection procedure, for each docu-
ment, consists of the following steps:

(1) Automatic Detection: The document is given as input to
QuARS in textual format, and QuARS produces a set of sen-
tences that are considered ambiguous, together with the
term or expression that is the source of the ambiguity;

(2) Review: The output of QuARS is reviewed by the 4th au-
thor, who classifies each defect identified by QuARS as false
positives, variability indicator, or actual ambiguity;

(3) Assessment: The classification is reviewed by the 3rd au-
thor, and, if discrepancies emerge in the judgment, agree-
ment is reached through discussion.

Review and assessment phases, that highlight variation points,
are based on the criteria introduced in our previous paper [12]. We
recall here the main ideas. Ambiguity in requirements may be due

http://fmt.isti.cnr.it/nlreqdataset/
https://www.plat-forms.org/sites/plat-forms.org/files/platforms-task.pdf
https://www.plat-forms.org/sites/plat-forms.org/files/platforms-task.pdf

Hacking an Ambiguity Detection Tool to Extract Variation Points: an Experience Report VAMOS 2018, February 7–9, 2018, Madrid, Spain

to the need to enlighten possible variation points in an early phase
of software and system development and to postpone choices for
later decisions in the implementation of the system. Hence, the
analysis of the defective requirements is guided by the general
question “Can this requirement hide a variation point?”. More con-
crete criteria depend on the indicators. In the cases of implicity and
subjectivity, there is no intuition that a defect can actually be a vari-
ation point, and the analysis is performed in a completely subjective
way. With under-specification and vagueness the criterium is the
existence of more than one possible instance of the defective word.
With multiplicity the assessor can discard all requirements where
conjunction/disjunction relate two sentences or two adjective, and
concentrate on the cases where they relate nouns. The cases of
weakness and optionality are treated similarly, since the nature of
these defects is inherently associated to variation points, especially
when they appear in functional requirements. Subjective judgment
is adopted in case of non-functional requirements.

The data analysis procedure, for each document, consists of the
following steps:

(1) Quantitative Analysis: The number of defects found by
the tool (FND), false positives (FP), variability indicators
(VAR), and the actual ambiguities (AMB) is computed for
each indicator. This evaluation aims at answering RQ1, and to
give a broad view about the indicators that are more relevant
for variability detection (RQ2).

(2) Qualitative Analysis: For each indicators, typical classes
of variability-related terms are identified, as well as typical
cases of false positive. This analysis aims to provide a more
informed answer to RQ2, and to answer RQ3. Furthermore,
a non-systematic inspection is performed on the original
requirements, to check whether certain classes of false nega-
tives could be identified, in order to provide a preliminary
answer to RQ4.

5 RESULTS
Tables 2 to 7 show the results of the quantitative analysis: each
table addresses one of the six QuARS indicators, as computed for
each case. In each table and per each case study, in the first column
we report the number of defects found by the tool (FND), and in
the next columns the number of false positives (FP), the variability
indicators (VAR), and the actual ambiguities (AMB), as classified by
manual inspection.

Let us comment each of the tables. For the implicity indicator, a
sentence is considered defective if its subject or complements are
implicit, being expressed by demonstrative adjectives (this, these,
that, those) or pronouns (it, they, etc.) instead of by a noun. Table 2
tells that in the considered documents, implicity is in most cases
resolved when reading the sentence, and, in any case, it is never
an indication of possible variability. A requirement that can be
considered as ambiguous is for instance: TakeTtt [...] evaluates one
set of answers to the TTT, computes the TTT result and TTT type,
and stores them (plus a timestamp) for the current user.

IMPLICITY
FND FP VAR AMB

ERTMS 2 2 0 0
DigitalHome 9 9 0 0

People by Temperament 21 18 0 3
Total 32 29 0 3

Table 2: Classification of implicity defects

Also in the case of under-specification, most defective sentences
are false positives, and almost no variability is hidden behind (Table
3). Only in ERTMS, the word information is a variability candidate:
it appears twice in a sentence of the kind ETCS shall provide the
driver with information to allow him/her to safely drive the train. The
amount of information provided to the driver can vary and indeed
can be configured differently in different countries or for different
typologies of rolling stock. On the contrary, the term information is
considered an ambiguity in The user documentation shall include the
following: [...] A section that explains how DH parameters are set and
sensor values are read. This shall include information on limitations
and constraints on parameter settings and sensor reading accuracy.

UNDER-SPECIFICATION
FND FP VAR AMB

ERTMS 6 4 2 0
DigitalHome 15 14 0 1

People by Temperament 2 2 0 0
Total 23 20 2 1

Table 3: Classification of under-specification defects

With multiplicity, variability is actually an option when disam-
biguating (see Table 4) and in most cases false positives (RQ3) are
due to sentences with two verbs. The following requirement of
DigitalHome exemplifies this affirmation, since it contains a vari-
ability point (“or”) and a false positive (“and”): The DigitalHome
programmable thermostat shall allow a user to monitor and control
a home’s temperature from any location, using a web ready com-
puter, cell phone, or PDA. These cases can be potentially discarded
by employing POS Tagging [37] – i.e., identification of verbs, nouns,
conjunctions, etc. – and by identifying all the cases in which the
term “and” occurs between two verbs1.

Other systematic false positive cases formultiplicity occur when
coordinating conjunctions are used between values to indicate
a range. For example, consider the case: The sensor part of the
thermostat has a sensitivity range between 14oF and 104oF . These
cases can be automatically discarded by defining NLP patterns that
recognise, e.g., occurrences of coordinating conjunctions between
numerical amounts, possibly associated to units of measurement.

A requirement that includes a multiplicity indicator, but cannot
be considered as a case of variability is: The life motto is an arbitrary
one-line phrase or sentence meant to characterize the person.

1In the cases in which an adverb is attached to the two verbs, an attachment ambigu-
ity [24] may occur. Hence, these cases may require specific treatments.

VAMOS 2018, February 7–9, 2018, Madrid, Spain A. Fantechi et al.

MULTIPLICITY
FND FP VAR AMB

ERTMS 30 24 6 0
DigitalHome 137 80 46 11

People by Temperament 125 80 18 27
Total 292 184 70 38

Table 4: Classification of multiplicity defects

Table 5 reports the results for subjectivity: at least for these case
studies this indicator is not relevant. To decide if this observation
scales, we need to examine a larger set of case studies.

SUBJECTIVITY
FND FP VAR AMB

ERTMS 0 0 0 0
DigitalHome 0 0 0 0

People by Temperament 5 5 0 0
Total 5 5 0 0

Table 5: Classification of subjectivity defects

Vagueness is due to the presence of undetermined adjectives and
adverbs and, as reported in Table 6, can mask a variability. An ex-
ample is the following: The user interface should provide sufficient
explanation of all uncommon concepts to guide the user. Indeed, the
detail level of the user interface can vary in different products. An-
other example is: The general user shall be able to use the DH system
capabilities to monitor and control the environment for his/her home.
In this case the term general may indicate that more than one type
of user is foreseen for the system (i.e., the Digital Home (DH), in
this case).

Typical false positives (RQ3) for vagueness are those in which
a certain term is systematically polysemous [24], and it is used in
the form of noun, instead of, e.g., adjective. Examples include the
term light and sound, as in the following requirement: The system
shall include security sound and light alarms. These cases can be
discarded by including POS Tagging, and identifying when certain
vague terms are used in the form of nouns, as performed by Rosadini
et al. [35].

A requirement with three ambiguities is: [...] such failures might
affect the safety of home dwellers (e.g., security breaches, inadequate
lighting in dark spaces, inappropriate temperature and humidity for
people who are in ill-health, or powering certain appliances when
young children are present).

VAGUENESS
FND FP VAR AMB

ERTMS 2 2 0 0
DigitalHome 35 24 7 4

People by Temperament 39 34 2 3
Total 76 60 9 7

Table 6: Classification of vagueness defects

A further ambiguity indicator of QuARS is weakness: a sentence
with verbmay is consideredweak. Besides, sometimes requirements
are labelled with a may to indicate that their implementation is
optional and introducing a variability. A good percentage of the de-
fective sentences revealed by QuARS express optional requirements,
as shown in Table 7. A couple of typical examples follow: Clicking
on the symbol of a member in the graphic may call that member’s
Status Page; The portal may work fully with other browsers such as
Konqueror, Opera Mini, Lynx etc. On the contrary, an ambiguity is
in: The system shall include security sound and light alarms, which
can be activated when DigitalHome senses a security breach from a
magnetic contact.

WEAKNESS
FND FP VAR AMB

ERTMS 4 0 4 0
DigitalHome 10 4 1 5

People by Temperament 47 12 31 4
Total 61 16 36 9

Table 7: Classification of weakness defects

The last ambiguity indicator of QuARS is optionality, revealed
by expressions like if possible, if needed etc. We did not find any
optionality defect in any of the considered documents.

The data reported in the Tables 2-7 and the above discussion
of the quantitative analysis shows some answers to our research
questions: indeed the use of an ambiguity detection tool for NL
requirements can be helpful to detect variability (RQ1) and only
some of the ambiguity indicators are significant, namely: multiplic-
ity, vagueness, and weakness (RQ2). Hence, a NL analysis tool can
be restricted to consider only these indicators when used to elicit
variability, and this partly answers RQ3. Furthermore, the system-
atic false positive cases identified for multiplicity and vagueness
offer further hints to tailor QuARS in order to increase its accuracy
in terms of variability identification (RQ3).

Another issue is to look for the false negatives, in order to answer
RQ4, and provides further hints to improve the tool (RQ3). How
many variability points can be found in the requirement documents,
which were not found by QuARS? Do they respect some rule, so
that an automatic tool can be instructed to detect them? We only
have a partial answer here, for the more frequent cases, given the
non-systematic inspection activity performed at this stage. Two
general cases of false negatives were identified. (1) All the occur-
rences of a list can correspond to an and multiplicity. (2) Sentences
including part of and indicating a subfeature. As an example, in the
DigitalHome we found: The controller part of thermostat shall pro-
vide a ”set point” temperature that is used to control the flow of heat
energy (by switching heating or cooling devices on or off as needed)
to achieve the set point temperature.

Another example is the following case: The sensor part of the
thermostat has a sensitivity range between 14oF and 104oF .

6 THREATS TO VALIDITY
The reported experience has had an exploratory nature, and does
not claim to be a rigorous industrial case study [36]. However, it is

Hacking an Ambiguity Detection Tool to Extract Variation Points: an Experience Report VAMOS 2018, February 7–9, 2018, Madrid, Spain

useful to list the main threats to the validity of our results, in order
to give a fair assessment of the value of the current contribution.

Construct Validity. In our evaluation, we consider numerical data
about the number of variation points and ambiguity associated to
requirements. However, these data are based on subjective evalua-
tions provided in the Review phase of our data collection procedure
(see Sect. 4.3). To mitigate this subjectivity threat, an Assessment
phase was introduced in which a second subject reviewed the an-
notations produced in the Review phase. We did not compute the
degree of agreement during this procedure, due to the exploratory
nature of the current study.

Internal Validity. The main threat to the internal validity of the
study is the involvement of the authors of this work in the Review
andAssessment phase of the data collection procedure (see Sect. 4.3).
We agree that the researcher bias might have played a role in the
assessment. However, we argue that this threat is partially mitigated
by the independent Assessment made by two authors (as the third
step of the data collection procedure), and by the evidence given
through the examples presented in this paper. Furthermore, other
researchers can replicate our approach using the publicly available2
QuARS tool, and using the documents employed in our evaluation
(see links in Sect. 4.2).

External Validity. Our results are limited to three requirements
documents. However, we argue that the documents are representa-
tive of different domains, and have different degrees of quality – e.g.,
the reader should notice the low number of vagueness defects for
the ERTMS document in Table 6, which is edited by railway domain
experts, while the other documents are edited by students. Further-
more, we have observed that several variability-related terms are
common among the documents. Therefore, we argue that, notwith-
standing the construct validity and internal validity threats, our
study has the potential to be generalised to other domains, and
other requirements documents.

7 CONCLUSION
In this paper, we presented an approach for variability detection in
NL requirements that is based on automatically identifying ambigu-
ities. The approach is evaluated on three requirements documents
belonging to three different domains. Our results highlight that
some typically vague terms (e.g., sufficient, general) and a relevant
number of ambiguous constructions (e.g., those using weak verbs,
and those using coordinating conjunctions) are actually indicators
of variation points. This offers hints to tailor automatic ambiguity
detection tools, such as QuARS, to variability detection.

One weakness of our approach is the need to involve an expert to
judge the possible variability inside a defective requirement. How-
ever, when using NLP techniques to find defects in requirements,
expert judgement is already needed to identify and eliminate the
false positives that can be returned by the tool [35]. We claim that a
company can take advantage of this work and let the expert identify
also those cases in which ambiguity in requirements is due to the
need to postpone choices for later decisions in the implementation
of the system, and can therefore be dealt with as possible variation
2Actually, the tool is provided upon request to the 3rd author: this allows us to keep
track of the users of the tool, and to receive feedback on its usage.

points. The role of the analyst is therefore not limited to the vali-
dation of requirements, but also to the elicitation of variability, in
view of better market opportunities.

REFERENCES
[1] Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles Van-

beneden, Philippe Collet, and Philippe Lahire. 2012. On extracting feature models
from product descriptions. In Proc. of VaMoS ’12. 45–54.

[2] Vander Alves, Christa Schwanninger, Luciano Barbosa, Awais Rashid, Peter
Sawyer, Paul Rayson, Christoph Pohl, and Andreas Rummler. 2008. An Ex-
ploratory Study of Information Retrieval Techniques in Domain Analysis. In Proc.
of SPLC ’08. 67–76.

[3] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. 2015.
Automated checking of conformance to requirements templates using natural
language processing. IEEE transactions on Software Engineering 41, 10 (2015),
944–968.

[4] Noor Hasrina Bakar, Zarinah M Kasirun, and Norsaremah Salleh. 2015. Feature
extraction approaches from natural language requirements for reuse in software
product lines: A systematic literature review. Journal of Systems and Software
106 (2015), 132–149.

[5] Daniel M Berry, Antonio Bucchiarone, Stefania Gnesi, Giuseppe Lami, and Gian-
luca Trentanni. 2006. A new quality model for natural language requirements
specifications. In 12th International Working Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ). 115–128.

[6] Daniel M Berry and Erik Kamsties. 2004. Ambiguity in requirements specification.
In Perspectives on software requirements. Springer, 7–44.

[7] Francis Chantree, Bashar Nuseibeh, Anne De Roeck, and Alistair Willis. 2006.
Identifying nocuous ambiguities in natural language requirements. In Require-
ments Engineering, 14th IEEE International Conference. IEEE, 59–68.

[8] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. 2005. An approach to
constructing feature models based on requirements clustering. In Proc. of RE’05.
31 – 40.

[9] Lianping Chen, Muhammad Ali Babar, and Nour Ali. 2009. Variability man-
agement in software product lines: a systematic review. In Proceedings of the
13th International Software Product Line Conference. Carnegie Mellon University,
81–90.

[10] Horatiu Dumitru, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad
Mobasher, Carlos Castro-Herrera, and Mehdi Mirakhorli. 2011. On-demand
feature recommendations derived from mining public product descriptions. In
Proc. of ICSE’11. 181–190.

[11] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. 2001. An
automatic quality evaluation for natural language requirements. In Proceedings
of the Seventh International Workshop on Requirements Engineering: Foundation
for Software Quality REFSQ, Vol. 1. 4–5.

[12] Alessandro Fantechi, Stefania Gnesi, and Laura Semini. 2017. Ambiguity Defects
As Variation Points in Requirements. In Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-intensive Systems (VAMOS ’17).
ACM, New York, NY, USA, 13–19. https://doi.org/10.1145/3023956.3023964

[13] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder.
2017. Rapid quality assurance with requirements smells. Journal of Systems and
Software 123 (2017), 190–213.

[14] Alessio Ferrari, Felice Dell’Orletta, Andrea Esuli, Vincenzo Gervasi, and Stefania
Gnesi. 2017. Natural Language Requirements Processing: a 4D Vision. IEEE
Software (to appear) (2017).

[15] Alessio Ferrari, Beatrice Donati, and Stefania Gnesi. 2017. Detecting Domain-
specific Ambiguities: an NLP Approach based on Wikipedia Crawling and Word
Embeddings. In 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). IEEE, 393–399.

[16] Alessio Ferrari, Giorgio O Spagnolo, and Felice Dell’Orletta. 2013. Mining com-
monalities and variabilities from natural language documents. In Proceedings of
the 17th International Software Product Line Conference. ACM, 116–120.

[17] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. 2017. PURE: A
Dataset of Public Requirements Documents. In Requirements Engineering Confer-
ence (RE), 2017 IEEE 25th International. IEEE, 502–505.

[18] Alessio Ferrari, Paola Spoletini, and Stefania Gnesi. 2015. Ambiguity as a resource
to disclose tacit knowledge. In Requirements Engineering Conference (RE), 2015
IEEE 23rd International. IEEE, 26–35.

[19] William Frakes, Ruben Prieto-Diaz, and Christopher Fox. 1998. DARE: Domain
analysis and reuse environment. Ann. Softw. Eng. 5 (Jan. 1998), 125–141.

[20] Vincenzo Gervasi, Ricardo Gacitua, Mark Rouncefield, Peter Sawyer, Leonid Kof,
L Ma, P Piwek, A De Roeck, Alistair Willis, H Yang, et al. 2013. Unpacking tacit
knowledge for requirements engineering. In Managing requirements knowledge.
Springer, 23–47.

[21] Benedikt Gleich, Oliver Creighton, and Leonid Kof. 2010. Ambiguity detec-
tion: Towards a tool explaining ambiguity sources. Requirements Engineering:
Foundation for Software Quality (2010), 218–232.

https://doi.org/10.1145/3023956.3023964

VAMOS 2018, February 7–9, 2018, Madrid, Spain A. Fantechi et al.

[22] Stefania Gnesi, Giuseppe Lami, and Gianluca Trentanni. 2005. An automatic tool
for the analysis of natural language requirements. Comput. Syst. Sci. Eng. 20, 1
(2005).

[23] Gregory Goth. 2016. Deep or shallow, NLP is breaking out. Commun. ACM 59, 3
(2016), 13–16.

[24] A Handbook. 2003. From Contract Drafting to Software Specification: Linguistic
Sources of Ambiguity. (2003).

[25] Thomas B Hilburn and Massood Towhidnejad. 2007. A case for software en-
gineering. In Software Engineering Education & Training, 2007. CSEET’07. 20th
Conference on. IEEE, 107–114.

[26] Nili Itzik, Iris Reinhartz-Berger, and Yair Wand. 2016. Variability analysis of
requirements: Considering behavioral differences and reflecting stakeholdersâĂŹ
perspectives. IEEE Transactions on Software Engineering 42, 7 (2016), 687–706.

[27] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[28] Mohamad Kassab, Colin Neill, and Phillip Laplante. 2014. State of practice
in requirements engineering: contemporary data. Innovations in Systems and
Software Engineering 10, 4 (2014), 235–241.

[29] Yang Li, Sandro Schulze, and Gunter Saake. 2017. Reverse Engineering Variability
from Natural Language Documents: A Systematic Literature Review. In Proceed-
ings of the 21st International Systems and Software Product Line Conference-Volume
A. ACM, 133–142.

[30] Mikyeong Moon, Keunhyuk Yeom, and Heung Seok Chae. 2005. An approach
to developing domain requirements as a core asset based on commonality and
variability analysis in a product line. IEEE transactions on software engineering
31, 7 (2005), 551–569.

[31] Sana Ben Nasr, Guillaume Bécan, Mathieu Acher, João Bosco Ferreira Filho, Nico-
las Sannier, Benoit Baudry, and Jean-Marc Davril. 2017. Automated extraction
of product comparison matrices from informal product descriptions. Journal of
Systems and Software 124 (2017), 82–103.

[32] Nan Niu and Steve M. Easterbrook. 2008. Extracting and Modeling Product Line
Functional Requirements. In Proc. of RE’08. 155–164.

[33] Nan Niu and Steve M. Easterbrook. 2008. On-Demand Cluster Analysis for
Product Line Functional Requirements. In Proc. of SPLC’08. 87–96.

[34] Sooyong Park, Minseong Kim, and Vijayan Sugumaran. 2004. A scenario, goal
and feature-oriented domain analysis approach for developing software product
lines. Industrial Management & Data Systems 104, 4 (2004), 296–308.

[35] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Stefania
Gnesi, Iacopo Trotta, and Stefano Bacherini. 2017. Using NLP to Detect Require-
ments Defects: An Industrial Experience in the Railway Domain. In International
Working Conference on Requirements Engineering: Foundation for Software Quality.
Springer, 344–360.

[36] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14, 2
(2009), 131.

[37] Helmut Schmid. 2013. Probabilistic part-ofispeech tagging using decision trees.
In New methods in language processing. 154.

[38] Sri Fatimah Tjong and Daniel M Berry. 2013. The design of SREE - a prototype
potential ambiguity finder for requirements specifications and lessons learned.
In International Working Conference on Requirements Engineering: Foundation for
Software Quality. Springer, 80–95.

[39] Thomas von der Maßen and Horst Lichter. 2003. RequiLine: A requirements
engineering tool for software product lines. In International Workshop on Software
Product-Family Engineering. Springer, 168–180.

[40] Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. 2009. A framework for
constructing semantically composable feature models from natural language
requirements. In Proc. of SPLC ’09. 211–220.

[41] William M Wilson, Linda H Rosenberg, and Lawrence E Hyatt. 1997. Automated
analysis of requirement specifications. In Proceedings of the 19th international
conference on Software engineering. ACM, 161–171.

[42] Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nu-
seibeh. 2010. Extending nocuous ambiguity analysis for anaphora in natural
language requirements. In Requirements Engineering Conference (RE), 2010 18th
IEEE International. IEEE, 25–34.

[43] Hui Yang, Alistair Willis, Anne De Roeck, and Bashar Nuseibeh. 2010. Automatic
detection of nocuous coordination ambiguities in natural language requirements.
In Proceedings of the IEEE/ACM international conference on Automated software
engineering. ACM, 53–62.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 QuARS

	4 Research Methodology and Study design
	4.1 Research Objective and Research Questions
	4.2 Case Selection and Description
	4.3 Data Collection and Analysis

	5 Results
	6 Threats to Validity
	7 Conclusion
	References

