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Abstract

This paper presents a distributed adaptive control framework for multiple spacecraft formation flying around
Lagrange point orbits, which account for unmeasurable velocities and (spacecraft) mass uncertainties. The
nominal trajectory for the formation system is a halo orbit parameterized by Fourier series expansions. Such an
explicit, albeit approximate, description of the nominal trajectory facilitates each spacecraft in formation to include
the relative state information into a cooperative feedback control system design, so that the relative motion can
be driven towards a desired trajectory while maintaining a group synchronization during the maneuver. The
developed distributed control strategies rely on the protocols formulated on an undirected topology with mutual
information interactions, utilizing every available neighbor-to-neighbor communication data couplings, in order
to improve the reliability of the formation. Numerical simulations show that the proposed adaptive control laws
guarantee global asymptotic convergence and system robustness.
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Nomenclature
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s
k = k-th order coefficients of Fourier series

e = relative position errors [ km]
E = set of edges
f = control force, [N ]
G = adjacency matrix (with entries [gij ])
G = communication topology graph
I = identity matrix
L = Laplacian matrix (with entries [lij ])
m = mass, [ kg]
N = number of spacecraft
n = order of Fourier series
nr = angular velocity of relative orbit, [ rad/day]
O = zero matrix
O = reference frame origin
r = position vector (with r = ‖r‖), [ au]
S = spacecraft
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t = time, [ days]
T = period of nominal halo orbit, [ days]
T = rotating reference frame
u = propulsive (control) acceleration, [ m/s2]
V = set of vertices
x, y, z = components of position vector in rotating frame
x̂, ŷ, ẑ = unit vectors of rotating coordinate axes

X = state vector (with X , [rT, ṙT]
T
)

∆ v = velocity change, [ m/s]
Φ = state-transition matrix
µ = normalized Earth mass
ρx, ρy, ρz = components of relative position vector, [ km]
ρ = relative position vector with respect to nominal orbit, [ km]
υ = vertex
ω = angular velocity vector of rotating frame (with ω = ‖ω‖), [ rad/day]

Subscripts

0 = initial value
ES = Earth-spacecraft
f = final value
h = halo orbit
i = i-th spacecraft
SS = Sun-spacecraft

Superscripts

T = transpose
? = desired value
· = time derivative
∧ = unit vector
∼ = estimated value

1. Introduction

Formation flying enables multiple vehicles to operate closely to accomplish complex space tasks that
would be difficult to obtain with a single, conventional, spacecraft. Exploiting a task distribution among
smaller, less-expensive vehicles, the spacecraft in a formation are able to share information and operate
cooperatively, thus enhancing the system flexibility and reducing the overall mission costs [1]. Besides,
formation flying also provides a means to improve specialized functions, such as image resolution and in-
situ observation in astronomical missions [2]. Due to its distinctive peculiarity, some advanced formation
flying-based mission scenarios have been proposed in the last decades in both geocentric and deep space
environment. In this context, interesting examples are offered by PRISMA [3], a demonstration mission for
autonomous technologies and on-orbit-servicing techniques, and Darwin [4], a scientific mission for Earth-like
exo-planet detections.

One of the most practical applications of the formation flying concept is to observe (or explore) the
celestial bodies by placing a number of spacecraft around the Lagrange points, known as the five equilibrium
(stationary) solutions to the circular restricted three-body problem (CR3BP) [5]. A peculiarity of missions
carried out near the natural (or artificial [6, 7, 8]) Lagrange points is that the formation may operate with
an unobstructed view and is rarely affected by planetary perturbations (e.g. atmospheric and geomagnetic
forces). For example, in the Sun-Earth system, the halo (or Lissajous) orbits in the vicinity of L2 point
naturally avoid the Sun eclipse, and are therefore suitable for measuring the cosmic microwave background.
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Also, orbits around L1 point are never shadowed by Earth, and always view its sunlit hemisphere. Therefore,
they usually serve as an interplanetary early warning storm monitor for solar disturbances. [9]

Even though formation flying around Lagrange point orbits provides such valuable features as low-cost
replacement of a faulty agent, it also poses a great challenge. In fact, since orbits around the collinear points
are inherently unstable, a continuous active control is necessary to achieve long-term bounded relative
motion. To that end, a number of formation control algorithms have been discussed, which can be roughly
categorized into tight [10, 11, 12, 13] and loose [14, 15, 16] strategies. The tight control method consists in
stabilizing the spacecraft relative motion with respect to a specified nominal trajectory, using Lyapunov or
eigenvalue stability theorem. The loose control concept, instead, relies on invariant manifolds theory, using
the fact that the relative motion evolves and is always restricted within a bounded region provided some
natural low-drift regions are found.

Thus far, much effort has been devoted to the study of formation flying around Lagrange point or-
bits, however several existing problems yet need to be solved. First, the non-integrability nature of the
CR3BP prevents from any analytical representation of a nominal trajectory. Although some closed-form
solutions have been discussed in the literature, however, they rely on a linearization procedure or on pertur-
bation expansion-based approximations [5, 17]. The linearized solution is well suited only for small-distances
(relative to the Lagrange points), whereas the typical example of an algebraic solution is the well-known
third-order approximation discussed by Richardson [17], which however leads to a remarkable deviation
from the nominal orbit after about one half period only. In addition, previous studies [18, 19] on formation
keeping algorithms around Lagrange point orbits assume the neighboring spacecraft velocity and its mass
to be precisely known, which is usually a demanding task for an onboard measuring system. To reduce
the operating costs and the spacecraft weight, the problem of guaranteeing the system stability even in the
presence of velocity or mass uncertainties becomes crucial, especially when faults or high noises reduce the
effectiveness of the on-board sensors. Finally, most of the existing works [10, 11, 12, 13, 19, 20] on this
issue are limited to a leader-follower formation structure, rendering an inherent weakness that the leader is
a single point of failure for the whole system. To mitigate these risks, the system robustness and its overall
redundancy need to be strengthened.

Recognizing these open issues, a distributed framework of multiple spacecraft formation flying around
Lagrange point orbits is here discussed. The contributions of this paper are twofold. First, the nominal
trajectory is parameterized via high-order Fourier series expansions. Unlike the classical third-order solution
that suffers from a huge amount of algebraic manipulations, the Fourier series-based solution relies on a least-
square approach and provides a better accuracy as the order of the expansion series increases. Note that the
Fourier series-based approach has been recently [21] used to continuate the spacecraft orbit, for long term,
in the real Solar System model. Compared to the existing works, the approximate closed-form description
of the nominal trajectory captures most nonlinearity. This results in a propellant reduction necessary to
maintain the formation around the nominal trajectory. Second, two distributed adaptive synchronization
control strategies are proposed to account for unmeasurable spacecraft velocities and mass uncertainties.
By exploiting the available information exchange among the formation, every spacecraft updates its state
using the data flow transmitted from its local neighbours (not necessarily limited to the nearest one, as is
discussed in Ref. [22]), so that the overall redundancy and group robustness are enhanced. Besides, the
proposed consensus-based control law also guarantees a time-balanced (synchronization), as well as a high
tracking accuracy.

This paper is organized as follows. Section 2 illustrates the mathematical model in the Sun-Earth CR3BP,
and presents an approximate analytical solution to the nominal orbit via Fourier series expansions. Section 3
provides two distributed control strategies using mutual information couplings to account for unmeasurable
velocities and mass uncertainties, respectively. The control effectiveness is then investigated in Section 4 by
means of some numerical simulations. Finally, some concluding remarks are given in Section 5.

2. Problem formulation

In this section, the Sun and Earth are considered as the two primary bodies, and the halo orbit around
L2 point is designated as the nominal trajectory. To describe the relative motion equation of the formation
system, it is useful to introduce first the mathematical model used in CR3BP.
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2.1. Equations of motion

The dynamic model describing the Sun-Earth CR3BP is formulated in a classical rotating coordinate
system T (O; x̂, ŷ, ẑ), see Fig. 1. The origin O of the reference frame is centered at the system barycenter,
while the plane (x̂, ŷ) coincides with the ecliptic plane, x̂ axis points to the Earth and ẑ axis is positive in
the direction of the angular velocity vector ω. For convenience, a normalized set of units is introduced, such
that the total mass of the primaries, the Sun-Earth distance, and the universal gravitation constant are all
equal to unity. Accordingly, the period of one Earth-Sun revolution is 2π, and the (normalized) Earth’s
mass is µ = 3.05425× 10−6.

Let ri , [xi, yi, zi]
T

be the position vector of the generic spacecraft Si, see Fig. 1. The spacecraft
equations of motion in the CR3BP without control input (i.e. without propulsive acceleration), are

ẍi − 2 ẏi =
∂Ωi

∂xi
, ÿi + 2 ẋi =

∂Ωi

∂yi
, z̈i =

∂Ωi

∂zi
(1)

with

Ωi ,
x2i + y2i

2
+

1− µ
rSSi

+
µ

rESi

(2)

where the Sun-spacecraft (rSSi
) and Earth-spacecraft (rESi

) distances are given by

rSSi
=

√
(xi + µ)

2
+ y2i + z2i (3)

rESi
=

√
(xi + µ− 1)

2
+ y2i + z2i (4)

For a system described by Eq. (1), there are five natural equilibrium points Li (with i = 1, 2, . . . , 5),
among which the collinear Lagrange points (L1, L2, and L3) are inherently unstable, whereas the triangular
Lagrange points (L4 and L5) are stable. In particular, halo (or Lissajous) orbits around L1 and L2 points
are very useful for space-borne observatories. For illustrative purposes, the halo orbit in the neighborhood
of L2 point is here chosen as the nominal trajectory for the spacecraft formation system.

2.2. Nominal trajectory generation

To precisely maintain a spacecraft formation around a halo orbit in the neighborhood of L2 point,
a continuous active control system is required. Most existing studies about this problem use a nominal
trajectory [12] based on the linearized form of Eq. (1), or a third-order approximate solution with the aid
of the Lindstedt-Poincaré perturbation method [13]. However, none of them is able to provide a good
estimation of the actual trajectory, especially for large-size trajectories or long-term propagation. As a
consequence, an additional amount of propellant consumption is usually necessary to compensate for the
orbital frequency offset in these solutions, because the misestimation in frequency leads to both position and
velocity deviations with respect to the natural (reference) trajectory. To provide a satisfactory evaluation
of the nominal trajectory, a Fourier series-based solution with a least-square technique is now introduced.

To begin, a differential correction method is used to identify the nominal halo orbit. Let X , [rT, ṙT]
T

=
[x, y, z, ẋ, ẏ, ż]

T
be the spacecraft state vector along the trajectory. The state space form of the (variational)

equations of motion, relative to the nominal trajectory given by Eq. (1), can be written as

δẊ = A δX (5)

where δX ,X−Xh = [δx, δy, δz, δẋ, δẏ, δż]
T

is the spacecraft state variation, and A is a time-dependent
matrix defined as

A ,

[
O3 I3
B −C

]
(6)

where O3 (or I3) is a 3× 3 zero (or identity) matrix. In Eq. (6), the sub-matrices B and C are given by

B =


∂2Ω

∂x2
∂2Ω

∂x ∂y

∂2Ω

∂x ∂z
∂2Ω

∂y ∂x

∂2Ω

∂y2
∂2Ω

∂y ∂z
∂2Ω

∂z ∂x

∂2Ω

∂z ∂y

∂2Ω

∂z2

 , C =

0 −2 0
2 0 0
0 0 0

 (7)
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Equation (5) has a general solution in the form

δX = Φ (t, t0) δX0 (8)

where δX0 is the initial (i.e. at time t0 , 0) value of the vector δX, and Φ (t, t0) is the state-transition
matrix that satisfies

Φ̇ (t, t0) = AΦ (t, t0) (9)

Bearing in mind the initial condition Φ (t0, t0) = I6, where I6 is a 6× 6 identity matrix, the state-transition
matrix can be numerically solved. Note that the halo orbit is symmetric with respect to the (x̂, ẑ) plane,
therefore only three variables need to be corrected, and {ẋ, ż} = 0 when the motion trajectory crosses
the (x̂, ẑ) plane. With reference to the classic third-order solution [17] for a favorable initial guess X0 =
[x0, 0, z0, 0, ẏ0, 0]

T
, and integrating Eq. (1) until the trajectory reaches (again) the (x̂, ẑ) plane, the state

vector has a form X?
f = [x?0, 0, z?0 , 0, ẏ?0 , 0]

T
. Let δXf , Xf − X?

f denote the state deviation at one
half period and, from Eq. (8), the initial state to be corrected within one iteration is calculated as δX0 =
Φ−1 (tf , t0) δXf . After several iterative processes, the halo orbit can be obtained with an accuracy of 10−10,
that is, with {ẋ?f , ż?f} ≤ 10−10.

Although a numerical differential correction method can be implemented to obtain the halo orbit, the
design of the formation control system requires an explicit orbit description. To that end, according to
Ref. [19], a Fourier series expansion is introduced here with the aim of expressing the nominal orbit in an
approximate analytical form as

xh = a0 +

n∑
k=1

[ack cos (k ω t) + ask sin (k ω t)] (10)

yh = b0 +

n∑
k=1

[bck cos (k ω t) + bsk sin (k ω t)] (11)

zh = c0 +

n∑
k=1

[cck cos (k ω t) + csk sin (k ω t)] (12)

Retaining Eqs. (10)–(12) to a given order n, the optimal value of the unknown parameters
`? , [a0, a

c
k, a

s
k, b0, b

c
k, b

s
k, c0, c

c
k, c

s
k]

T
can be found by using an unconstrained least-square process, with

the minimization index defined as

`? = arg min

∫ T

0

‖X −Xh‖2 dt (13)

where T = 2π/ω is the period of the halo orbit.
For example, a nominal halo orbit parameterized via an 8th-order Fourier series approximation is illus-

trated in Fig. 2, with a period T = 180.36 days (i.e. ω = 2.02508) and a Jacobi integral J = 3.001. The
coefficients in Eqs. (10)–(12) are listed in Tab. 1. In particular, the (optimal) unknown parameters are found
in least-squares sense using standard routines for nonlinear curve-fitting as, for example, the MATLAB func-
tion “lsqcurvefit”. In order to speed up the iteration convergence, the solver requires an initial guess of the
parameters, which can be provided using the procedure described in the appendix of Ref. [17]. Recently, a
similar approach has been used also in Ref. [19].

Let ∆r̃ , ‖r − rh‖ / ‖r‖ denote the distance error of the approximation, where r is the exact (numerical)
position vector of the spacecraft. As is illustrated in Fig. 3, in which the halo orbit is propagated for one
period (with T = 180.36 days), the 8th-order Fourier series-based solution has a maximum error less than
10−7, which proves a good approximation. In the next section, such an analytical solution will serve both as
a basis to address the problem of multiple spacecraft formation flying around a halo orbit, and to facilitate
the design of the distributed synchronization control system.

3. Distributed adaptive formation control

The distributed adaptive control algorithms that account for spacecraft velocity and mass uncertainties
are now developed for a formation structure with N ≥ 3 spacecraft, based on a local neighbor-to-neighbor
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information. In particular, the communication topology of the relative motion is represented by an undirected
topology graph, under the assumption that the information exchange is bidirectional.

To proceed, it is useful to briefly summarize a few concepts from graph theory [23]. An undirected graph
G consists of a finite non-empty vertex set V = {υ1, . . . , υN}, an edge set E = {(υ1, υ2) , . . . , (υN−1, υN )} ⊆
V ×V, and an adjacency matrix G ∈ RN×N . The matrix G is defined in such a way that its generic entry is
gij = gji = 1 if (υi, υj) ∈ E with i 6= j, whereas gii = 0. Note that G is symmetric, and gij = 0 if (υi, υj) /∈ E .

The Laplacian matrix L = [lij ] ∈ RN×N associated with G is defined as lij = −gij and lii =
N∑
j=1

gij , ∀ i 6= j.

The matrix L is symmetric positive semi-definite and
N∑
j=1

lij = 0, ∀ i 6= j. A graph is termed connected if

there exists a path from every vertex to every other vertex.
In the following analysis, emphasis is given to the case where the information exchange topology is

fixed. While modeling the communication topology of the formation system, each spacecraft Si (with
i = 1, 2, . . . , N) is characterized by a vertex, while the exchanged information data between any pair of
vertices is represented by an edge. In particular, each spacecraft Si is assumed to have access to the nominal
halo orbit, whose Fourier series-based approximate solution is given by Eqs. (10)–(12).

Keeping multiple spacecraft in a formation around the collinear L2 point requires continuous active con-
trols, that is, a continuous propulsive acceleration. It is assumed throughout the paper that each spacecraft
in formation is equipped with a low-thrust electric propulsion system. Denoting with f i , [fxi, fyi, fzi]

T

the control thrust and mi the mass of Si, Eqs. (1)–(2) become

r̈i + C ṙi + di = f i/mi (14)

where matrix C is given by Eq. (7), and di is a vector defined as

di ,



(1− µ) (xi + µ)

r3SSi

+
µ (xi + µ− 1)

r3ESi

− xi
(1− µ) yi
r3SSi

+
µ yi
r3ESi

− yi
(1− µ) zi
r3SSi

+
µ zi
r3ESi

 (15)

The distributed coordination control laws formulated on Eq. (14) is designed in such a way that each
spacecraft in the formation tracks the desired trajectory, while maintaining synchronization during the
maneuver. Let r?i and ṙ?i denote the desired position and velocity of Si, respectively, and introduce the
position error ei , ri−r?i , and the velocity error ėi , ṙi−ṙ?i . The goal of the consensus-based controller is to
solve the distributed formation tracking problem and to achieve a time-balanced transition, i.e. ei → ej → 0
and ėi → ėj → 0.

In the following analysis, two typical cases will be discussed in detail, where the distributed adaptive
formation control schemes are developed to account for unmeasurable velocities and mass uncertainties,
respectively.

3.1. Adaptive synchronization without velocity measurement

Since velocity measurements are usually less accurate and more expensive than position measurements,
it is meaningful to first analyze a case in which the velocity information of the neighboring spacecraft is not
available. Accordingly, a passive filter is introduced into the feedback control law to remove the need for
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the neighbors’ velocity [24], viz.

ξ̇i = Ψ ξi + λvi ei + κ

N∑
j=1

gij (ei − ej) (16)

ζi = Γ

Ψ ξi + λvi ei + κ

N∑
j=1

gij (ei − ej)

 (17)

f i = mi

r̈?i + C ṙ?i + di − λpi ei −
N∑
j=1

gij (ei − ej)− ζi

 (18)

where {λpi , λvi , κ} ∈ R+, {ξi, ζi} ∈ R3, Ψ is a Hurwitz matrix, Γ = ΓT ∈ R3×3 is the positive-definite
solution to the Lyapunov equation ΨT Γ + Γ Ψ = −Θ, with Θ = ΘT is positive-definite. Note that λpi , λvi ,
κ, Ψ, and Γ are all control parameters that must be selected with a trial and error procedure, as is discussed
in the succeeding case study. Also recall that no velocity terms of the neighboring spacecraft are involved.

Theorem 1: Using the adaptive control law of Eqs. (16)–(18) for the system represented by Eq. (14),
synchronized formation tracking is achieved, that is, ei → ej → 0 and ėi → ėj → 0 as t→ +∞.

Proof: Consider the candidate Lyapunov function

V =
1

2

N∑
i=1

λpi e
T

i ei +
1

2

N∑
i=1

ėT

i ėi +
1

4

N∑
i=1

N∑
j=1

gij (ei − ej)T
(ei − ej) +

1

2
ξ̇

T
(
L̃⊗ I3

)−1
(IN ⊗ Γ) ξ̇ (19)

where ⊗ denotes the Kronecker product, ξ , [ξT

1 , . . . , ξ
T

N ]
T
, L̃ , κL + diag {λv1, . . . , λvN}, and IN is an

identity matrix of size N . Since the Laplacian matrix L is symmetric positive semi-definite, it follows that
L̃ is symmetric positive definite, and so is L̃−1. The derivative of the candidate Lyapunov function V can
be written as

V̇ =

N∑
i=1

λpi ė
T

i ei +

N∑
i=1

ėT

i

−C ėi − λpi ei − N∑
j=1

gij (ei − ej)− ζi

+
1

2

N∑
i=1

N∑
j=1

gij (ėi − ėj)T
(ei − ej)

+
1

2
ξ̈

T
(
L̃⊗ I3

)−1
(IN ⊗ Γ) ξ̇ +

1

2
ξ̇

T
(
L̃⊗ I3

)−1
(IN ⊗ Γ) ξ̈

(20)

Recalling that gij = gji, it follows that

N∑
i=1

N∑
j=1

ėT

i gij (ei − ej) =
1

2

N∑
i=1

N∑
j=1

ėT

i gij (ei − ej) +
1

2

N∑
j=1

N∑
i=1

ėT

j gji (ej − ei)

=
1

2

N∑
i=1

N∑
j=1

gij (ėi − ėj)T
(ei − ej)

(21)

Note that Eq. (16) can be equivalently rewritten in the form

ξ̇ = (IN ⊗Ψ) ξ +
(
L̃⊗ I3

)
e (22)

where e , [eT
1 , . . . , e

T

N ]
T
. Therefore, the time-derivative of V is

V̇ = −ėT (IN ⊗ Γ) ξ̇ +
1

2

[
(IN ⊗Ψ) ξ̇ +

(
L̃⊗ I3

)
ė
]T (

L̃⊗ I3
)−1

(IN ⊗ Γ) ξ̇

+
1

2
ξ̇

T
(
L̃⊗ I3

)−1
(IN ⊗ Γ)

[
(IN ⊗Ψ) ξ̇ +

(
L̃⊗ I3

)
ė
]

=
1

2
ξ̇

T
(
L̃⊗ I3

)−1
[IN ⊗ (ΨT Γ + Γ Ψ)]

T
ξ̇

= −1

2
ξ̇

T
(
L̃−1 ⊗Θ

)
ξ̇ ≤ 0

(23)
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Note that V > 0 and V̇ ≤ 0, therefore {ei, ėi, (ei−ej), ξ̇} ∈ L∞. Since Ψ is a Hurwitz matrix, it can be

concluded from Eq. (22) that ξ̈ ∈ L∞. It can also be verified that V̈ ∈ L∞ and V̇ is uniformly continuous.
Using the Barbalat’s lemma [25], V̇ → 0 as t → +∞, and hence according to Eq. (23), ξ̇ → 0. From
Eq. (22),

...
ξ ∈ L∞, and hence ξ̈ is uniformly continuous. Using the Barbalat’s lemma again, ξ̈ → 0. Bearing

in mind Eq. (22) and the fact that
{
ξ̇, ξ̈

}
→ 0, therefore ė → 0, which further leads to ėi → ėj → 0 by

taking the derivative of Eq. (16). From the closed-loop dynamic equation, that is, by substituting Eq. (18)
into Eq. (14), it may be also concluded that ei → ej → 0. This completes the proof.

3.2. Adaptive synchronization without mass measurement

For spacecraft equipped with a conventional continuous-thrust propulsion system (as the solar electric
thruster), the mass varies with time due to propellant consumption, and often cannot be precisely mea-
sured. In that case, it is useful to present an adaptive synchronization algorithm that accounts for mass
uncertainties. To proceed, let m̃i denote the estimated mass of Si, and introduce the two auxiliary variables

εi , ėi + β ei, χi , ṙ
?
i − β ei (24)

where β ∈ R+. Paralleling the approach in Ref. [26], a suitable distributed control law is proposed in the
form

f i = m̃i σi − ηi εi +

N∑
j=1

gij (εj − εi) (25)

where ηi ∈ R+, and
σi , χ̇i + Cχi + di (26)

Note that Eq. (25) only contains the estimated rather than the actual spacecraft mass information. The
updating law for mass estimation m̃i is given by

˙̃mi = −γi εTi σi (27)

with γi ∈ R+. Substituting Eqs. (24)–(27) into Eq. (14) yields

ε̇i = −
(
C +

ηi
mi

I3
)
εi +

(
m̃i

mi
− 1

)
σi +

1

mi

N∑
j=1

gij (εj − εi) (28)

Theorem 2: Using the adaptive control law of Eqs. (24)–(27) for the system described by Eq. (14),
synchronized formation tracking is achieved, that is, ei → ej → 0 and ėi → ėj → 0 as t→ +∞.

Proof: Consider the candidate Lyapunov function

V =
1

2

N∑
i=1

mi ε
T

i εi +
1

2

N∑
i=1

(m̃i −mi)
2

γi
(29)

Substituting Eq. (28) into Eq. (29), the time-derivative of V turns out to be

V̇ =
N∑
i=1

εTi

−mi C εi − ηi εi + (m̃i −mi) σi +

N∑
j=1

gij (εj − εi)

+

N∑
i=1

(m̃i −mi) ˙̃mi

γi
(30)

Bearing in mind that matrix C is skew symmetric, and taking into account the equality

N∑
i=1

N∑
j=1

gij ε
T

i (εj − εi) = −1

2

N∑
i=1

N∑
j=1

gij ‖εi − εj‖2 (31)

Equation (30) can be rewritten in more compact form as

V̇ = −
N∑
i=1

ηi ‖εi‖2 −
1

2

N∑
i=1

N∑
j=1

gij ‖εi − εj‖2 ≤ 0 (32)

Paralleling the convergence analysis procedure discussed in the last section, it may be concluded that ei →
ej → 0, and ėi → ėj → 0.
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4. Case study

To illustrate the performance of the proposed distributed adaptive synchronization control laws, a for-
mation mission scenario consisting of three spacecraft around a halo orbit centered at (Sun-Earth system)
L2 point is now discussed. In particular, the three spacecraft in the formation are assumed to have a mass
m1 ≡ m2 ≡ m3 , 100 kg. The nominal halo orbit is parameterized using an 8th-order Fourier series, as is
discussed before, while the spacecraft trajectories relative to the halo orbit, follow a projected circular orbit
with a radius of 10 km.

In the reference frame T , the desired trajectory of spacecraft Si is given by

r?i = rh + ρ?i , ṙ?i = ṙh + ρ̇?i (33)

where the vectors rh and ṙh are obtained from Eqs. (10)–(12), and the algebraic representation of the
spacecraft relative orbit is given by

ρ?i = [0, 10 cos (nr t+ φi) , 10 sin (nr t+ φi)]
T

km (34)

where the phase angle is φi = 2 (i− 1) π/3, and the angular velocity of the relative orbit is nr = ω. Note
that the relative orbit is synchronous (i.e. nr = ω) with the rotating frame T , otherwise additional propellant
consumption would be expected to maintain the relative motion.

The information exchange topology that characterizes the data transmission of the three spacecraft is
illustrated in Fig. 4, and the adjacency matrix G is given by

G =

0 1 1
1 0 1
1 1 0

 (35)

The initial conditions of the three spacecraft are assumed slightly different from the desired trajectories,
with the value of initial errors e0 = [ex0

, ey0
, ez0 ]

T
, and ė0 = [ėx0

, ėy0
, ėz0 ]

T
reassumed in Tab. 2.

4.1. Case without velocity measurement

Consider first the case where the neighbors velocity information is not available. The selection of the
control gains is a tradeoff solution between convergence time and propellant consumption. After a trial and
error procedure, the set of values to be used in Eqs. (16)–(18) is chosen to be λpi = λvi = 108, κ = 10−2,
Γ = 200 I3, and Ψ = −200 I3.

The position and velocity errors of the three spacecraft are shown in Figs. 5 and 6, for a time interval of
4 days. The time histories of the intermediate variables ‖ξi‖ are given by Fig. 7, with a random initialization
ξi0 = 0. The instantaneous relative motion geometry of the formation at t = {0, 1, 2} day are illustrated
in Fig. 8, in which the stars represent the desired positions of each spacecraft while the circles, squares
and diamonds denote their actual positions. It can be clearly seen from the figures that with the control
law given by Eqs. (16)–(18), all the spacecraft successfully track the desired projected circular orbit, while
synchronization is maintained during transition.

Let ui , f i/mi denote the propulsive (control) accelerations of Si, whose components along radial,
circumferential and normal directions are shown in Fig. 9. Note that the maximum thrust modulus is on the
order of 10−3 N, which is a typical value for an electric propulsion system. The propellant required by each
spacecraft for formation keeping can be calculated by integrating the magnitude of the control acceleration
as

∆vi =

∫ tf

0

‖ui‖ dt (36)

where tf is the final time. For example, for a mission time of one year, that is, when tf = 365.26 days, the
total velocity variations required to maintain the formation are evaluated as ∆v1 = 1.57 m/s, ∆v2 = 1.57 m/s,
∆v3 = 1.58 m/s, respectively. Note that the maximum difference in velocity change among the formation is
less than 0.37%, indicating a propellant-balanced formation that is very useful for mission lifetime extension.

Since the nominal halo orbit is parameterized by the Fourier series with a truncated order, a natural
question that arises is how much the series order affects the propellant consumption. In order to investigate
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this point, the total velocity variation for each spacecraft within one year is reported in Fig. 10, while
the series are retained at different orders. As expected, in the presence of the initial errors (see Tab. 2),
the propellant required for formation maintenance decreases as the order n of the Fourier series increases.
However, this improvement gradually becomes negligible when n ≥ 7.

4.2. Case of mass uncertainties

Consider now the case in which the spacecraft mass cannot be precisely measured. The control parameters
(see Eqs. (24)–(27)) used in the simulation are selected as β = 2.632 × 102, γi = 1, ηi = 1.316 × 108, and
the initial mass estimation is m̃i0 = 50 kg.

Given the same initial errors as those listed in Tab. 2, the position and velocity errors of the three
spacecraft with control law given by Eqs. (24)–(27) are shown in Figs. 11 and 12, for a time interval of
2 days. The relative motion geometry of the formation at t = {0, 0.5, 1} day are illustrated in Fig. 13, while
the curves of control accelerations are illustrated in Fig. 14. By propagating the orbit for one year, the total
amount of velocity variation for each spacecraft is about ∆v1 ' ∆v2 ' ∆v3 = 2.14 m/s, while the effect of
the Fourier series order of the nominal halo orbit is emphasized in Fig. 15.

Note from Figs. 11–15 that, even in the absence of accurate mass information, all the steady state errors
of the three spacecraft still converge to zero (after about one day) while the property of synchronization is
maintained along the whole transient motion. Therefore it can be concluded that the control law given by
Eqs. (24)–(27) results in a both time-balanced and propellant-balanced formation maneuver.

5. Conclusions

In this paper, the problem of multiple spacecraft formation flying around collinear Lagrange point orbits
has been analyzed. A differential correction method has been adopted to obtain the nominal trajectory,
while truncated Fourier series have been used to obtain an explicit approximation.

Based on the analytical expression of the nominal trajectory that serves as a reference for formation
control design, two distributed adaptive synchronization schemes have been proposed to account for cases in
which either a lack of velocity information, or a mass uncertainty exists. In particular, the developed cooper-
ative algorithms rely on a protocol that drives each spacecraft to a desired trajectory, by incorporating every
available neighbor-to-neighbor information flow among the formation system so as to reach synchronization
in an asymptotic way.

Illustrative examples have shown that the Fourier series-based description is a useful tool for modeling the
nominal orbit, and that less control effort is demanded when the series are retained at higher orders. With
the inclusion of the shared data couplings among local neighbors, a time-balanced and propellant-balanced
formation is guaranteed, and the system robustness is also enhanced.
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keep satellite in formation around triangular libration point in the restricted Sun-Earth-Moon scenario, Advances in Space
Research 56 (7) (2015) 1502–1518, doi: 10.1016/j.asr.2015.07.001.

[17] D. L. Richardson, Analytic construction of periodic orbits about the collinear points, Celestial Mechanics and Dynamical
Astronomy 22 (3) (1980) 241–253, doi: 10.1007/BF01229511.

[18] K. Shahid, K. D. Kumar, Multiple spacecraft formation reconfiguration using solar radiation pressure, Acta Astronautica
103 (2014) 269–281, doi: 10.1016/j.actaastro.2014.05.021.

[19] Y. Akiyama, M. Bando, S. Hokamoto, Station-keeping and formation flying for periodic orbit around Lagrangian points
by Fourier series, in: 25th International Symposium on Space Flight Dynamics, Munich, Germany, 2015.

[20] H. Wong, V. Kapila, Spacecraft formation flying near Sun-Earth L2 Lagrange point: trajectory generation and adaptive
output feedback control, in: American Control Conference, IEEE, Portland, OR, USA, 2005, pp. 2411–2418.

[21] D. A. Dei Tos, F. Topputo, Trajectory refinement of three-body orbits in the real solar system model, Advances in Space
Research 59 (8) (2017) 2117–2132, doi: 10.1016/j.asr.2017.01.039.

[22] S.-J. Chung, U. Ahsun, J.-J. E. Slotine, Application of synchronization to formation flying spacecraft: Lagrangian ap-
proach, Journal of Guidance, Control, and Dynamics 32 (2) (2009) 512–526, doi: 10.2514/1.37261.

[23] D. Spielman, Spectral graph theory, in: U. Naumann, O. Schenk (Eds.), Combinatorial Scientific Computing, Chapman
and Hall/CRC, 2012, Ch. 18, pp. 495–500.

[24] W. Ren, Distributed leaderless consensus algorithms for networked Euler-Lagrange systems, International Journal of
Control 82 (11) (2009) 2137–2149, doi: 10.1080/00207170902948027.

[25] J. E. Slotine, W. Li, Applied nonlinear control, NJ: Prentice-Hall, New York, 1991, pp. 124–128.
[26] E. Nuno, R. Ortega, L. Basanez, D. Hill, Synchronization of networks of nonidentical Euler-Lagrange systems with

uncertain parameters and communication delays, IEEE Transactions on Automatic Control 56 (4) (2011) 935–941, doi:
10.1109/TAC.2010.2103415.

11



List of Tables

1 Coefficients of the 8th-order Fourier series approximation (T = 180.36 days). . . . . . . . . . . 13
2 Initial position and velocity errors of three spacecraft. . . . . . . . . . . . . . . . . . . . . . . 14

12



Table 1: Coefficients of the 8th-order Fourier series approximation (T = 180.36 days).

i aci asi bci bsi cci csi
0 1.0097 0 1.6985× 10−8 0 −1.8909× 10−5 0
1 −1.4555× 10−3 1.0417× 10−7 2.4892× 10−7 4.5588× 10−3 1.1177× 10−4 4.8909× 10−8

2 1.8093× 10−4 −2.0240× 10−8 1.1741× 10−8 9.5222× 10−5 5.9824× 10−6 −5.6710× 10−8

3 2.2100× 10−5 −1.7654× 10−9 −1.4157× 10−9 2.4015× 10−5 9.1473× 10−7 1.7828× 10−8

4 4.6074× 10−6 5.2872× 10−9 −5.0973× 10−9 4.0751× 10−6 1.6450× 10−7 2.0573× 10−9

5 9.1021× 10−7 −6.7798× 10−9 1.1295× 10−9 8.3572× 10−7 2.1952× 10−8 4.1663× 10−9

6 1.9335× 10−7 −6.5334× 10−9 −2.2253× 10−9 1.4869× 10−7 1.9576× 10−10 3.2409× 10−9

7 3.7976× 10−8 −6.5490× 10−9 −2.5135× 10−9 8.8204× 10−9 3.8894× 10−9 −1.8873× 10−9

8 3.8181× 10−9 −6.5361× 10−9 −2.5553× 10−9 −5.9304× 10−9 2.6225× 10−9 2.2214× 10−9
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Table 2: Initial position and velocity errors of three spacecraft.

ex0
[km] ey0

[km] ez0 [km] ėx0
[m/s] ėy0

[m/s] ėz0 [m/s]
S1 1 −2 2 0 0 0
S2 2 −2 −1 0 0 0
S3 −2 2 1 0 0 0
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Figure 5: Position errors without velocity measurement.
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Figure 6: Velocity errors without velocity measurement.
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Figure 8: Relative trajectories of the three spacecraft without velocity measurement.
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Figure 9: Propulsive (control) accelerations without velocity measurement.
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Figure 11: Position errors in the case of mass uncertainties.
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Figure 12: Velocity errors in the case of mass uncertainties.
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Figure 13: Relative trajectories of the three spacecraft in the case of mass uncertainties.
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Figure 14: Propulsive (control) accelerations in the case of mass uncertainties.
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