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Abstract Natural disasters, as well as human-made
disasters, can have a deep impact on wide geographic
areas, and emergency responders can benefit from the
early estimation of emergency consequences. This work
presents CrisMap, a Big Data crisis mapping system
capable of quickly collecting and analyzing social me-
dia data. CrisMap extracts potential crisis-related ac-
tionable information from tweets by adopting a classi-
fication technique based on word embeddings and by
exploiting a combination of readily-available seman-
tic annotators to geoparse tweets. The enriched tweets
are then visualized in customizable, Web-based dash-
boards, also leveraging ad-hoc quantitative visualiza-
tions like choropleth maps. The maps produced by our
system help to estimate the impact of the emergency
in its early phases, to identify areas that have been
severely struck, and to acquire a greater situational
awareness. We extensively benchmark the performance
of our system on two Italian natural disasters by vali-
dating our maps against authoritative data. Finally, we
perform a qualitative case-study on a recent devastat-
ing earthquake occurred in Central Italy.
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1 Introduction

Computational solutions capable of overcoming soci-
etal sustainability challenges have always been looked
at with great interest from both Academia and prac-
titioners [Wang2014]. In recent years, one of the
fields that has attracted more attention is the one re-
lated to the exploitation of user-generated information
for disaster management [Avvenuti2016framework].
Within this context, Social Media (SM) data revealed
to be particularly valuable in the aftermath of those
events, typically natural and human-made disasters,
which trigger massive participation of a↵ected commu-
nities in sharing time-sensitive and actionable informa-
tion [Gao2011, Avvenuti2016predictability]. Both
types of disasters require a timely intervention by emer-
gency responders, who are in charge of providing sup-
port and relief to the a↵ected population. In many prac-
tical situations, the scarcity of key resources – tempo-
ral, economic, and human resources above all – imposes
dire limitations to the extent and the e↵ectiveness of the
emergency management process. For this reason, tools
capable of supporting resource allocation and prioriti-
zation can have a significant impact towards the e↵ec-
tiveness of emergency management operations. Among
these tools, there are the SM-based crisis mapping sys-
tems, which increase situational awareness by enabling
the real-time gathering and visualization of data con-
tributed by many SM users. Such type of system is a
platform able to collect text and multimedia content
from a variety of sources, such as Twitter and Face-
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book, to analyze and aggregate collected data, and to
visualize relevant facts on a map. Notably, during many
recent disasters, civil protection agencies developed and
maintained live Web-based crisis maps to help visualize
and track stricken locations, assess damage, and coor-
dinate rescue e↵orts [Middleton2014].

Indeed, recent work demonstrated the possibility to
create crisis maps solely using geolocated data from SM,
to understand better and monitor the unfolding conse-
quences of disasters [Goolsby2010, Middleton2014,
Avvenuti2016impromptu]. All these SM-based cri-
sis mapping systems face the fundamental challenge of
geoparsing the textual content of emergency reports
to extract mentions of places/locations, thus increasing
the number of messages to exploit. Geoparsing involves
binding a textual document to a likely geographic
location which is mentioned in the document itself.
State-of-the-art systems, such as [Middleton2014],
perform the geoparsing task by resorting to a num-
ber of preloaded geographic resources containing all
the possible matches between a set of place names (to-
ponyms) and their geographic coordinates. This ap-
proach requires an o✏ine phase where the system is
specifically set to work in a geographically-limited re-
gion. Indeed, it would be practically infeasible to load
associations between toponyms and coordinates for a
vast area or a whole country. Moreover, not all geolo-
cated data is useful towards understanding the sever-
ity of the emergency and, indeed, only a small frac-
tion of messages convey information about the conse-
quences of the emergency on communities and infras-
tructures. Current crisis mapping systems typically de-
tect the most stricken areas by considering the num-
ber of messages shared and by following the assump-
tion that more emergency reports equal to more dam-
age [Weber2014, Middleton2014]. Although this re-
lation exists when considering densely and uniformly
populated areas [Liang2013], it becomes gradually
weaker when considering broader regions or rural ar-
eas. These challenges, related to the detection of dam-
age and geoparsing, are reflected by the current limita-
tions of state-of-the-art SM-based crisis mapping sys-
tems [Avvenuti2016impromptu].

Here, we propose solutions to overcome the main
drawbacks of current state-of-the-art crisis mapping
systems. Our proposed system exploits both situa-
tional assessments and position information contained
in textual data produced during an emergency. One
interesting novelty of our approach is the analysis of
emergency-related tweets from a twofold perspective:
(i) a damage detection component exploits word em-
beddings and a SVM classifier to detect messages re-
porting damage to infrastructures or injuries to the

population; (ii) a message geolocation component per-
forms the geoparsing task by exploiting online seman-
tic annotation tools and collaborative knowledge-bases
such as Wikipedia and DBpedia. Information extracted
by the damage detection and the message geolocation
components are combined to produce interactive, Web-
based crisis maps.

Contributions.We describe CrisMap: a system ca-
pable of producing crisis maps in the aftermath of mass
emergencies by simultaneously adopting word embed-
dings for tweet filtering and classification, and by ex-
ploiting semantic annotators for tweet geoparsing. In
particular:

– we propose an architectural solution for crisis map-
ping, based on scalable and resilient Big Data tech-
nologies;

– we address the problem of damage detection in SM
messages;

– we compare a damage detection approach based on
natural language processing (NLP) versus one based
on word embeddings (WE), highlighting the advan-
tages of WE towards language independence and
fast processing;

– we propose and benchmark a geoparsing technique
based on readily-available semantic annotators;

– we validate the reliability of the crisis maps gener-
ated by our system against authoritative data for
two past emergencies;

– we perform a qualitative case-study on a recent se-
vere earthquake in Italy.

The deployment of our proposed CrisMap system can
help to quickly map damage scenarios to concentrate
rescue e↵orts and organize a prompt emergency re-
sponse.

2 Related Works

The possibility to exploit social media data for
crisis mapping has been first envisioned in a
few trailblazing works [Goolsby2010, Gao2011,
Meier2012] and further backed up by recent re-
search [Avvenuti2016predictability]. Since the early
works, there has been a growing interest by both prac-
titioners and scholars in all areas related to crisis map-
ping: from data acquisition and management to analysis
and visualization [Avvenuti2016impromptu].

2.1 Practical experiences

The great interest of practitioners and emergency re-
sponders towards the exploitation of SM data is tes-
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tified by the e↵orts of the Federal Emergency Man-
agement Agency (FEMA) and the United States Geo-
logical Survey (USGS), which already led to interest-
ing results with practical applications to earthquake
emergency management1 [Burks2014, Earle2012].
Regarding already deployed applications, well-known
crisis mapping platforms are Ushahidi2, Mapbox3,
Google’s Crisis Map4, ESRI ArcGIS5, and CrisisCom-
mons6 [Bauduy2010]. The main features of these
platforms are related to data acquisition, data fu-
sion, and data visualization. Such platforms repre-
sent hybrid crowdsensing systems where users can vol-
untarily load data onto the system in a participa-
tory way, or the system can be configured to auto-
matically perform data acquisition opportunistically.
The same hybrid data collection strategy has also
been employed in a fully automatic system recently
benchmarked in the earthquake emergency manage-
ment field [Avvenuti2017]. Another already-deployed
application that exploits crowdsourced data is USGS’s
“Did You Feel It?” (DYFI) system7. This system, al-
though not relying on SM data, exploits citizen reports
and responses to earthquakes to automatically assess
potential damage. It is foreseeable that in the near fu-
ture such system could instead be fed with SM data. In-
deed, there is already interesting research – from both
USGS itself and other laboratories – moving towards
this direction [Guy2014, Avvenuti2016nowcasting,
Kryvasheyeu2016, Kropivnitskaya2017].

2.2 Academic works

Recent scientific literature has instead switched the
focus from data acquisition and data fusion to in-
depth data analysis. This is typically done by lever-
aging powerful machine learning techniques and re-
sulted in novel solutions being proposed to overcome
critical crisis mapping challenges such as geopars-
ing and extracting situational awareness from micro-
texts [Cresci2015wise].

Specifically, [Middleton2014] presents a state-of-
the-art system that matches preloaded location data for
areas at risk to geoparse real-time tweet data streams.
The system has been tested with data collected in the

1
https://blog.twitter.com/2014/using-twitter-to-

measure-earthquake-impact-in-almost-real-time

2
https://www.ushahidi.com/

3
https://www.mapbox.com/

4
https://www.google.org/crisismap/

5
http://www.esri.com/arcgis/

6
https://crisiscommons.org/

7
http://earthquake.usgs.gov/research/dyfi/

aftermath of New York’s flooding (US – 2012) and Ok-
lahoma’s tornado (US – 2013) and achieved promising
results. Among the key features of [Middleton2014] is
the possibility to match toponyms at region-, street-, or
place-level. This step is achieved by preloading already
existing geographic databases (e.g., the Geonames and
GEOnet Names global gazetteers) for areas at risk, into
the system. Crisis maps are then generated by compar-
ing the volume of tweets that mention specific locations
with a statistical baseline. Although presenting state-
of-the-art solutions, [Middleton2014] still has several
drawbacks. The system can only work on a specific geo-
graphical area at a time since it has to load and manage
external data for that area. Tweets mentioning loca-
tions outside the predefined area cannot be geolocated
and consequently disasters cannot be monitored out-
side the area’s boundaries. Moreover, the width of the
area covered by the system has direct implications on
the amount of data to load and manage. This impacts
on system’s performances thus resulting in limitations
on the maximum geographical area that can be mon-
itored with [Middleton2014]. Furthermore, the sys-
tem in [Middleton2014] does not take into account
the problem of toponymic polysemy [Cresci2015wise,
Avvenuti2016impromptu]. In addition, crisis maps
generated by [Middleton2014] only consider tweet
volumes and may result less accurate than those ob-
tained by analyzing the content of tweets. For ex-
ample in the case of severe earthquakes, where the
shaking is also perceived hundreds of kilometers far
from the epicenter, the majority of tweets comes from
densely populated areas, such as big cities. Regard-
less, locations that have su↵ered most of the dam-
age might be small villages in rural areas around the
epicenter, which risk remaining unnoticed if the anal-
ysis only considers tweet volumes [Cresci2015wise,
Avvenuti2016impromptu].

In addition to the fully functional crisis
mapping system described above, other solu-
tions for the geoparsing task have been recently
proposed in [Gelernter2011, Gelernter2013,
Deoliveira2015] where authors experimented with
heuristics, open-source named entity recognition soft-
ware, and machine learning techniques. Furthermore,
other works emphasized the extraction of actionable
and time-sensitive information from messages. For
instance, authors of [Verma2011] apply natural
language processing techniques to detect messages
carrying relevant information for situational awareness
during emergencies. In [Imran2013] is described a
technique to extract “information nuggets” from tweets
– that is, self-contained information items relevant
to disaster response. While these works present fully

https://blog.twitter.com/2014/using-twitter-to-measure-earthquake-impact-in-almost-real-time
https://blog.twitter.com/2014/using-twitter-to-measure-earthquake-impact-in-almost-real-time
https://www.ushahidi.com/
https://www.mapbox.com/
https://www.google.org/crisismap/
http://www.esri.com/arcgis/
https://crisiscommons.org/
http://earthquake.usgs.gov/research/dyfi/
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automatic means to extract knowledge from texts,
in [Vieweg2014] is proposed a hybrid approach
exploiting both human and machine computation
to classify messages. All these linguistic analysis
techniques for the extraction of relevant information
from disaster-related messages have however never
been employed in a crisis mapping system.

Although these works are limited in scope to analy-
ses of textual data, other e↵orts were recently devoted
to the exploitation of multimedia content for emergency
response. Aerial photographs and imagery have been
widely adopted in monitoring tasks of areas involved
in emergencies. This operation can be performed us-
ing vehicles, drones, and satellites [Lewis2007] and
when such content is coupled with geographic and tem-
poral information, it provides actionable information
[Dashti2014]. Also images coming from SM can be ex-
ploited to train classifiers to recognize potential critical
situations and get more knowledge about emergencies,
as shown in [Liang2013, Lagerstrom2016]. How-
ever, messages related to emergencies could potentially
contain false information and rumors, which may al-
ter analyses [Cheong2011Social]. Similarly to textual
data, also multimedia data can be faked, and such con-
tent can spread rapidly through Twitter [Gupta2013].
Fortunately, fake multimedia content is represents a mi-
nority of all multimedia content published in the after-
math of emergencies, and machine learning algorithms
have been shown to be capable of characterizing bogus
messages[dewan2017towards] in order to filter them
out [Gupta2013b].

To conclude, we highlight that a recent survey pre-
sented an extensive review of current literature in the
broad field of SM emergency management and can be
considered for additional references [Imran2015].

3 System architecture

The software architecture of our crisis mapping sys-
tem is presented in Figure ??. As with any system that
needs to cope with the massive amount of data collected
from social networks, special requirements are imposed
in the design by both the real-time constraints and the
heterogeneity of data. For these reasons, our CrisMap

system deploys several Big Data technologies to pro-
cess incoming SM data e�ciently, without sacrificing
scalability and fault-tolerance.

The functional workflow is divided into three logical
steps: (i) Data Ingestion and Enrichment (labelled with
a blue circle), where SM data is collected and processed
in order to select and geoparse messages containing in-
formation about damages; (ii) Data Indexing (labelled
with a red circle), in which useful data is conditioned

and saved into the internal storage; (iii) Data Visualiza-
tion (labelled with a green circle), in which stored data
is retrieved and used to create maps or, more gener-
ally, to provide results to the end users through a Web
dashboard.

In the following, we give an overall description of
the functionalities of each of these steps. A detailed
technical description and evaluation of the solutions we
adopted and implemented to address the main issues re-
lated to the design of a crisis mapping system, namely
mining messages to search for damage, geoparsing and
visualize data, are given in Sections ??, ?? and ??, re-
spectively.

3.1 Data Ingestion and Enrichment

The first logical step of the system consists into in-
gesting data coming from available SM data sources,
possibly enriching it with additional information not di-
rectly available from the data source and which can pro-
vide useful information exploitable subsequently dur-
ing the visualization phase. Data ingestion occurs us-
ing platform-specific crawling/scraping software. For
the sake of simplicity, in this work we focused our at-
tention on Twitter solely. However, nothing prevents
the adopter to deploy the system using a di↵erent data
source.

Our system is able to process both real-time data
fetched from the Twitter stream and historical data
acquired from data resellers. In a practical applica-
tion scenario, the system is fed with real-time data,
while historical data can be used to run simulations
on past emergency events. The Crawler component ex-
ploits Twitter’s Streaming API8 to perform data ac-
quisition from the social network. The Streaming API
gives low latency access to Twitter’s global stream of
messages. Collected messages can be optionally filtered
using search keywords.

Collected messages are then forwarded to the Pro-
cessing layer through a specific queue (named “Pro-
cessing”) placed at the Broker layer. Our implemen-
tation choice fell on Kafka9, a distributed publish-
subscribe messaging platform. As described on the web-
site, Kafka “is used for building real-time data pipelines
and streaming apps. It is horizontally scalable, fault-
tolerant, wicked fast, and runs in production in thou-
sands of companies”. Its characteristics help the system
to sustain very high tra�c rates by mitigating the back-
pressure data problem [Backpressure] and to process

8
https://developer.twitter.com/en/docs/tweets/filter-

realtime/overview

9
https://kafka.apache.org

https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://kafka.apache.org
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Fig. 1 The logical architecture of our crisis mapping system. On the left-hand side, the architecture is organized in a stack of
layers: from the topmost data source and application layers of our system to the broker, processing, and data layers. On the
right-hand side, for each layer are reported the technologies adopted to design and implement the components of the system.

data resiliently, with no loss in case of system failures
(e.g., hardware faults).

SM messages are fetched from the Processing queue
and processed by an enrichment component called
DataEnricher. As depicted in the figure, the DataEn-

richer is organized internally into a pipeline of three
sub-modules that process, filter, and enrich incoming
data. The ContentFiltering sub-module analyzes the
tweets to select those that are relevant to the prob-
lem (e.g., whose contents relate to natural disasters).
Relevant tweets are then analyzed by the DamageDe-

tector sub-module, which in turn discriminates between
data carrying or not carrying damage information. The
tweets containing damage information are finally for-
warded to the GeoParsing sub-module, which possibly
enriches each tweet with information about the discov-
ered geolocation. Upon completion of the pipeline, the
enriched SM messages are pushed into another queue,
the Indexing queue, waiting to be indexed and stored

into the system. The DataEnricher is implemented us-
ing Spark10 and uses a streaming approach to process
incoming data from the Processing queue quickly.

3.2 Data Indexing

In the second step, enriched data is moved from the
DataEnricher to a permanent storage through the In-

dexing queue. Data fetched from the queue is instan-
taneously parsed and pushed into a search and ana-
lytics engine. The choice of Elasticsearch11 (ES) was
driven by its capability to scale horizontally, as well as
to perform fast search and aggregation on textual data
leveraging its internal Apache Lucene12 engine. In fact,
the integration of ES with other software like Kibana

10
http://spark.apache.org

11
https://www.elastic.co/products/elasticsearch

12
https://lucene.apache.org/

http://spark.apache.org
https://www.elastic.co/products/elasticsearch
https://lucene.apache.org/
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and Logstash makes it a valid solution for the storage
system.

The role of the Indexer module is to map the data
structure of a Twitter message into an optimized ES in-
dex. Each field type is treated di↵erently to exploit the
features of the engine to provide fast search and real-
time analytics on stored data (e.g., ES tokenizes textual
fields and provides an inverted terms list to search for
in the related fields e�ciently).

3.3 Data Visualization

In the third step, data stored in the index can be
browsed and queried through the Kibana13 software.
Kibana is an open source visualization tool, part of
the ELK stack 14 provided by Elasticsearch company.
Kibana software provided a Web GUI to access Elas-
ticsearch data without manually writing queries. With
Kibana, it is possible to build real-time visualizations
with handy insights, like real-time volumes, maps, bar
charts and word clouds. Those visualizations can also
be joined to build complex dashboards that allow the
user to track changes over time for the most impor-
tant metrics of the dataset. Moreover, Kibana supports
the possibility to easily extend the internal visualiza-
tion types to customize graphical views using the most
appropriate visual analytics for data. For our purposes,
we developed a plugin to replace the native visualiza-
tion maps. The new plugin15 supports multi-resolution
choropleth maps and the possibility of normalizing data
according to population, o↵ering di↵erent options for
what concerns the scales and their customization.

3.4 Real-time and scalability features

Considering the practical purpose of our system, we
designed and developed CrisMap with performance in
mind, keeping the architecture flexible and capable of
scaling up horizontally. To maximize our throughput,
we optimized all system’s components, starting from
the Crawler that is our data entry point. Specifically,
the Crawler does not impose any limitation on the num-
ber of tweets delivered per unit of time. In fact, the only
limitation is represented by rate limits of the Stream-
ing API, which are estimated to be around 60 tweets
per second (i.e., 1% of total Twitter tra�c). In our ex-
perience with Italian emergencies, we just witnessed to

13
https://www.elastic.co/products/kibana

14
https://www.elastic.co/products

15 The plugin is publicly available at https://github.com/

marghe943/kibanaChoroplethMap.git .

peaks of a few hundreds of tweets per minute, which is
far below the threshold.

In the sub-modules ContentFiltering and Dam-

ageDetector, the solution adopted, based on Embed-
dings representation16, has a tangible positive e↵ect on
system performance. Indeed, the classification time of a
single tweet, considering both encoding time of tweet’s
text into a vector and its prediction, is on average 0.12
milliseconds, guaranteeing the remarkable throughput
of more than 8,000 tweets per second.

With regards to the GeoParsing sub-module, the
time taken to extract geographic information from a
tweet depends on the actual implementation – that is,
on the specific semantic annotator leveraged to geop-
arse the tweet. For the sake of experimentation, we
benchmarked several well-known semantic annotators
to assess their throughput.

The fastest annotator, TagMe, specifically designed
to operate in a streaming fashion thus performing on-
the-fly annotations [Ferragina2010], is able to geop-
arse around 9 tweets per second. It is also worth noting
that our prototypical implementation of the CrisMap

system performs the geoparsing operation by querying
the RESTful Web APIs of the semantic annotators.
However, many semantic annotators are open source
and can be installed and configured to run locally (e.g.,
Dexter

17 and DBpedia Spotlight

18). Thus, in a pro-
duction environment it would be possible – and highly
advisable – to avoid Web API queries in favor of much
faster local computations.

Next in the pipeline, Elasticsearch (ES) provides
high-performance indexing operations. In fact, accord-
ing to the o�cial documentation, it is capable of index-
ing around 2,000 tweets per second 19.

Given these considerations regarding the through-
put, the bottleneck is represented by the GeoParsing

sub-module. However, these results are related to a sys-
tem deployed with the lowest possible degree of paral-
lelization. In fact, since CrisMap is based on scalable
Big Data technologies, it is possible to replicate system
components (e.g., GeoParsing) over a cluster of ma-
chines in order to achieve overall better performances.

Regarding the latency, we extensively tested the
Crawler performance in collecting a real-time stream
of ⇠30,000 tweets. Results showed an average latency
of about 0.17 seconds. The amount of time taken by the

16 See Section ?? for more details about the proposed ap-
proach.
17

https://github.com/dexter/dexter

18
https://github.com/dbpedia-spotlight/model-

quickstarter

19
https://www.elastic.co/blog/elasticsearch-

performance-indexing-2-0

https://www.elastic.co/products/kibana
https://www.elastic.co/products
https://github.com/marghe943/kibanaChoroplethMap.git
https://github.com/marghe943/kibanaChoroplethMap.git
https://github.com/dexter/dexter
https://github.com/dbpedia-spotlight/model-quickstarter
https://github.com/dbpedia-spotlight/model-quickstarter
https://www.elastic.co/blog/elasticsearch-performance-indexing-2-0
https://www.elastic.co/blog/elasticsearch-performance-indexing-2-0
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ContentFiltering and DamageDetector sub-modules to
classify a single tweet is in the order of milliseconds,
thus representing a negligible delay. TagMe instead in-
troduces a delay of 0.12 seconds per tweet, on average.
Finally, Elasticsearch takes ⇠1 second to index a docu-
ment and to make it available for search and visualiza-
tion purposes20. Thus, the total delay of the CrisMap

analysis pipeline is about 1.3 seconds, which perfectly
fits our need to produce real-time crisis maps.

Finally, some of the APIs exploited by CrisMap im-
pose usage limits on the number of calls. The main lim-
itation is related to the APIs needed for the geoparsing
operation. Such limitation depends on the specific se-
mantic annotator used for geoparsing. TagMe, hosted
within the distributed and highly scalable SoBigData

European research infrastructure21, does not impose
any limitation on the number of API calls, which in
turn, opens up the possibility to perform large-scale
and parallel analyses. In addition, many semantic an-
notators are open source and can be installed and
configured to run locally (e.g., Dexter22 and DBpedia

Spotlight

23). Indeed, local installations avoid limita-
tions in the number of API calls.

4 Datasets

The datasets used for this work are composed of tweets
in the Italian language, collected in the aftermath of 5
major natural disasters. For our experiments, we con-
sidered di↵erent kinds of disasters, both recent and his-
torical: 3 earthquakes, a flood, and a power outage.
Specifically, the L’Aquila and the Emilia datasets are
related to severe earthquakes that struck rural areas of
Italy in 200924 and 2012 respectively25. The Amatrice

dataset is related to a recent earthquake that struck
central Italy in 201626. The Sardinia dataset has been
collected in the aftermath of a flash flood occurred in
the Sardinia island in 201327. Finally, the Milan dataset
describes a power outage occurred in the metropolitan
city of Milan (northern Italy) in 2013. To investigate
a wide range of situations, we picked disasters having

20
https://www.elastic.co/guide/en/elasticsearch/

reference/6.0/tune-for-indexing-speed.html

21
http://www.sobigdata.eu/

22
https://github.com/dexter/dexter

23
https://github.com/dbpedia-spotlight/model-

quickstarter

24
https://en.wikipedia.org/wiki/2009_L’Aquila_

earthquake

25
https://en.wikipedia.org/wiki/2012_Northern_Italy_

earthquakes

26
https://en.wikipedia.org/wiki/August_2016_Central_

Italy_earthquake

27
https://en.wikipedia.org/wiki/2013_Sardinia_floods

variable degrees of severity: some caused only moderate
damage, while other produced widespread damage and
casualties.

The datasets were created by using the Twitter’s
Streaming API28 for recent disasters, and the Twitter
resellers’ Historical APIs29 (GNIP) for past disasters.
The APIs give access to a global set of tweets, option-
ally filtered by search keywords. We exploited a di↵er-
ent set of search keywords for every di↵erent disaster
to collect the most relevant tweets about it. Whenever
possible, we resorted to hashtags specifically created
to share reports of a particular disaster, such as the
#allertameteoSAR hashtag for the Sardinia dataset.
In this way, we were able to select only tweets re-
lated to that disaster. However, for historical disasters,
we could not rely on specific hashtags and had to ex-
ploit generic search keywords already proposed in liter-
ature, see [Sakaki2013, Avvenuti2014earthquake,
Avvenuti2014ears]. This is the case of the L’Aquila
dataset, for which we exploited the “terremoto” (earth-
quake) and “scossa” (tremor) Italian keywords. Also,
we only used “fresh” data shared in the aftermath of
the disasters under investigation. For instance, all the
3,170 tweets in the Emilia dataset were posted in less
than 24 hours since the earthquake occurred.

Tweets in the L’Aquila, Emilia, and Sardinia

datasets have been manually annotated for mentions of
damage according to the 3 following classes: (i) tweets
related to the disaster and carrying information about
damage to infrastructures/communities (damage); (ii)
tweets related to the disaster but not carrying relevant
information for the assessment of damage (no damage);
(iii) tweets not related to the disaster (not relevant).
The inclusion of a class for tweets that are not related
to a disaster (not relevant) is necessary because the au-
tomatic data collection strategy we adopted does not
guarantee that all the tweets collected are related to
the disaster under investigation. This aspect is espe-
cially true for the datasets collected with generic search
keywords and represents a further challenge for our clas-
sification task. The manual annotation of damage men-
tions among tweets is exploited to train and validate
our damage detection classifier, as thoroughly explained
in Section ??. Furthermore, following the same ap-
proach adopted in [Middleton2014,Gelernter2013],
we carried out an additional manual annotation of 1,900
random tweets of the aforementioned datasets with
regards to mentions of places/locations. This further
annotation is exploited to validate our geoparsing re-
sults, as described in Section ??. The Milan dataset is
also used for a comparison of geoparsing techniques in

28
https://dev.twitter.com/docs/api/streaming

29
http://gnip.com/sources/twitter/historical

https://www.elastic.co/guide/en/elasticsearch/reference/6.0/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.0/tune-for-indexing-speed.html
http://www.sobigdata.eu/
https://github.com/dexter/dexter
https://github.com/dbpedia-spotlight/model-quickstarter
https://github.com/dbpedia-spotlight/model-quickstarter
https://en.wikipedia.org/wiki/2009_L'Aquila_earthquake
https://en.wikipedia.org/wiki/2009_L'Aquila_earthquake
https://en.wikipedia.org/wiki/2012_Northern_Italy_earthquakes
https://en.wikipedia.org/wiki/2012_Northern_Italy_earthquakes
https://en.wikipedia.org/wiki/August_2016_Central_Italy_earthquake
https://en.wikipedia.org/wiki/August_2016_Central_Italy_earthquake
https://en.wikipedia.org/wiki/2013_Sardinia_floods
https://dev.twitter.com/docs/api/streaming
http://gnip.com/sources/twitter/historical
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Section ??, since it was already exploited in previous
work [Middleton2014]. The Emilia and Sardinia

datasets are also used in Section ?? to quantitatively
validate our crisis maps against authoritative data. Fi-
nally, the Amatrice dataset is exploited in Section ??

as a case study of our system in the aftermath of the
recent central Italy earthquake.

Notably, the total number of 15,825 tweets in
our datasets, shown in Table ?? along with other
details, is greater than those used in other related
works, such as [Middleton2014] (6,392 tweets across
4 datasets), and [Gelernter2011] (2,000 tweets for a
single dataset).

To better understand the importance of geopars-
ing in a crisis mapping task, in Table ?? we also re-
ported the number of tweets natively geolocated (GPS
column). Geolocation of these tweets is performed di-
rectly by Twitter whenever a user enables GPS or WiFi
geolocation. Statistics on our datasets confirm previous
findings reporting that only a small percentage (1% ÷
4%) of all tweets are natively geolocated [Cheng2010,
Cresci2015wise]. As introduced in Section ??, the low
number of natively geolocated tweets drastically im-
pairs crisis mapping, hence the need for a geoparsing
operation. Noticeably, none of the 1,062 tweets of the
L’Aquila dataset, dating back to 2009, are natively ge-
olocated.

5 Mining text to search for damage

The detection of damage in SM messages is a chal-
lenging task due to the almost completely unstructured
nature of the data to be analyzed [Cresci2015]. The
DataEnricher component of Figure ?? analyzes the
content of tweets with the twofold goal of discarding
irrelevant tweets and labeling the relevant ones accord-
ing to the presence (or lack thereof) of damage men-
tions. In our system, “damage” refers both to damage
to buildings and other structures and to injuries, ca-
sualties, and missing people. In other words, damage
encompasses all harmful consequences of an emergency
on infrastructures and communities.

In this work, we approach the damage detection
problem as a two-levels binary classification task. For
our purposes, we are interested in identifying four dif-
ferent classes of tweets:

– Not relevant : tweets not related to a natural disas-
ter.

– Relevant : tweets related to a natural disaster.
– Without damage: tweets related to a natural disaster

but which do not convey information relevant to
damage assessment.

– With damage: tweets related to a natural disaster
which convey information relevant to damage as-
sessment.

At the first level, the binary classifier (sub-module Con-
tentFiltering in Figure ??) acts as a filter to discrimi-
nate between not relevant and relevant tweets, allowing
only the latter ones to pass over to the second level. The
classifier at the second level (sub-module DamageDetec-

tor in Figure ??) discriminates between tweets contain-
ing relevant information about damage and those not
containing information relevant for damage assessment.

We built the two binary classifiers using the Support
Vector Machines (SVM) algorithm [Cortes1995] with
a simple linear kernel as machine learning method30.
The set of features used by the single classifier was ob-
tained from tweets by analyzing the textual content
of a tweet using an approach based on word embed-
dings [Bengio2003].

The NLP (Natural Language Processing) research
field has gained much attention in the last years, due
to the renewed interest in neural networks technologies
(e.g., deep learning), the continuous growth of the
computational power of the CPUs and GPUs, and
the explosion of available data that can be used to
train these neural networks in an unsupervised way. In
this work, we specifically used the approach proposed
by Mikolov et al. [NIPS2013˙5021] describing the
word2vec software, which is currently the most popular
model for embeddings used in NLP-related tasks. Word
embeddings techniques are an elegant solution to the
problem of the features sparseness in document vectors
created by using classic approaches like bag-of-words,
char-N-grams, or word-N-grams [Sebastiani2002].
From one side, they aim to create a vector representa-
tion with a much lower dense dimensional space. On
the other side, they are useful for extracting semantic
meaning from text, to enable natural language un-
derstanding by learning the latent context associated
with every specific word extracted from training data.
More formally, distribute word representations (word
embeddings) learn a function W : (word) ! R

n that
maps a word into a vector where each dimension
models the relation of that specific word with a specific
latent aspect of the natural language, both syntacti-
cally or semantically. The vectors are learned through
the training of neural language models together with
the parameters of the network from a set of unan-
notated texts and according to an objective function
(e.g., distributional hypothesis31) [Bengio2013]. The

30 As software implementation we used the SVC class avail-
able in the scikit-learn Python package.
31 The meaning of this hypothesis is that words appearing
in similar contexts often have a similar meaning.
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Table 1 Characteristics of the Datasets.

tweets used in

dataset type year users damage no damage not relevant GPS total sections

L’Aquila Earthquake 2009 563 312 (29.4%) 480 (45.2%) 270 (25.4%) 0 (0%) 1,062 ??, ??, ??

Emilia Earthquake 2012 2,761 507 (16.0%) 2,141 (67.5%) 522 (16.5%) 205 (6.5%) 3,170 ??, ??

Milan Power outage 2013 163 - - - 15 (3.8%) 391 ??

Sardinia Flood 2013 597 717 (73.5%) 194 (19.9%) 65 (6.6%) 51 (5.2%) 976 ??, ??, ??

Amatrice Earthquake 2016 7,079 - - - 21 (0.2%) 10,226 ??

resulting word vectors are computed to maintain
the semantic/syntactic relationship existent between
words. They allow to (i) visualize the vectors of
similar words very close into a given metric space
(e.g., visualize the word embeddings space on 2-D
space through techniques like t-SNE); (ii) compute
algebraic operations on vectors to point out some
specific characteristic of the data (e.g., W (“queen”) ⇠=
W (“king”)�W (“man”) +W (“woman”)).

The approach we used in our system to build the
damage-detection component is entirely di↵erent from
the one presented in our recent work on the same re-
search topic [Avvenuti2016impromptu]. In our pre-
vious work, we built this component using a multiclass
classifier based on SVM with a linear kernel but op-
erating with features extracted from training data us-
ing classic NLP techniques [Cresci2015]. The classi-
fier based on classic NLP guarantees a good accuracy
at classification time, but it has some significant draw-
backs that we aim to mitigate in this work. In partic-
ular, in the past work, we used five di↵erent classes
of features (e.g., lexical text features, morphosyntac-
tic features, sentiment-analysis features, etc.) that are
almost language-dependent and extracted with a qual-
ity level strongly dependent from the set of NLP tools
and resources available to analyze the textual data. The
choice of which features to extract (often referred to
as the “feature engineering” problem) is a non-trivial
task that must be solved to provide the classifier a set
of features su�ciently informative for the resolution of
the specific problem, given the input domain. Moreover,
the total number of features extracted in this way is
very high (in the order of several hundred-thousands
features), and it has a severe impact on the system
in terms of performance both at training and classi-
fication time. This performance degradation depends
both on the complexity of the SVM algorithm (which
growths linearly with the number of features) and the
time spent to use external NLP tools to enrich data.
Conversely, using our new approach based on word em-
beddings helps to handle this type of issues because

Table 2 NLP classifier vs. Embeddings classifier in terms of
F1 e↵ectiveness compared over the three available labeled
datasets.

dataset damage no damage not relevant

N
L
P

L’Aquila 0.89 0.87 0.73
Emilia 0.90 0.87 0.49

Sardinia 0.89 0.46 0.29
E
M

B

L’Aquila 0.85 0.82 0.72
Emilia 0.85 0.87 0.52

Sardinia 0.82 0.43 0.33

this technique completely avoids the feature engineer-
ing process and makes the system almost independent
of any specific language. The only requirement a↵ecting
this model is the language coherence on a set of unan-
notated textual data used for the training of the embed-
dings, a condition often satisfiable very easily and with
no human e↵ort on many application domains (such
as the Twitter domain). In particular, the modules we
developed in this work are focused just on the Italian
language, but the proposed methodology is very easily
adaptable to other di↵erent languages, being Twitter a
very popular multilanguage service. Another useful im-
plication of word embeddings is the reduced number of
features used by the classifier, being often in the order
of few hundreds, and therefore contributing to speed-up
learning new models and classifying new documents.

To validate the goodness of our new proposal
based on embeddings, we compared the F1 e↵ec-
tiveness [Sebastiani2002] obtained with a 10-fold
cross evaluation of both approaches using the multi-
class single-label configuration proposed in our pre-
vious work, as shown in Table ??. The NLP classi-
fier (reported as NLP) has been tuned as described
in [Avvenuti2016impromptu] while the embeddings
classifier (reported as EMB) has been tuned as in the
following. The word embeddings vectors have been ob-
tained by training the system on a dataset composed
of the union of the tweets coming from L’Aquila,
Emilia, Sardinia, and Amatrice using the CBOW
method [NIPS2013˙5021], and the size of the embed-
dings was set to 100. Given a tweet, to obtain a single
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vector representing the tweet content, we computed the
tweet vector as the averaged sum of the vectors of the
words contained in the text of the tweet32. The SVM
classifier working over embeddings has been set to use
the linear kernel with the parameter C = 1, and we
have handled unbalanced data distribution among la-
bels by assigning to each label a weight proportional
to its popularity33. As reported in the Table ??, the
embeddings classifier obtains very similar results to the
NLP classifier in all tested datasets, confirming that our
new approach provides all previously discussed advan-
tages without sacrificing too much the accuracy of the
damage detection system.

This comparison also suggests that to improve the
accuracy of the embeddings classifier we can operate
at two di↵erent levels. Firstly, we can use more train-
ing data to train the classifier: a simple and e↵ec-
tive solution is to merge the four separated datasets
(L’Aquila, Emilia, Sardinia, and Amatrice) into one
bigger training dataset. Secondly, to simplify the task of
classification model’s learning, we can change the tar-
get problem from a multiclass single-label classification
problem into a pair of separated binary classification
problems, as described at the beginning of this section.
This last modification also has the advantage to sepa-
rate the filter part that identifies relevant tweets from
the damage detection phase. This separation enables
parallel execution of the damage classification task and
the geoparsing task, decreasing the total time required
to process a single tweet entirely.

We tested the system with the proposed improve-
ments using a 10-fold cross evaluation and by optimiz-
ing the model parameters to build a reasonably good
set of classifiers. The measure used to drive the choice
in the best configuration values is the micro-averaged
F1 [Sebastiani2002]. The set of parameters subject
to optimization were the following:

– Embeddings dataset : the dataset used to learn word
embeddings. We have used 5 possible di↵erent
datasets: Amatrice, L’Aquila, Emilia, Sardinia,
and the union of all previous ones (All).

– Embeddings size: the size used to represent word
embeddings vectors and consequently the vector size
of a single tweet. The possible set of values are 50,
100, 200, and 400. The default value is 100.

32 We did not use more sophisticated methods like “Para-
graph Vector” [DBLP:conf/icml/LeM14] because these sta-
tistical methods do not work well for small texts like tweets.
33 We used the ’balanced’ value for class weight, see
scikit-learn documentation at http://bit.ly/2g5QSqk. In
this way we indicate to SVM to treat the various labels in
di↵erent ways during the training phase, giving more impor-
tance to class errors (measured with used loss function) made
for skewed classes.

– Class weight : the weight of the errors associated
with the positive class used in the two binary clas-
sifiers. The positive classes were “Not relevant” for
filter classifier and “With damage” for damage clas-
sifier. The possible set of values were 1.0, 1.5, 2.0,
2.5 and “Balanced” (same meaning as explained in
footnote ??). The default value is ’Balanced’.

– C : indicates the cost penalty associated with a mis-
classification. The possible set of values are 2 [0,
12] with a step increment of 0.1. The default value
is 1.0.

To avoid testing all possible combinations of the above
parameters, and to choose a reasonably good set of pa-
rameter values, we followed a simplified procedure as
illustrated in the following. Using the order of the pa-
rameters as described above, we optimize one parame-
ter at a time testing the full set of values for that specific
parameter and using the default values for the other pa-
rameters. In case one of the other parameters has been
optimized already, we use its best-found value instead.
The dataset used to evaluate the system, composed
by the union of the L’Aquila, Emilia and Sardinia

datasets, has been generated in two di↵erent versions,
one for filtering and one for damage detection. In the
case of filtering, every tweet in the dataset originally
labeled with “With damage” or “Without damage” la-
bels has been relabeled with “Relevant” label, resulting
in a final dataset containing 4,351 relevant tweets and
857 not relevant tweets. In the case instead of damage
detection, every tweet in the dataset originally labeled
with “Not relevant” has been relabeled with “Without
damage” label, resulting in a final dataset containing
3,672 tweets marked with “Without damage” label and
1,536 tweets marked with “With damage” label.

In Table ?? and Table ?? we report the experi-
mental results obtained from the optimization process,
respectively while building the filter classifier and the
damage classifier. Except for the C parameter, which
we report only as the best value found, we have marked
with ** the best configuration found among all tested
ones. In the case of parameters “Embeddings dataset”
and “Embeddings size” in both type of classifiers the
best results are obtained with the full dataset (All)
and 100 as the dimension of embeddings34. The opti-
mal weight class values are di↵erent for each classifier
reflecting the fact that the data distribution is very dif-
ferent between the two used datasets. In particular, the
dataset used for filter classifier is more unbalanced to-
wards relevant tweets, resulting in more variance in the
results obtained for each tested configuration and in

34 In case of configurations with equal results in terms of
F1 we prefer to choose those having more balanced values
between precision and recall measures.

http://bit.ly/2g5QSqk
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Table 3 Choice of Optimal Parameters for Embeddings Classifier Filtering Relevant/not Relevant Tweets.

Not relevant Relevant Micro avg results

Configuration Pr Re F1 Pr Re F1 Pr Re F1

E
m
b
.

d
a
t
a
s
e
t

Amatrice 0.28 0.73 0.41 0.92 0.63 0.75 0.82 0.65 0.69
L’Aquila 0.26 0.89 0.40 0.96 0.50 0.65 0.84 0.56 0.61
Emilia 0.28 0.82 0.41 0.94 0.58 0.72 0.83 0.62 0.67

Sardinia 0.21 0.85 0.34 0.93 0.37 0.53 0.81 0.45 0.50
All ** 0.36 0.79 0.49 0.95 0.72 0.82 0.85 0.73 0.76

E
m
b
.

s
i
z
e

50 0.35 0.80 0.48 0.95 0.71 0.81 0.85 0.72 0.76
100 ** 0.36 0.79 0.49 0.95 0.72 0.82 0.85 0.73 0.76
200 0.35 0.79 0.49 0.94 0.72 0.81 0.85 0.73 0.76
400 0.35 0.79 0.49 0.95 0.71 0.81 0.85 0.73 0.76

C
l
a
s
s

w
e
i
g
h
t

1.0 1.00 0.00 0.00 0.84 1.00 0.91 0.86 0.84 0.76
1.5 0.42 0.23 0.30 0.86 0.94 0.90 0.79 0.82 0.80

2.0 ** 0.44 0.54 0.48 0.91 0.86 0.88 0.83 0.81 0.82
2.5 0.42 0.59 0.49 0.91 0.84 0.88 0.83 0.80 0.81

Balanced 0.36 0.79 0.49 0.95 0.72 0.82 0.85 0.73 0.76

Best C 9.1 0.43 0.56 0.49 0.91 0.86 0.88 0.83 0.81 0.82

Table 4 Choice of Optimal Parameters for Embeddings Classifier Identifying With Damage/Without Damage Tweets.

Without damage With damage Micro avg results

Configuration Pr Re F1 Pr Re F1 Pr Re F1

E
m
b
.

d
a
t
a
s
e
t

Amatrice 0.92 0.75 0.82 0.58 0.85 0.69 0.82 0.77 0.78
L’Aquila 0.87 0.89 0.88 0.72 0.69 0.70 0.83 0.83 0.83
Emilia 0.95 0.88 0.91 0.76 0.89 0.82 0.89 0.88 0.89

Sardinia 0.91 0.89 0.90 0.74 0.79 0.76 0.86 0.86 0.86
All ** 0.96 0.87 0.91 0.75 0.92 0.83 0.90 0.89 0.89

E
m
b
.

s
i
z
e

50 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89
100 ** 0.96 0.87 0.91 0.75 0.92 0.83 0.90 0.89 0.89
200 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89
400 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89

C
l
a
s
s

w
e
i
g
h
t

1.0 0.93 0.92 0.92 0.81 0.84 0.82 0.89 0.89 0.89
1.5 ** 0.95 0.89 0.92 0.78 0.88 0.83 0.90 0.89 0.89
2.0 0.96 0.88 0.92 0.76 0.91 0.83 0.90 0.89 0.89
2.5 0.96 0.87 0.91 0.75 0.92 0.82 0.90 0.88 0.89

Balanced 0.96 0.87 0.91 0.75 0.92 0.83 0.90 0.89 0.89

Best C 0.4 0.95 0.90 0.92 0.78 0.88 0.83 0.90 0.89 0.89

general providing quite low F1 values for class “Not
relevant” (⇠ 0.5). Anyway, the results also show that
the errors made for this last class by the filter classifier
are partially recovered by the damage classifier, consid-
ering that the F1 accuracy on both damage classes is
remarkably high (> 0.8 in both cases), resulting into
an e↵ective and useful implementation of the damage
detection component.

The results discussed above are obtained exploit-
ing ideal conditions for data availability – i.e., each
event typology is well represented in the training data.
In Table ?? we report transfer learning results ob-
tained by training the system (specifically, the dam-
age classifier) on data related to a given event and by
reusing the learned model on data related to a di↵erent
event [pan2010survey]. This scenario better resem-
bles the real-world operative conditions in the after-
math of an emergency. We performed the experiments

using the optimal parameters reported in Table ??, this
time using each available dataset separately, with a split
of 70/30 between training and test data. Each row cor-
responds to the set of training data used, while each
column corresponds to the set of data tested. The table
shows that the best results are obtained, for each tested
dataset, when the corresponding training data is used
(e.g., Emilia vs. Emilia). The loss in classifier’s e↵ec-
tiveness is acceptable when considering events of the
same type (e.g., L’Aquila and Emilia, which are both
earthquakes) with a deterioration in performance com-
prised between 6.2% and 19.1%. Instead, for events of
a di↵erent type, the results are remarkably worse (e.g.,
in Sardinia vs. Emilia the loss for Emilia is 81.2%
with respect to the best obtainable e↵ectiveness). These
experiments confirm the conclusions reported by other
similar works in the literature on this research topic,
such as those reported in [Cresci2015]. In conclusion,
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Table 5 Transfer-learning results obtained with SVM classifiers using embeddings representation across L’Aquila, Emilia and
Sardinia datasets.

Training/Test

L’Aquila Emilia Sardinia

Without damage
F1

With damage
F1

Micro
F1

Without damage
F1

With damage
F1

Micro
F1

Without damage
F1

With damage
F1

Micro
F1

L’Aquila 0.92 0.81 0.89 0.93 0.69 0.90 (-6.2%) 0.63 0.85 0.80 (-0.0%)
Emilia 0.75 0.66 0.72 (-19.1%) 0.98 0.86 0.96 0.10 0.84 0.64 (-20.0%)
Sardinia 0.19 0.50 0.29 (-67.4%) 0.17 0.27 0.18 (-81.2%) 0.59 0.88 0.80

to obtain a reasonable e↵ectiveness, we suggest to pos-
sibly train the system using datasets that cover all the
possible types of events that the system should process.

6 Geoparsing

Geoparsing – namely, the resolution of toponyms in
a textual document to a set of geographic coordi-
nates – is typically considered the focal point of cri-
sis mapping and has been faced since the di↵usion
of the Web. This task is typically solved extracting
toponyms from a text and looking up for matches
in gazetteers containing all the possible matches be-
tween a set of place names and their geographic coor-
dinates [Middleton2014]. This approach requires an
o✏ine phase where the geoparsing system is specifically
set to work in a geographically-limited region. Although
this solution is e↵ective for limited areas and o↵ers a
fast response, it is practically infeasible to load associa-
tions between toponyms and coordinates for a wide re-
gion or a whole country [Avvenuti2016impromptu].
Another challenge related to geoparsing is that of to-
ponymic polysemy – that is, the situation in which a
toponym might have di↵erent meanings, thus possibly
referring to di↵erent places, according to the context
in which it is used (e.g., the word “Washington” may
refer to the first US president, to the US capital, to
the US state, etc.)35. This last problem is particularly
relevant for geoparsing systems based on gazetteers
lookups since with this approach there is no way to
perform a disambiguating operation of the toponyms
to understand their actual meanings [Cresci2015wise,
Avvenuti2016impromptu].

To overcome these limitations, the GeoParsing sub-
module of the DataEnricher, shown in Figure ??,
adopts semantic annotators in the geoparsing process.
Semantic annotation is a process aimed at augment-
ing a plain-text with relevant references to resources
contained in knowledge-bases such as Wikipedia and
DBpedia. The result of this process is an en-
riched (annotated) text where mentions of knowledge-
bases entities have been linked to the corresponding
Wikipedia/DBpedia resources. This annotation pro-
cess is highly informative since it enables the ex-

35
http://en.wikipedia.org/wiki/Washington

ploitation of the rich information associated with the
Wikipedia/DBpedia resources that have been linked to
the annotated text. Here, we exploit semantic anno-
tations for our geoparsing task by checking whether
knowledge-bases entities, which have been linked to our
tweets, are actually places or locations. Semantic anno-
tation also has the side e↵ect of alleviating geopars-
ing mistakes caused by toponymic polysemy. In fact,
some terms of a plain-text can potentially be linked to
multiple knowledge-bases entities. Semantic annotators
automatically perform a disambiguating operation and
only return the most likely reference to a knowledge-
base entity for every annotated term. Overall, our pro-
posed geoparsing technique overcomes 2 major prob-
lems a↵ecting current state-of-the-art crisis mapping
systems: (i) it avoids the need to preload geographic
data about a specific region by drawing upon the mil-
lions of resources of collaborative knowledge-bases such
as Wikipedia and DBpedia, (ii) it reduces the geopars-
ing mistakes caused by toponymic polysemy that are
typical of those systems that perform the geoparsing
task via lookups in preloaded toponyms tables. Another
additional useful characteristic of our geoparsing tech-
nique is that it is unsupervised, unlike the one presented
in [Gelernter2011].

Because of these reasons, our geoparsing technique
is particularly suitable for being employed in a sys-
tem aimed at producing crisis maps impromptu, such
as the one that we are proposing. The possibility to
link entities mentioned in emergency-related messages
to their pages also allows exploiting the content of their
Wikipedia/DBpedia pages to extract other useful in-
formation about the unfolding emergency. Most com-
monly used semantic annotators also provide a confi-
dence score for every annotation. Thus, it is possible
to leverage this information and only retain the most
reliable annotations, discarding the remaining ones.

Among all currently available semantic annotators,
CrisMap is currently based on TagMe [Ferragina2010],
DBpedia Spotlight [Mendes2011], and
Dexter [Trani2014], three well-known, state-of-
the-art systems [Usbeck2015]. TagMe is a service of
text annotation and disambiguation developed at the
University of Pisa. This tool provides a Web appli-

http://en.wikipedia.org/wiki/Washington
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GPS DBpedia Spotlight Dexter TagMe

L’Aquila 0 (0%) 271 (25.5%) 578 (54.4%) 721 (67.9%)

Emilia 205 (6.5%) 975 (30.8%) 1,037 (32.7%) 1,671 (52.7%)

Milan 15 (3.8%) 99 (25.3%) 320 (81.8%) 364 (93.1%)

Sardinia 51 (5.2%) 530 (54.3%) 784 (80.3%) 582 (59.6%)

Table 6 Contribution of our GeoParsing sub-module, used in conjunction with the di↵erent semantic annotators, on the
number of geolocated tweets.

cation36 as well as a RESTful API for programmatic
access and can be specifically set to work with tweets.
Language-wise, TagMe supports analyses on English,
Italian, and German texts. Since TagMe is based on the
Wikipedia knowledge-base, the annotated portions of
the original plain-text are complemented with the ID
and the name of the linked Wikipedia page. TagMe also
returns a confidence score rho for every annotation.
Higher rho values mean annotations that are more
likely to be correct. After annotating a tweet with
TagMe, we resort to a Wikipedia crawler to fetch
information about all the Wikipedia entities associated
to the annotated tweet. In our implementation, we
sort all the annotations returned by TagMe on a tweet
in descending order according to their rho value, so
that annotations that are more likely to be correct
are processed first. We then fetch information from
Wikipedia for every annotation and check whether it is
a place or location. The check for places/locations can
be simply achieved by checking for the coordinates field
among Wikipedia entity metadata. We stop processing
annotations when we find the first Wikipedia entity
that is related to a place or location, and we geolocate
the tweet with the coordinates of that entity. The
very same algorithmic approach is employed for the
exploitation of the other semantic annotators: DBpedia
Spotlight and Dexter. Indeed, it is worth noting
that our proposed geoparsing technique does not
depend on a specific semantic annotator, and can be
implemented with any annotator currently available,
or with a combination of them. Regarding language
support, DBpedia Spotlight is capable of performing
analyses for 16 di↵erent languages, including English
and Italian, and also allowing users to train models
for additional languages. Instead, Dexter natively
supports only the English language at the time of
writing, but can be extended to work with any other
language, similarly to DBpedia Spotlight.

We used our GeoParsing sub-module to geocode
all the tweets of our datasets. Then, follow-
ing the same approach used in [Middleton2014]
and [Gelernter2013], we manually annotated a ran-

36
https://tagme.d4science.org/tagme/

dom subsample of 1,900 tweets to validate the geopars-
ing operation. Noticeably, our system achieves results
comparable to those of the best-of-breed geoparsers
with an F1 = 0.84, whether the systems described
in [Middleton2014] and [Gelernter2013] scored in
the region of F1 ⇠ 0.80. Furthermore, to better quan-
tify the contribution of our GeoParsing sub-module,
we report in Table ?? the number of natively geolo-
cated tweets (GPS column) and the number of tweets
geolocated by our GeoParsing sub-module via TagMe,
DBpedia Spotlight, and Dexter. As shown, our sys-
tem geoparses the highest number of tweets based on
the annotations of TagMe, for all datasets, except for the
Sardinia one, for which the best results are achieved
with Dexter’s annotations. In any case, our GeoPars-

ing sub-module managed to geoparse from a minimum
of 25.3% tweets to a maximum of 93.1% tweets of the
Milan dataset, meaning that almost all tweets of that
dataset were associated to geographic coordinates, al-
lowing to use such tweets in our crisis maps.

7 Mapping data

Among the diverse data visualization techniques, one
that is commonly employed to represent the geographic
distribution of a statistical variable is the choropleth

map. A choropleth map is a thematic representation
in which subareas of the map are filled with di↵er-
ent shades of color, in proportion to the measurement
of the given variable being displayed37. This visualiza-
tion technique is usually exploited to depict the spa-
tial distribution of demographic features such as pop-
ulation, land use, crime di↵usion, etc. In CrisMap we
exploit the same visualization technique to show the
spatial distribution of damage in the aftermath of an
emergency. A clear advantage of exploiting choropleth
maps instead of the typical on/o↵ maps used in pre-
vious works [Middleton2014], lies in the possibility
to apply di↵erent shades of color to the di↵erent areas
of the map, according to the estimated extent of dam-
age su↵ered by that area. This complements well with

37
https://en.wikipedia.org/wiki/Choropleth_map
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https://en.wikipedia.org/wiki/Choropleth_map
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the prioritization needs that arise in the first phases of
an emergency response. Most notably, our system can
be easily extended to produce di↵erent end-results. In
other words, we can choose to produce a choropleth cri-
sis map or any other visualization of the analyzed tweets
exploiting the high flexibility of the Kibana interface.
Notably, CrisMap is capable of producing choropleth
crisis maps with a spatial resolution at the level of
municipalities. In any case, when tweets are accurate
enough, it is also possible to precisely identify objects
(e.g., a specific building) that su↵ered damage. It is
also worth noting that the choice to produce crisis
maps showing the estimated degree of damage among
the di↵erent municipalities is not due to a region-level
only geoparsing. Indeed, the exploitation of semantic
annotators potentially allows geocoding every entity
that has an associated Wikipedia/DBpedia page. So, in
those cases when a tweet contains detailed geographic
information, it is possible to geoparse it to building- or
even street-level. Our choice to produce crisis maps at
the level of municipalities is instead motivated by an
e↵ort to rigorously compare our crisis maps to data of-
ficially released by the Italian Civil Protection agency,
which reports damages at the municipality level.

Here, we first show the accuracy of our visualiza-
tions referring to two case studies, the Emilia earth-
quake and the Sardinia flood. We compare the maps
realized with SM data against those produced using
authoritative data provided by Italian civil protection
agency. Finally, we present results obtained by applying
CrisMap to study the Amatrice earthquake. Unfortu-
nately, there is no fine economic loss estimation for the
Amatrice earthquake, since the same area su↵ered a
second severe shake just a few months after the first one
when o�cial damage surveys still had to be completed.
Nonetheless, in the case of the Amatrice earthquake,
we are still able to provide a qualitative case-study of
our crisis maps.

7.1 Quantitative validation

The authoritative data that we used for the compari-
son is the economic loss/damage (quantified in millions
of euros) su↵ered by the di↵erent municipalities, as as-
sessed by the Italian Civil Protection agencies of Emilia
Romagna and Sardinia. Specifically, for the Emilia

earthquake, authoritative data has been collected via in

situ damage surveys carried in out in the months after
the earthquake. Results of such surveys are published
in the http://www.openricostruzione.it Web site,
maintained by the regional administration of Emilia
Romagna, and comprise detailed information on the

economic losses su↵ered as a consequence of the earth-
quake, as well as on the overall status of the rebuilding
process. With regards to the Sardinia flood of 2013,
the Italian Civil Protection Agency surveyed all dam-
aged municipalities and reported the estimated eco-
nomic losses su↵ered by private properties, public in-
frastructures, and production (industrial and agricul-
tural) facilities. Final results of the damage survey have
been published in a public document38 on February 24,
2014.

It is possible to perform a first quantitative eval-
uation of our crisis maps following the approach used
in [Middleton2014], that is, evaluating the system as
a classification task. Under this hypothesis, the goal
of the system is to detect damaged municipalities dis-
regarding of those requiring prioritized intervention –
namely, those that su↵ered the most damage. Thus,
we can exploit well-known machine learning evaluation
metrics to compare crisis maps generated by our system
with those obtained from o�cial data. The comparison
is performed by checking whether a municipality with
associated damage to authoritative data also appears
as damaged in our crisis maps.

Table ?? reports the results of this comparison for
the Emilia earthquake. We first consider all the munic-
ipalities of the a↵ected region, namely the Emilia Ro-
magna region, and then we repeat the comparison con-
sidering only those municipalities that su↵ered a signif-
icant degree of damage (more than 10% of the damage
su↵ered by the Ferrara municipality, which is the maxi-
mum value for the Emilia earthquake). As clearly high-
lighted by Table ??, the proposed crisis mapping sys-
tem can accurately identify the areas where the damage
occurred. However, not all the damaged municipalities
are identified by the system, as represented by the low
Recall value in the first row of the table. Regardless,
when we remove from the comparison those municipal-
ities that su↵ered the lowest damage, the Recall metric
reaches a value of 0.813, showing the system’s ability
in detecting areas that su↵ered a significant amount of
damage. In other words, the majority of the mistakes of
our system occurred in municipalities that su↵ered rel-
atively low damage, and not on those requiring imme-
diate attention. The same also applies for the Sardinia
flood, as reported in Table ??, with an improvement of
the Recall metric from 0.128 to 1 when considering mu-
nicipalities that su↵ered more than 2% of the maximum
damage (i.e., the damage su↵ered by the municipality
of Olbia).

38
http://www.regione.sardegna.it/documenti/1_231_

20140403083152.pdf - Italian Civil Protection report on
damage to private properties, public infrastructures, and
production facilities.

http://www.openricostruzione.it
http://www.regione.sardegna.it/documenti/1_231_20140403083152.pdf
http://www.regione.sardegna.it/documenti/1_231_20140403083152.pdf
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Table 7 Binary detection of damaged municipalities for the Emilia earthquake.

evaluation metrics

task Precision Recall Specificity Accuracy F-Measure MCC

Detection of all damaged areas 1.000 0.178 1.000 0.797 0.303 0.375

Detection of areas that su↵ered significant damage 1.000 0.813 1.000 0.992 0.897 0.898

Table 8 Binary detection of damaged municipalities for the Sardinia flood.

evaluation metrics

task Precision Recall Specificity Accuracy F-Measure MCC

Detection of all damaged areas 0.833 0.128 0.993 0.814 0.222 0.280

Detection of areas that su↵ered significant damage 0.500 1.000 0.995 0.995 0.667 0.705

Overall, the results obtained by our system concern-
ing the detection of damaged areas are comparable to
those reported in [Middleton2014]. However, our sys-
tem operated with a fine geographic resolution on 2 case
studies of natural disasters that a↵ected extensive, ru-
ral, and sparsely populated areas. Conversely, the sys-
tem presented in [Middleton2014] has a fine resolu-
tion only for an emergency a↵ecting a densely and uni-
formly populated area (Manhattan, New York) while it
shows coarse resolution results for a disaster striking a
wide area (the state of Oklahoma).

In addition to detecting damaged areas, CrisMap
also visually sorts municipalities using a color hue that
is proportional to the intensity of the damage su↵ered.
In other words, it order ranks municipalities based on
the (normalized) number of tweets conveying damage
information. This original feature opens up the possi-
bility to perform a finer evaluation of our crisis maps
than that carried out in previous works. Indeed, it is
possible to compare the ranking of damaged munici-
palities as obtained from tweets, with a ranking derived
from authoritative sources, such as those provided by
civil protection agencies. A crisis mapping system that
can rapidly identify the most damaged areas would be-
come a valuable tool in the first phases of emergency
response when resource prioritization plays a dominant
role. A possible way of performing such evaluation is
by employing metrics that are typically used to assess
the performance of ranking systems, such as search en-
gines. Search engines are designed to return the most
relevant set of results to a given user-submitted query.
In our scenario, we can consider CrisMap as a basic
“search engine” that returns a list of areas and that is
specifically designed to answer a single, complex query:
“which areas su↵ered the most damage?”. Search en-
gines are evaluated with several metrics and indices,
aimed at capturing a system’s ability to return de-

sired resources (e.g., Web pages, text documents, etc.)
among the first results. We can then evaluate the abil-
ity of CrisMap to correctly identify areas that su↵ered a
high degree of damage by employing evaluation metrics
of search engines. Specifically, among such well-known
metrics are the normalized Discounted Cumulative Gain

(nDCG) [Jarvelin2002] and the Spearman’s Rho co-

e�cient. The nDCG measures the performance of a
“recommendation” (or ranking) system based on the
graded relevance of the recommended entities. It is the
normalized version of the Discounted Cumulative Gain

and ranges from 0 to 1, with 1 representing the ideal
ranking of the entities. This metric is commonly used
in information retrieval to evaluate the performance of
web search engines:

DCGk =
kX

i=1

2reli � 1

log2(i+ 1)

nDCGk =
DCGk

IDCGk

where reli is the graded relevance of the result at po-
sition i and IDCGk is the maximum possible (ideal)
DCG for a given set of entities.

Spearman’s Rho instead measures the correlation
between two variables described using a monotonic
function, and it is evaluated as:

⇢ = 1�
6
P

i D
2
i

N(N2 � 1)

where Di = ri�si is the di↵erence between actual posi-
tion (given by the system) and expected position (given
by the reports). For instance, it measures the correla-
tion between the ideal output of the system (Civil Pro-
tection ordering) with the result of the system and de-
scribes how likely one variable is going to change (tweets
with damage) given the other (damage amount). Being
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Table 9 Ranking evaluation of most damaged municipalities.

dataset nDCG Spearman’s Rho

Emilia 0.770 0.698

Sardinia 0.647 0.408

a correlation coe�cient, it ranges from �1 to 1, with
values in the region of 0 indicating no correlation. Us-
ing these metrics, we assessed the ability of our system
in detecting the most stricken areas against authorita-
tive data based on the economic damage su↵ered by
the a↵ected municipalities. Our experiments confirm
that there is a considerable agreement between tweet-
derived rankings and those based on authoritative data,
as reported in Table ??.

A simple test for statistical significance of our rank-
ing results with Spearman’s Rho further supports our
claims, achieving a confidence score > 99% for both the
Emilia earthquake and the Sardinia flood. Overall, re-
sults of our system in detecting all damaged areas, as
well as the most damaged ones, demonstrate the appli-
cability and the usefulness of CrisMap also in extensive,
rural, and sparsely populated regions.

7.2 The qualitative Amatrice case-study

Figure ?? shows an excerpt of the CrisMap dashboard
in the aftermath of the Amatrice earthquake. All the vi-
sualizations shown in figure are related to the Amatrice
dataset, collected during the first hour from the earth-
quake occurrence. On top of Figure ?? are two choro-
pleth maps – visualizations ??(a) and ??(b) – obtained
by embedding the choropleth plugin, that we specif-
ically developed for CrisMap, inside the Kibana inter-
face. Figure ??(a) shows the map generated from all the
tweets that we collected, while Figure ??(b) is obtained
only from damage tweets. Our choropleth maps high-
light the most damaged municipalities, namely Nor-
cia, Amatrice and Accumoli, located in the vicinity
of the epicenter. The map in Figure ??(b), related
only to damage tweets, is rather sparse, since in the
first hour after the earthquake only a tiny fraction of
tweets conveyed damage reports. This aspect is also
clearly visible from Figure ??(d), showing the volume of
tweets collected and classified by CrisMap every minute.
As shown, tweets reporting damage (red-colored) have
been shared almost only in the last minutes of the first
hour. Yet, despite the very few tweets reporting dam-
age, the word-cloud of Figure ??(c) highlights the key
consequences of the earthquake: (i) the 3 most damaged
villages Norcia, Amatrice, Accumoli; (ii) and several

mentions of damage, such as “crolli” (collapsed build-
ings) and “danni” (widespread damage).

Notably, all the visualizations of Figure ?? are inter-
active and are updated in real-time, as new data is col-
lected and analyzed by CrisMap. Regarding user inter-
actions, for instance, it is possible to click on a specific
municipality in the choropleth maps to update all other
visualizations by showing only data that is related to
the selected municipality. Alternatively, one could click
on a word in the word-cloud to visualize the tempo-
ral and spatial distribution of tweets containing that
word. These functionalities open up the possibility to
promptly perform drill-down analyses of the most rele-
vant facts.

8 Conclusion

We presented CrisMap: a crisis mapping system capa-
ble of supporting emergency responders during emer-
gency management of natural or man-made disasters.
The system can process incoming SM data from Twitter
to quickly produce crisis maps that are useful to pri-
oritize the allocation of available resources, especially
in the first phases of the crisis, towards the popula-
tions and territories most a↵ected by the specific disas-
ter. The proposed solution is designed and built using
Big Data technologies, allowing the system to be scal-
able, fault-tolerant, and capable of processing incoming
data in near-real-time. To overcome the challenges re-
sulting from the unstructured nature of Twitter data
and to identify useful information for our purposes, we
analyze the data using a two-fold perspective. On the
one hand, we introduced a damage detection compo-
nent exploiting word embeddings and a SVM classifier
to detect messages reporting damage to infrastructures
or injuries to the population. On the other hand, we
proposed a message geolocation component that per-
forms the geoparsing task by exploiting online semantic
annotators and collaborative knowledge-bases. The ap-
proach using word embeddings has also been compared
with a traditional one based on classic NLP techniques,
pointing out the potential advantages of the former con-
cerning complexity and performance of the proposed
method. The accuracy and the reliability of the system
were validated analytically comparing the experimen-
tal results of CrisMap against the authoritative data
for two past disasters. Furthermore, we also performed
a qualitative evaluation of the system on a case-study
of a recent severe earthquake in Italy for which author-
itative data are not available.

The proposed system o↵ers some room for further
improvements, to increase the readability of the maps
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Fig. 2 Excerpt of the CrisMap dashboard in the aftermath of the Amatrice earthquake. The dashboard comprehends our ad-hoc
choropleth maps showing the spatial distribution of tweets, a temporal view of collected and classified tweets per minute, and a
word-cloud. The dashboard is easily extensible and customizable, allowing end-users to include more visualizations by choosing
from the many ones natively provided by Kibana.

and, in general, for acquiring a better situational aware-
ness of unfolding events. With regards to geoparsing re-
sults, recent developments of semantic annotation tools
open up the possibility to provide more implementa-
tions of our proposed geoparsing technique. Therefore
we envision the possibility to simultaneously exploit
multiple semantic annotators in an ensemble or vot-
ing system. In the future, this approach could allow to
obtain even better results and to overcome the possible
limitations of a single annotator.

Moreover, to date, CrisMap only exploits textual
data, but we believe that multimedia data, like images
and live-videos, could contribute critical information for
emergency responders. Thus, in the future, we aim at
providing analytic and visual support for multimedia
content since it appears as a promising direction for
research.

Other avenues of future experimentation might be
related to multi-source mining. Indeed, although Twit-
ter is nowadays one of the preferred SM sources, given
its open policies on providing data to third parties, data
collection from multiple sources could mitigate the bias
introduced by the analysis of a single SM.
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