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Abstract. We investigate the optimal measurement strategy for state discrimination of the trine ensemble
of qubit states prepared with arbitrary prior probabilities. Our approach generates the minimum achievable
probability of error and also the maximum confidence strategy. Although various cases with symmetry
have been considered and solution techniques put forward in the literature, to our knowledge this is only
the second such closed form, analytical, arbitrary prior, example available for the minimum-error figure of
merit, after the simplest and well-known two-state example.
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1. Introduction

Quantum key distribution, and quantum communication in general, depends on the problem of quantum

state discrimination [1, 2]. The standard formulation of this problem involves two communicating parties,

Alice and Bob: Alice communicates with Bob by sending him a quantum state ρi which has been chosen

from a set of possible states {ρj}, each with an a priori probability pj . Bob knows these states and their

probabilities, and his goal is to determine which state was sent, thereby decoding the message which Alice

wishes to communicate. Clearly, Bob wishes to decode the message as best he can, and he may quantify this

using any of a number of different figures of merit. The two most common figures of merit he might wish to

maximise are mutual information [3, 4, 5], and the probability of correctly identifying the state [6, 7, 8, 9].

He may also use the techniques of unambiguous discrimination [10, 11] – which either gives an inconclusive

outcome or identifies the signal state with certainty – or maximum confidence, a generalisation of this which

sometimes yields incorrect answers [12].

This has been a popular problem for a few decades, with theoretical solutions obtained and experiments

performed for various sets of states and figures of merit [4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27]. This popularity may be attributed partially to the fundamental nature of the

problem, and also to its far-reaching consequences: in addition to being crucial for quantum key distribution,

state discrimination has relevance in quantum information processing and quantum metrology [1], and also

allows us to explore the constraints on different measurement classes such as global measurement or local

measurement with classical feed-forward [28, 29, 30]. For minimum error and unambiguous discrimination,

the problem of optimisation may be cast as a semi-definite programme, and for particular instances efficient

algorithms exist [31]. Explicit analytic solutions are available only for the simplest cases, however, despite

recent progress in analytical techniques for minimum error discrimination.

The optimal measurement for discriminating between two qubit states with arbitrary prior probabilities

is known for both the minimum error [2] and maximum mutual information figures of merit, and indeed

the strategies coincide in the two-state case [5]. For two pure qubit states the optimal unambiguous

discrimination measurement is also known for arbitrary priors [2, 16].

The trine ensemble, consisting of three pure states spaced symmetrically on the Bloch sphere, is the next

simplest case, and the simplest for which a full analytic solution for arbitrary priors is not available for any

of the most commonly used strategies. An analytic solution is desirable for a number of reasons: it allows us

to understand, qualitatively and quantitatively, how the optimal measurements and corresponding figures

of merit depend on the prior probabilities; it may be used in a larger optimisation problem in which state

discrimination arises as just one part; and it allows comparisons to the simpler two-state example which is

well-known. Indeed, it is already known that there are qualitative differences between the two- and three-

state examples: for the trine states with equal priors, (pi = 1
3 ), the strategy for minimum-error discrimination

[20] is different than that for maximising the mutual information [4], in contrast to the two-state example.

Further, in the case of three qubit states, the minimum-error measurement has been found analytically

for a generalised version of the trine states with symmetric prior probabilities, i.e. p0 = 1− 2p, p1 = p2 = p

[19], with the interesting result that the number of measurement outcomes is dependent on the specific

parameters chosen for the set of states.

We will focus on the minimum-error and maximum confidence figures of merit in this paper. Each

of these maximises the probability of correctly identifying the signal states under different circumstances:

in the case where an answer must be given (i.e., inconclusive outcomes are not allowed), the minimum-

error strategy is optimal; in the case where an inconclusive outcome is allowed, the maximum confidence

measurement is preferable. A point to note is that when the signal states become linearly independent, the

strategies of maximum confidence and unambiguous discrimination are identical. In the case of unambiguous

state discrimination, a full analytical solution is also known for the three-state case [32, 33]. Conversely, the

only ensemble for which we have a full analytic solution to the problem of minimum-error discrimination

with arbitrary prior probabilities is in the case of two signal states, given by the Helstrom bound [2].

In this paper, we give a complete analysis of the problem of state discrimination for the trine states

with arbitrary prior probabilities, for both the minimum error and maximum confidence figures of merit.

Each of these are amenable to analytic solutions; in the minimum error case, which we begin with, this is
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made possible by recent developments [9, 27, 34]. We continue by investigating the maximum confidence

measurement [12] for the trine states with arbitrary prior probabilities and obtain an expression for the

probability of correctly identifying each signal state using this measurement scheme.

2. Minimum Error Measurements

We begin by reviewing the description of measurements in quantum theory, which we will use throughout

the paper. Any physically allowed measurement is described mathematically by a POVM (positive-operator

valued measure), consisting of a set of Hermitian operators {πi}, individually called POVM elements, which

satisfy the following conditions:

πi ≥ 0∑
i

πi = 1.

The Born rule tells us the probability of obtaining any outcome j – corresponding to a “click” at the detector

associated with POVM element πj – when measuring a system prepared in state ρ:

P (πj |ρ) = Tr(ρπj). (1)

The above conditions on the POVM elements simply ensure that the probabilities given by the Born rule

are all positive and sum to 1.

In this paper we are concerned with the trine states, qubit states associated with three equidistant

points on any great circle of the Bloch sphere. We will place the trine states on the equator of the Bloch

sphere, so that:

|ψ0〉 =
1√
2

(|0〉+ |1〉),

|ψ1〉 =
1√
2

(|0〉+ ei
2π
3 |1〉),

|ψ2〉 =
1√
2

(|0〉+ ei
4π
3 |1〉),

where the states |0〉 and |1〉 correspond to the poles on the Bloch sphere. These trine states can be visualised

on the Bloch sphere as shown in figure 1. For equal prior probabilities (p0 = p1 = p2 = 1
3 ), it is known that

the optimal measurement of the trine states for minimising the probability of error is to measure along the

states themselves [20], that is, making a measurement of the form πj = 2
3 |ψj〉〈ψj |. This is known as the

trine measurement.

In contrast to a two-state system, intriguingly, if we wish to maximise the mutual information gained

by our measurement, we must use a different POVM: in this case, we perform the so-called anti-trine

measurement [23], as shown in figure 1. This involves three measurement outcomes, each of which is

perpendicular to one of the trine states; this is therefore an eliminatory measurement, as it tells us with

certainty that the system was not prepared in a particular state, with the other two possible states equally

likely to be the signal state.

Throughout this paper, and without loss of generality, we assume p0 ≥ p1 ≥ p2.

2.1. Helstrom conditions

A POVM {πi} is optimal for minimum-error discrimination between a set of states {ρi} with prior

probabilities {pi} (with
∑
i pi = 1) if and only if it satisfies the Helstrom conditions [6, 35]:
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Figure 1. The trine states on the equator of the Bloch sphere. The dotted lines show the anti-trine
measurement basis - each POVM element is aligned so that it is orthogonal to one of the potential states.
For instance, if we get a “click” at the POVM element at |ψ⊥0 〉, we know with certainty that state |ψ0〉 was
not prepared.

πi(piρi − pjρj)πj = 0 ∀i, j (2)∑
i

piρiπi − pjρj ≥ 0 ∀j, (3)

where outcome i, corresponding to element πi, is taken to indicate that the state ρi was transmitted. Note

that the probability of Bob correctly guessing the signal state is given by Born’s Rule, in equation (1):

PCorr =

n−1∑
i=0

piTr(ρiπi). (4)

The minimum-error measurement scheme is defined as one which maximises the above quantity.

In the case of the trine states, the minimum-error measurement must have either two or three elements:

a one-element measurement, that is πk = 1 for some k, corresponding to the “no-measurement” strategy, can

never be optimal for pure state ensembles [36], as condition (3) cannot be satisfied for j 6= k. Furthermore,

as each measurement outcome corresponds to identifying one of the potential states, the number of outcomes

cannot exceed the number of states: any extra elements will be redundant.

In light of this, we split the problem into two parts: we ask when a two-element POVM is optimal,

as this is a relatively easy problem to solve, and then we consider the remaining parameter space. In the

region where the two-outcome measurement does not give the minimum error, we know that a three-element

POVM of some form will be optimal. In this region, we construct the optimal measurement by applying the

strategy outlined in [27]. Surprisingly, the two-element POVM is optimal for almost the whole parameter

space. We show, explicitly, that all optimal measurements on the trine states are unique - that is, for any

choice of initial probabilities {pi}, there is one and only one measurement which is optimal.
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Figure 2. The two signal states we are trying to discriminate between (|ψ0〉 and |ψ1〉, solid lines) and the
optimal measurement for doing so (dotted lines), where θ is as defined in equation (6). Note that the signal
states are not symmetrical with respect to the measurement states - the optimal measurement is biased
towards identifying |ψ0〉, the a priori more likely state.

2.2. Conditions for a two-element POVM to be optimal

We know that when p2 = 0, a two-element POVM must be optimal. This problem has a well-known solution,

with the optimal probability of correctness given by the Helstrom bound [2, 6]:

P2-el =
1

2
(1 +

√
1− 4p0p1|〈ψ0|ψ1〉|2), (5)

where “2-el” is short for two-element. It is readily shown that this is achieved by a measurement of the form

π0,1 = |Θ0,1〉〈Θ0,1|, π2 = 0, where

|Θ0〉 =
1√
2

(|0〉+ eiθ|1〉),

|Θ1〉 =
1√
2

(|0〉 − eiθ|1〉),

with

tan θ =
−
√

3p1
2p0 + p1

. (6)

Figure 2 shows the measurement states on the Bloch sphere. Writing the probability of correctly guessing

the state in terms of only p0 and p1 gives:

P2-el =
1

2
(p0 + p1 +

√
p20 + p0p1 + p21). (7)

As described in [9, 27, 34], we know that if state ρ2 is added to this ensemble with a small enough

probability, the number of POVM elements necessary for minimum-error measurement remains unchanged.

Intuitively, if p2 is small enough, we do not gain anything by identifying ρ2, and the minimum-error

measurement favours the more likely states. We can use the Helstrom conditions to define precisely what

“small enough” means in this context, and put conditions on p0, p1 and p2 which state when a two-element

POVM is sufficient and when a three-element POVM is required.
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To find the values for p0 and p1 for which a two-element POVM is the optimal measurement, we

investigate the other Helstrom condition, shown in equation (3). This is trivial for j = 0, 1, as we already

know this must be the optimal measurement when these are the only signal states. Therefore, it suffices to

check the positivity of the matrix

M =
∑
i

piρiπi − p2ρ2. (8)

It follows from the conditions for j = 0, 1 that
∑
i piρiπi is a positive operator. Further, as ρ2 is a pure

state, M has at most one negative eigenvalue, and to check positivity of M we can calculate the sign of

the determinant: when det(M) is positive, the two-element POVM described above is optimal. This is

straightforward, and the determinant of the matrix is found to be

det(M) =− 3p40 − 3p41 − 10p30p1 − 10p0p
3
1 + 6p30 + 6p31

− 13p20p
2
1 + 12p20p1 + 12p0p

2
1 − 3p20 − 3p21 − 2p0p1.

(9)

To find the boundary of the region where the two-element measurement is optimal, it is useful to parameterise

the probabilities as follows: p0 = p + δ, p1 = p − δ, p2 = 1 − 2p, where the ordering p0 ≥ p1 ≥ p2 implies

δ ≥ 0, δ ≤ 3p− 1, δ ≤ p.
After a little algebra, we find that the determinant is simply a quadratic in δ2, with roots ±δc±, where

δ2c± = 2− 6p+ 5p2 ± 2
√

1− 6p+ 16p2 − 24p3 + 16p4. (10)

There are four roots for δ, only two of which give physically-realisable probability distributions; these two

simply swap p0 for p1 and vice-versa (the other two roots correspond to unphysical distributions with, e.g.,

p0 > 1). Imposing our condition that p0 ≥ p1 ≥ p2, we find that det(M) ≥ 0 for δ ≤ δc−. That is, a

two-element POVM is optimal when δ < (2− 6p+ 5p2− 2
√

1− 6p+ 16p2 − 24p3 + 16p4)
1
2 . Otherwise some

three-element POVM (discussed in the next section) is optimal. The parameter regions for which the optimal

measurement has two or three outcomes are shown in figure 3.

It is apparent that a three-element POVM is only optimal when close to a symmetric ensemble, i.e. p1
very close to p2. For p1 = p0 ∈ [ 13 ,

4
9+
√
3
) and for all p1 = p2, the symmetric three-element measurement

outlined in [19] is optimal.

An interesting consequence of equation (6) is that there is not a one-to-one correspondence between

ensembles and optimal measurements. As we can increase p2 from zero without changing the optimal

measurement, there are many different ensembles with the same optimal measurement strategy. In this

region, where the two-element POVM is optimal, the optimal measurement depends only on the relative

frequency of occurrence of p0 and p1 (i.e. the ratio between p0 and p1). For fixed measurement angle θ, the

probability of correctness increases linearly with p0 + p1. We also note that this effect does not happen in

the two-state discrimination case, where, given two states and a measurement which is known to be optimal,

there is only one p0 – and hence only one complementary p1 – which will satisfy the Helstrom conditions.

2.3. Optimal Three-element POVM

We now turn our attention to the region in which we know a three-element POVM must be optimal. This

region is hard to analyse due to its lack of symmetry, but the problem can be solved analytically by using the

Helstrom conditions constructively, following the approach developed in [27]. We briefly review the method

before applying it to the case of interest here.

If we take equation (2) and sum over i, using the stipulation that
∑
i πi = 1, we obtain

(Γ− pjρj)πj = 0 ∀j, (11)

where Γ =
∑
i piρiπi =

∑
i piπiρi. This is a 2×2 matrix which, by (3), has non-negative determinant, which

means that πj is either the zero matrix (which we are forbidding as we already know when a two-element

POVM is optimal) or is perpendicular to Γ− pjρj . That is, if πj = kj |φj〉〈φj | for some constant kj , we have
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0.35 0.40 0.45 0.50
0.0

0.1

0.2

0.3

0.4

0.5

p

δ

Figure 3. Graph showing the sign of the determinant of matrix M in equation (8) as a function of p and
δ. The dark region corresponds to a negative determinant, and hence shows the region where a 3-element
POVM is optimal. The light area displays the rest of the allowable parameter space, where the 2-element
POVM we have discussed is optimal. The three dashed vertical lines correspond to the three plots shown
in figure 5. Note that the diagonal line δ = 3p− 1 corresponds to p1 = p2.

Γ− pjρj = cj |φ⊥j 〉〈φ⊥j | (12)

for some constant cj , where 〈φj |φ⊥j 〉 = 0. This proves that Γ has a linearly independent decomposition

consisting of the vectors |φ⊥j 〉 and |ψj〉. As such, a result from [37], also used in [38], is applicable. It may

be shown ‡ [27] that:

〈ψj |Γ−1|ψj〉 =
1

pj
. (13)

By writing Γ−1 in the form 1
2 (a1 +~b · σ̂), where σ̂ is the vector of Pauli operators [i.e. σ̂ = (σx, σy, σz)

[35, 37]], we find three linear equations in three unknowns. As described in [27] and [39], we may assume from

symmetry that the optimal POVM will be in the same plane as the states, so bz = 0, and hence find a, bx, by.

Thus we can find Γ and hence PCorr, the optimal probability of correctly identifying the state which was

sent, as PCorr =
∑
k pkTr(ρkπk) = Tr(Γ) = 4a

a2−|b|2 . In fact, because we know that Γ − pjρj = cj |φ⊥j 〉〈φ⊥j |,
we can also explicitly find the POVM elements and hence extract the optimal measurement directly from

the Helstrom conditions. Furthermore, as Γ is known to be unique for a given set of states [8], this POVM

will be unique for this ensemble of {pj} and {ρj}, as the vector solution |φ⊥j 〉 is unique.

It is sufficient for our purposes to simply calculate P3-el. From the above, we obtain

a =
2

3

(
1

p0
+

1

p1
+

1

p2

)
bx =

2

3

(
2

p0
− 1

p1
− 1

p2

)
by =

2√
3

(
1

p1
− 1

p2

)
,

‡ To see this, note that equation (12) implies that 1 = Γ−1pj |ψj〉〈ψj |+Γ−1cj |φ⊥j 〉〈φ⊥j |, and taking the matrix element 〈ψj |·|φj〉
gives the desired result.
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which yields:

P3-el =
2(p0p1 + p0p2 + p1p2)

2− (p0p1p2
+ p0p2

p1
+ p1p2

p0
)
. (14)

If we compare this to the expression for P2-el given by the optimal two-element POVM then we find that

they meet at the boundary when the two-element POVM stops being optimal, as we would expect.

Our expression for P3-el has the interesting property that, in parts of the region where we know the two-

element POVM to be optimal, the expression for P3-el yields a greater value than P2-el. We also obtain some

values for P3-el which are greater than 1, which is clearly incorrect. These anomalies are due to the fact that

our method of obtaining Γ does not strictly impose the conditions for POVM elements; specifically, not every

POVM element πi is a positive semi-definite operator. This may be seen by comparing our measurement

to the analogous measurement detailed in [19]. This is not a problem, of course, as these regions in the

parameter space are readily determined. At δ = 0, we have p0 = p1 and the optimal measurement includes a

POVM element of the form (1− a2)|ψ2〉〈ψ2|, with a =
√
3p

4−9p . Clearly the factor of (1− a2) becomes negative

for p > 4
9+
√
3
, and so our attempted measurement no longer fulfils the POVM criteria, giving spurious results.

It is at this point that the two-element POVM becomes optimal. Thus we can conclude that our optimal

three-element POVM does indeed become invalid in the region where we know a two-element POVM must

be optimal.

To summarise, this gives us the following functions for the probability of correctly guessing the

signal state using the minimum-error measurement scheme. In the case where δ < (2 − 6p + 5p2

−2
√

1− 6p+ 16p2 − 24p3 + 16p4)
1
2 , we have:

P2-el =
1

2
(p0 + p1 +

√
p20 + p0p1 + p21) (15)

= p+
1

2

√
3p2 + δ2.

Otherwise:

P3-el =
2(p0p1 + p0p2 + p1p2)

2− (p0p1p2
+ p0p2

p1
+ p1p2

p0
)

(16)

=
2(1− 2p)(p2 − δ2)(3p2 + δ2 − 2p)

9p4 − 4p3 + 6p2δ2 − 12pδ2 + 4δ2 + δ4
.

This is shown in figure 4.

We can therefore plot the optimal probability of correctness for discriminating between the trine states

for arbitrary prior probabilities. These results are shown in figure 5 and figure 6, for various values of p and

δ.

This solves the problem of minimum-error state discrimination between the trine states for all possible

probability distributions, and highlights some differences between two-state and three-state discrimination.

Firstly, for the two-state case we always require two POVM elements and, indeed, these are both simple

projectors. In this case each signal state has a measurement outcome associated with it. This is not the

case for the three-state problem, for which it is sometimes beneficial to simply never measure one of the

signal states. Indeed, for most of the parameter space, a two-outcome measurement is optimal. Our solution

also shows that, for three states, there is not a one-to-one correspondence between ensembles and optimal

measurements; a certain measurement strategy may be optimal for multiple probability distributions of the

trine states, whereas in the two-state case each optimal measurement strategy is unique to its corresponding

probability distribution.

For δ = 0 our results agree with previous work [19, 27]. As we have produced an analytic solution, it is

also possible to use this to solve problems where state discrimination arises as a smaller part of a problem,

as occurs when multiple copies are available [30].
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3. Maximum Confidence Measurements

Whereas the minimum-error strategy maximises the average probability of correctly identifying the signal

state, if we allow for an inconclusive outcome we can be even more confident that the POVM outcomes

obtained coincide with the reality of which state was sent. This strategy is called the maximum confidence

measurement.

Maximum confidence measurements may be viewed as a generalisation of unambiguous discrimination

[12, 17]: whereas the latter is only possible when the states to be measured are linearly independent [10],

maximum confidence is a viable strategy for linearly dependent states. While the maximum confidence

measurement does not have the advantage of giving an answer which is guaranteed to be correct (as

unambiguous discrimination does), it offers a “middle ground” where, if a given state is identified, it is

with the lowest possible probability of error for that state; otherwise the output is an inconclusive outcome,

similarly to unambiguous discrimination. It has the advantage of an analytic solution for the elements of the

optimal POVM in general, and is also related in certain cases to the minimum-error strategy. Understanding

the maximum confidence measurement for the trines with arbitrary priors provides insight into the form of

our minimum-error results.

The maximum confidence measurement scheme has already been described for three equiprobable

symmetric states on the Bloch sphere [12, 40], and we extend this to the case with arbitrary prior probabilities.

In this measurement scheme, we have πi ∝ ρ−1ρiρ−1, where ρ =
∑
j pj |ψj〉〈ψj |. Note that the figure of

merit for this strategy is the probability of outcome πi correctly identifying the state ρi, given by Bayes:

P (i)Corr = P (ρi|πi) =
piP (πi|ρi)
P (πi)

=
P (πi, ρi)

P (πi, ρi) +
∑
j 6=i P (πi, ρj)

. (17)

This is independent of the constant of proportionality multiplying πi, which may therefore be chosen

arbitrarily. It is always possible to choose the constants of proportionality such that
∑
j πj ≤ 1. If

necessary, a complete measurement may then be formed by adding an inconclusive outcome π? = 1−
∑
j πj .

The probability that each measurement outcome accurately reflects the state of the system is, however,

independent of how we choose to complete the measurement.

It is convenient to note that, for qubits, ρ−1 ∝
∑
j pj |ψ⊥j 〉〈ψ⊥j |. This may be seen by considering ρ as

a point within the Bloch sphere; ρ−1 must therefore correspond to the antipodal point in the Bloch sphere

- this antipodal point is given by
∑
j pj |ψ⊥j 〉〈ψ⊥j |. It is perhaps useful to think of the decompositions of

ρ = 1
2 (1+~b · σ̂) and ρ−1 ∝ (1−~b · σ̂). In fact, we can go further by noting that ρ−1 = [1−Tr(ρ2)]−1(1−~b · σ̂):

List probabilities as

Is

Yes No

Two-element POVM optimal Three-element POVM optimal

Figure 4. Flowchart showing the process of determining which measurement scheme is optimal for any
probability distribution, and the resulting probability of correctly identifying the state. δc is defined in
equation 10.
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this means ρ must be a mixed state, otherwise ρ−1 has no physical meaning. Using ρ−1 ∝
∑
j pj |ψ⊥j 〉〈ψ⊥j |,

0.00 0.05 0.10 0.15 0.20 0.25
δ

0.70

0.75

0.80

0.85

0.90

PCorr

0.00 0.05 0.10 0.15 0.20 0.25
δ

0.70

0.75

0.80

0.85

0.90

PCorr

0.00 0.05 0.10 0.15 0.20 0.25
δ

0.70

0.75

0.80

0.85

0.90

PCorr

Figure 5. Comparisons of PCorr given by the optimal two-element POVM (bold line) and the results given
by our method for finding the optimal three-element POVM (dotted line) for fixed values of p. From top to
bottom, p has values 0.374, 0.394, and 0.414. The dot-dashed grey vertical lines show when the determinant
in equation (9) becomes negative and thus a three-element POVM becomes physically realisable. That is,
the three-element POVM is only viable to the right of the dot-dashed grey line. Note that, when physically
viable, the three-element POVM does not significantly outperform the two-element POVM.
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0.35 0.40 0.45 0.50
p

0.70

0.75

0.80
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0.90

0.95

1.00

PCorr

Figure 6. Graph showing the probability of correctly identifying the signal state using the optimal
measurement strategy for p ∈ [ 1

3
, 1
2

]. The lines, in increasing amounts of dashing - and lowest to highest -
correspond to δ = 0, δ = 0.1, δ = 0.2, δ = 0.3 and δ = 0.4.

therefore, we may write

πi ∝
∑
j,k

pjpk|ψ⊥j 〉〈ψ⊥j |ψi〉〈ψi|ψ⊥k 〉〈ψ⊥k |. (18)

The numerator of equation (17) in the general case is pi〈ψi|πi|ψi〉 ∝ pi(
∑
m pm|〈ψ⊥m|ψi〉|2)2. Due to the

symmetry of the trine ensemble, it is readily verified that |〈ψ⊥j |ψi〉|2 = 3
4 (1 − δij). The numerator, in this

instance, is therefore 9
16pi(1− pi)

2. The other piece of the expression in the denominator takes the following

form, where the last two lines are dependent on the number of states we are discriminating between and

their overlaps:

∑
j 6=i

P (πi, ρj) =
∑
j 6=i

pj〈ψj |πi|ψj〉

∝
∑
j 6=i

pj

∣∣∣∣∣∑
m

pm〈ψj |ψ⊥m〉〈ψ⊥m|ψi〉

∣∣∣∣∣
2

=
9

16

∑
j 6=i

pj
∑
m 6=i,j

p2m

=
9

16
(1− pi)

∏
j 6=i

pj .

The final line may not be obvious at first, but can be verified by setting, e.g., i = 0 and noting that m can

only take one value - if j = 1, m = 2 and vice versa. We therefore obtain

P (i)Corr =

(
1 +

∏
j 6=i pj

pi
∑
j 6=i pj

)−1
, (19)

which has some attributes we might expect: when any individual pj is set equal to zero, the probability

of correctly identifying the state ρi (i 6= j) becomes unity, as the set of possible states is now linearly

independent, allowing unambiguous discrimination to be performed. When pi is zero, there is zero chance

of that state being correctly identified, as one might anticipate.

We plot the confidence of correctly identifying each state using this measurement scheme, and compare

this to the confidence using the minimum-error strategy. These can be seen in figures 7 and 8 (note that figure

8 only uses the two-outcome measurement, for simplicity). In both cases, the minimum-error measurement

is close to optimal for ρ0 and ρ1. Also note how low the confidence for ρ2 gets as p increases - this indicates

why this state is not identified in the minimum-error measurement.
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Figure 7. Graph showing the confidence in correctly identifying the signal state given the outcome of the
minimum-error strategy (black dotted line) and the maximum confidence measurement for p ∈ [ 1

3
, 1
2

] and
δ = 0. The lighter lines (from darkest to lightest and top to bottom) represent the maximum confidence
strategy on states ρ0, ρ1 and ρ2 - note that as δ = 0, the states ρ0 and ρ1 are equally likely, and so their
values for confidence completely overlap. Also, the minimum-error measurement and maximum confidence
measurement are identical for ρ2, so give the same confidence value (shown in the lower dotted line coincident
with the light grey line to the left of the dashed vertical line), resulting in only 3 lines being visible. The
dashed vertical line corresponds to the crossover point at which the minimum-error measurement stops being
a three-outcome measurement and starts being a two-outcome measurement.

0.35 0.40 0.45 0.50
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0.4

0.6

0.8

1.0
Confidence

0

Figure 8. Graph showing the confidence in correctly identifying the signal state given the outcome of
the two-element minimum-error strategy (black dotted lines) and the maximum confidence measurement
for p ∈ [ 1

3
, 1
2

] and δ = 0.1. The lighter lines (from darkest to lightest and top to bottom) represent the
maximum confidence strategy on states ρ0, ρ1 and ρ2. The higher dotted line corresponds to the minimum-
error strategy on ρ0, while the lower one corresponds to the same minimum-error measurement on ρ1. Note
that, as predicted, the most likely states are the easiest to detect in this measurement scheme. We ignore
the three-outcome minimum-error measurement, as it is only optimal for a small region of the space (c.f.
figure 3.)

4. Conclusion

We have investigated the optimal measurement strategies for the minimum-error and maximum confidence

figures of merit for three equidistant states on the equator of the Bloch sphere with arbitrary prior

probabilities, providing values for the optimal probability of correctly identifying the state in each case. The

most surprising result is that, for much of the parameter space of probabilities, the optimal minimum-error

measurement is a simple von Neumann measurement, and this allows optimal discrimination between these

states with a minimum of resources. This is in keeping with previous results: for a completely unknown
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qubit state, the best measurement to estimate the state is simply a von Neumann measurement in any

basis [41]; furthermore, the optimal intercept-resend strategy for an eavesdropper in the BB84 quantum

key distribution protocol - which has four signal states - is a von Neumann measurement in the so-called

Breidbart basis [42]. This was also noted by Andersson et. al., in a case with restricted symmetry [19].

We have shown that the region of parameter space for which a POVM measurement is needed is rather

small. This indicates that cases requiring POVM measurements are perhaps rather special, which might

have implications for quantum key distribution, scalability in quantum computing, and quantum metrology.

This paper solves the problem of optimal state discrimination between the trine states for arbitrary

prior probabilities analytically; we have also shown that, for given probabilities p0, p1, p2, there is one and

only one optimal measurement - when a two-outcome measurement is optimal we know it is unique, as

the measurement angle is fixed by equation (2), and, as already discussed, equation (12) shows that the

three-element POVM must also be a unique solution. This also shows that there is no region where two-

and three-outcome measurements are simultaneously optimal. This work provides a complement to that of

Hunter [43, 44], which found the minimum-error strategy for arbitrary equiprobable signal states. Subsequent

work presented analytical and geometric methods for arbitrary priors [9, 27, 34, 45]; what is surprising about

the results presented here is the simplicity of the expressions for the optimal probability of success given in

equations (15) and (16).

This is only the second example of minimum-error state discrimination for which a complete analytic

solution is known for arbitrary prior probabilities, with the other being the two-state example solved by

the Helstrom bound. This paper illustrates how the solution to minimum-error discrimination given in [27]

works in practice, and shows that such general analytical solutions to minimum-error state discrimination

are now broadly possible.

To complete the picture, we have also given the maximum confidence that it is possible for a measurement

to achieve on each of the trine states with arbitrary prior probabilities. As well as being of independent

interest, this helps to identify situations in which it is sub-optimal for the minimum-error strategy to identify

every signal state, as the maximum confidence possible for the least likely state tends to zero.
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[1] Joonwoo Bae and Leong-Chuan Kwek. Quantum state discrimination and its applications. Journal of Physics A:

Mathematical and Theoretical, 48(8):083001, 2015.
[2] Stephen M Barnett and Sarah Croke. Quantum state discrimination. Advances in Optics and Photonics, 1(2):238–278,

2009.
[3] Edward Davies. Information and quantum measurement. IEEE Transactions on Information Theory, 24(5):596–599,

1978.
[4] Masahide Sasaki, Stephen M Barnett, Richard Jozsa, Masao Osaki, and Osamu Hirota. Accessible information and optimal

strategies for real symmetrical quantum sources. Physical Review A, 59(5):3325, 1999.
[5] Lev B Levitin. Entropy defect and information for two quantum states. Open Systems & Information Dynamics, 2(3):319–

329, 1994.
[6] Carl W Helstrom. Quantum detection and estimation theory. Academic press, 1976.
[7] H Yuen, R Kennedy, and Melvin Lax. Optimum testing of multiple hypotheses in quantum detection theory. IEEE

Transactions on Information Theory, 21(2):125–134, 1975.
[8] Joonwoo Bae and Won-Young Hwang. Minimum-error discrimination of qubit states: Methods, solutions, and properties.

Physical Review A, 87(1):012334, 2013.
[9] Donghoon Ha and Younghun Kwon. Complete analysis for three-qubit mixed-state discrimination. Physical Review A,

87(6):062302, 2013.
[10] Anthony Chefles. Unambiguous discrimination between linearly independent quantum states. Physics Letters A,

6(239):339–347, 1998.
[11] Anthony Chefles. Unambiguous discrimination between linearly dependent states with multiple copies. Physical Review

A, 64(6):062305, 2001.
[12] Sarah Croke, Erika Andersson, Stephen M Barnett, Claire R Gilson, and John Jeffers. Maximum confidence quantum

measurements. Physical review letters, 96(7):070401, 2006.
[13] Igor D Ivanovic. How to differentiate between non-orthogonal states. Physics Letters A, 123(6):257–259, 1987.
[14] Dennis Dieks. Overlap and distinguishability of quantum states. Physics Letters A, 126(5):303–306, 1988.



Optimal measurement strategies for the trine states with arbitrary prior probabilities 14

[15] Asher Peres. How to differentiate between non-orthogonal states. Physics Letters A, 128(1):19, 1988.
[16] Gregg Jaeger and Abner Shimony. Optimal distinction between two non-orthogonal quantum states. Physics Letters A,

197(2):83–87, 1995.
[17] Peter J Mosley, Sarah Croke, Ian A Walmsley, and Stephen M Barnett. Experimental realization of maximum confidence

quantum state discrimination for the extraction of quantum information. Physical review letters, 97(19):193601, 2006.
[18] Eric Chitambar and Min-Hsiu Hsieh. Revisiting the optimal detection of quantum information. Physical Review A,

88(2):020302, 2013.
[19] Erika Andersson, Stephen M Barnett, Claire R Gilson, and Kieran Hunter. Minimum-error discrimination between three

mirror-symmetric states. Physical Review A, 65(5):052308, 2002.
[20] Masashi Ban, Keiko Kurokawa, Rei Momose, and Osamu Hirota. Optimum measurements for discrimination among

symmetric quantum states and parameter estimation. International Journal of Theoretical Physics, 36(6):1269–1288,
1997.

[21] Stephen M Barnett. Minimum-error discrimination between multiply symmetric states. Physical Review A, 64(3):030303,
2001.

[22] Chih-Lung Chou. Minimum-error discrimination among mirror-symmetric mixed quantum states. Physical Review A,
70(6):062316, 2004.

[23] Roger BM Clarke, Vivien M Kendon, Anthony Chefles, Stephen M Barnett, Erling Riis, and Masahide Sasaki.
Experimental realization of optimal detection strategies for overcomplete states. Physical Review A, 64(1):012303,
2001.

[24] Roger BM Clarke, Anthony Chefles, Stephen M Barnett, and Erling Riis. Experimental demonstration of optimal
unambiguous state discrimination. Physical Review A, 63(4):040305, 2001.

[25] Masoud Mohseni, Aephraim M Steinberg, and János A Bergou. Optical realization of optimal unambiguous discrimination
for pure and mixed quantum states. Physical review letters, 93(20):200403, 2004.

[26] Bruno Huttner, Antoine Muller, Jean-Daniel Gautier, Hugo Zbinden, and Nicolas Gisin. Unambiguous quantum
measurement of nonorthogonal states. Physical Review A, 54(5):3783, 1996.

[27] Graeme Weir, Stephen M. Barnett, and Sarah Croke. Optimal discrimination of single-qubit mixed states. Phys. Rev. A,
96:022312, Aug 2017.

[28] Jonathan Walgate, Anthony J Short, Lucien Hardy, and Vlatko Vedral. Local distinguishability of multipartite orthogonal
quantum states. Physical Review Letters, 85(23):4972, 2000.

[29] Charles H Bennett, David P DiVincenzo, Christopher A Fuchs, Tal Mor, Eric Rains, Peter W Shor, John A Smolin, and
William K Wootters. Quantum nonlocality without entanglement. Physical Review A, 59(2):1070, 1999.

[30] Sarah Croke, Stephen M. Barnett, and Graeme Weir. Optimal sequential measurements for bipartite state discrimination.
Phys. Rev. A, 95:052308, May 2017.
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